SiBON材料制备技术及反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiBON材料综合了SiO2和BN透波材料的优点,在保持SiO2和BN优异介电性能的同时,具有稳定的力学性能和低介电常数,可承受高马赫数飞行条件下对天线罩材料防热、承载与透波等要求,有望成为新一代天线罩材料。研究SiBON材料制备技术及反应机理可为制备SiBON材料提供理论基础,对透波材料的发展具有重要意义。
     本论文采用溶胶-凝胶法合成SiBOC粉体凝胶和SiBONC纤维前驱体,通过除碳制得低碳含量的SiBO粉体凝胶和SiBON纤维前驱体,并在氮气气氛中高温氮化,制备了纳微米级SiBON粉体和SiBON纤维;以SiBON粉体为基体,加入不同含量的SiBON纤维,在1000-1300℃下制备了SiBON复合材料。借助于浊度分析、Zeta电位分析、热重分析(TG)、差示扫描量热分析(DSC)、光学显微镜分析(OM)、红外光谱分析(FT-IR)、扫描电镜(SEM)、元素能谱分析(EDS)、X射线衍射仪分析(XRD)、激光粒度分析、透射电镜分析(TEM)、核磁共振分析(NMR)、电性能分析等测试手段,研究了SiBOC粉体凝胶和SiBONC纤维前驱体的合成、除碳及氮化工艺对纳微米级SiBON粉体和SiBON纤维组成和形貌的影响,分析探讨了SiBON粉体颗粒和SiBON纤维的形成过程和反应机理,研究了SiBON复合材料的力学性能、介电性能与微观结构的关系。
     按照硼酸3.0-3.5%、正硅酸甲酯10.0-12.5%的比例,在反应温度75-85℃,反应时间3h,pH10的条件下,制备了稳定的SiBO溶胶。论文研究了木质素季铵盐阳离子表面活性剂(DC)和十二烷基苯磺酸钠阴离子表面活性剂(CSN)对SiBO溶胶体系稳定性的影响。研究表明,在没有加入表面活性剂的情况下,SiBO溶胶成核诱导期为45min,SiBO胶粒具有ζ电位为负的双电层结构。当反应时间达到3h时,SiBO溶胶体系的ζ电位由反应初期的-6.5mv降到-8.5mv。加入100ppm的DC表面活性剂后,SiBO溶胶成核诱导期缩短到35min,反应3h后溶胶体系的ζ电位升高至-4mv左右。这种现象表明DC的加入不仅不能提高SiBO-溶胶体系的稳定性,反而增加了SiBO溶胶体系的团聚现象。加入100ppm CSN表面活性剂,SiBO溶胶的诱导期为60min,经过反应3h后,溶胶体系的ζ电位由最初的-14mv降低到-24.8mv。ζ电位降低的主要原因是CSN加入到SiBO溶胶体系后,使SiBO胶粒表面产生负电积累,造成ζ电位降低;另一方面,CSN的加入改变了SiBO胶粒表面的极性,促使憎水基团一致朝外定向排列,增加了SiBO胶粒间相互排斥力,阻止了SiBO胶粒之间的堆积,使SiBO胶粒分散均匀。
     SiBON材料中的碳含量对材料的介电性能有较大影响。为了降低SiBON材料中的碳含量,将SiBOC凝胶和SiBONC前驱体分别在N2和水蒸气的气氛中,于200-700℃进行除碳处理。结果表明,在水蒸气气氛下处理,除碳效果较好,700℃时保温30min后,产物的碳含量为0.1%。
     论文研究了在氮气气氛下1200-1600℃范围内,SiBON试样的晶相组成变化。XRD分析结果表明,试样以非晶相物质为主,包含少量晶相。120℃氮化后的试样存在SiO2的衍射峰;1400℃氮化后的试样,除了SiO2的衍射峰外,也出现了微弱的BN衍射峰;1600℃氮化后出现较强的BN衍射峰。
     对1600℃氮化后的SiBON试样进行了微观结构分析与表征。SEM分析表明,没有加入表面活性剂的试样有颗粒团聚体现象;加入了CSN的试样,颗粒细小,平均直径在1μm以下,颗粒分布较均匀。EDS分析表明,试样中的氮含量比氮化前增加了约45%,说明SiBON凝胶在高温氮化过程中,N能够进入到试样的结构中。TEM分析表明,SiBON粉体颗粒表面粗糙,包含晶态和非晶态两种形态。晶态区域的SiBON形貌呈现两种状态:一是BN薄片状的扇形形貌,粒径100nm左右;二是BN和SiO2的块状形貌,粒径100nm左右。固态11B、29Si核磁共振分析表明,SiBON试样是非晶相和晶相的混合体,晶相主要是Si02.h-BN.t-BN以及少量Si3N4。FT-IR分析显示,SiBON粉体试样主要含有Si-O-Si、B-N和B-N-Si等键,并含有少量的B-O-Si、B-O-B键。综上分析认为,所制备试样是由含有B-N-Si、B-O-Si键的SiBON非晶态物质以及Si02.h-BN、t-BN和少量Si3N4晶相物质组成的混合体。
     对1600℃氮化后的SiBON试样机械粉磨,研究了不同粉磨时间对粉体粒径的影响。激光粒度分析表明,没有机械粉磨的SiBON粉体,最大粒径为326nm,平均粒径为166nm,粒径在100nm以下的颗粒占10%。经过10min的机械粉磨后,粒径在100nm以下的占33%,经过20min机械粉磨后SiBON粉体粒径在100nm以下的约占70%,经过30min机械粉磨后粒径在100nm以下的约占80%,说明高温氮化后的SiBON粉体试样是纳米颗粒的团聚体。
     在以硼酸和正硅酸甲酯为原料、氨水为pH调节剂,制备SiBO溶胶的过程中,正硅酸甲酯水解生成硅醇,硼酸与硅醇以及硅醇与硅醇反应生成的硼氧基团与硅氧基团中的氧和NH3.H2O中的N都是强电负性中心,易与不同硅羟基形成氢键吸附并脱水,产生SiB2O2N环状结构;另一方面,Si-OH之间缩水能够生成层状结构的硅氧四面体[SiO4];环状结构的SiB2O2N与层状结构的硅氧四面体构成了稳定的胶体体系。干凝胶在高温氮化过程中,N元素置换粉体结构中的O原子从而形成了高含氮的结构的SiBON。
     论文研究了SiBONC纤维前驱体的合成条件,在3.5-4.0%的硼酸,9.0-11.0%的正硅酸乙酯,3-3.5%的三聚氰胺,反应温度为80℃,反应时间为3h,pH为8的条件下,制备了SiBONC纤维前驱体。该纤维前驱体分散均匀,表面光滑,长径比大于45。论文研究了不同pH值对反应体系稳定性的影响。结果表明,对于pH=4和pH=6的反应体系,两体系ζ电位变化趋势一致,反应初期的ζ电位均约为-6mv,随着反应时间的延长,体系的ζ电位降低。反应时间达到3h时,均降低至-9mv,反应体系不稳定,易生成团聚体;对于pH=8和pH=10的反应体系,最初的ζ电位约为-13mv,反应时间达到3h时,均降至-17mv,反应体系稳定,不易生成团聚体,说明在碱性条件下才能制备稳定的SiBONC纤维前驱体。
     论文研究了在氮气气氛下1400-1800℃范围内,SiBON纤维试样的晶相组成变化。XRD分析结果表明,1400℃氮化后的试样呈非晶态;1600℃氮化后试样的衍射图谱存在SiO2的衍射峰;1800℃时,衍射图谱除了出现SiO2的衍射峰外,还有BN的衍射峰。
     SiBONC纤维前驱体在1800℃氮化试样的SEM分析表明,pH=8时制备的SiBON纤维表面光滑,分布均匀,长径比大于25。EDS分析表明,pH=5时制备的前驱体,N含量为5.88%;pH=8时制备的SiBONC纤维前驱体,N含量为20.21%。经高温氮化后,两试样的氮含量分别增加到23.26%和23.34%,表明高温氮化能够提高试样的氮含量,特别对于pH=5条件下制备的试样,高温氮化使得试样中的氮含量提高近3倍。TEM分析表明,SiBON纤维试样呈现两种不同的结构:一是BN六方柱状晶相结构,其截面边长在30nm左右;另
     一类是长片状的非晶结构,长片宽约20nm。固态11B.29Si核磁共振分析表明,SiBON纤维试样是非晶相和晶相的混合体,晶相主要是Si02.h-BN、t-BN以及少量的Si3N4。FT-IR分析显示,SiBON纤维结构中主要含有B-N、B-O、B-O-B、 O-Si-O、B-N-Si等键,并含有少量的B-O-Si、Si-O-Si和硅氧四面体。因此,与粉体材料类似,所制备试样是由含有B-N-Si、B-O-Si键的SiBON非晶态物质以及Si02.h-BN、t-BN和少量Si3N4晶相物质组成的混合体。在SiBONC纤维前驱体的生长过程中,三聚氰胺具有晶种的作用,能够使正硅酸乙酯水解后的硅醇与硼酸反应生长成短纤维。加入三聚氰胺后,溶液体系中反应生成的Si-O基团和B-O基团中的O以及三聚氰胺分子中-NH2基团的N都是强电负性中心,容易和硅醇中的Si-OH基团形成氢键吸附,与不同硅羟基形成氢键时能产生环状结构。Si-OH与Si-OH之间醚化脱水,形成层间结构的Si-O-Si链段。Si-O-Si链段的不断增长,使微粒沿SiBONC径向生长,最终形成具有一定长径比的SiBONC纤维前驱体。SiBON纤维前驱体在N2气氛中高温氮化时,N元素置换结构中的氧原子,形成高N含量的结构。以SiBON粉体为基体,加入不同含量的SiBON纤维,在1000-1300℃下制备了SiBON复合材料。结果表明,随着纤维含量的增加,复合材料的弯曲强度呈先增加后降低的趋势,而介电常数稍有增加。当烧结温度为1300℃、SiBON纤维含量为12.5%时,SiBON复合材料的弯曲强度达108.7MPa,介电常数为2.1,介质损耗角正切值为0.012。弯曲强度的提高可能是由于纤维相互交错,在承受载荷时,相邻的纤维产生互锁效应引起的;过多的纤维加入,复合材料显气孔率快速增加,从而使弯曲强度下降。
SiBON materials integrated the advantages of SiO2and BN wave-transparent material, while maintaining the dielectric properties of SiO2and BN, a more stable thermal physical properties, low dielectric constant and high mechanical properties, can withstand high Maher numbers flight conditions on the radome materials against heat, bearing and wave-transparent requirements, which can be applied in a new generation radome materials. Therefore, the study on preparation and reaction mechanism of SiBON material is the theory base of preparing SiBON material and has important significance to the development of wave-transparent material.
     In this research, SiBOC powder gel and SiBONC fiber precursor were successfully synthesized through sol-gel method, with distilled water as solvent; SiBON powder of micrometer and nanometer grade and SiBON fiber were prepared by removing the carbon and nitrogenizing SiBO powder gel and SiBON fiber precursor; The SiBON composite was prepared with SiBON powder and SiBON fiber at the temperature of1000-1300℃in N2. The testing methods were adopted, such as turbidity, ζ potential, thermo gravimetric(TG), differential scanning calorimeter (DSC), optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR). The preparation, carbon removal and nitriding process of SiBOC powder gel and SiBONC fiber precursor has systematically studied, the influence factors of SiBON powder and SiBON fiber were discussed and the reaction mechanisms of SiBON powder and SiBON fiber have been analyzed.
     The stable SiBO-sol system formed with tetramethoxysilane and boric acid as raw materials under the conditions of3.0-3.5%of boric acid,10.0-12.5%of tetramethoxysilane, reaction temperature of75to85℃, reaction time for3h and pH of10. In order to improve the stability of the SiBO-sol system, and reduce the reunion phenomenon, lignin quaternary ammonium salt cationic surfactants (DC) and dodecylbenzenesulfonic acid sodium anionic surfactants (CSN) were added to the reaction system. Researches showed that the SiBO-sol induction period was45min, constituting a double-layer structure of a negative potential. When the reaction time increased to3h, the ζ potential of SiBO-sol system slowly reduced from-6.5mv to-8.5mv. Adding100ppm DC surfactants, the induced period of SiBO-sol reduced to35min, and the ζ potential rose around to-4mv after3h. These results showed that after adding DC, the stability of the SiBO-sol system cannot be improved, but the reunion of colloidal system phenomenon rose. Adding100ppm CSN surfactants, the induced period of SiBO-sol rose to60min, and the ζ potential reduced from-14mv to-24.8mv after3h. Because the anionic hydrophilic groups of CSN formed anionic accumulation in the original negative ζ potential solution system. besides, the surfacial polarity of the SiBO-colloidal particle was changed from hydrophilic group into hydrophobic group, the repulsive force between SiBO-colloidal particles increased, preventing the SiBO-colloidal particles from depositing, thus the SiBO-colloidal particle hardly grew, making SiBO-colloidal particles evenly disperse and the diameter smaller.
     The carbon content of SiBON powder has influence on the dielectric properties. The carbon removal process of the SiBO(N)C gel was carried out at200-700℃in the atmosphere of N2and water vapor, and the relative carbon content in samples was tested. The result indicated that the carbon content was0.1%when it was placed for30min at700℃in the atmosphere of water vapor.
     SiBO powder gel was nitrogenzed at1200-1600℃. XRD showed that it was amorphous thoroughly but some crystalline phases. Only the low diffraction crystalling phase of SiO2appeared at1200℃. At1400℃, the weak diffraction peak of BN also appeared except for the diffraction peak of SiO2. At1600℃, not only appeared the diffraction peak of SiO2, but also a strong diffraction peaks of BN.
     The analyses of the SEM and EDS have been done after nitriding SiBO powder gel at1600℃. SEM analysis showed that after carbon removal and nitrogenization, the SiBON powder without surfactant has a reunited phenomenon; while samples with SCN, SiBON powder appeared as tiny particles of even particle size with the diameter all below1μm, and evenly distributed. EDS analysis showed that the carbon content is extremely low while the nitrogen content increased about45%, indicating that it was feasible to introduce element N into the SiBON powder structure when nitrogenization. TEM analysis showed that the SiBON powder after nitrogenization appeared to rough surface, including crystalling phase and amorphous phase. In crystalline phase area, SiBON powder had two kinds of morphologies, one was a shape of fanlike flakes, which overlapped in between and accumulated together, the particle size was around100nm. Electronic diffraction patterns were sharp diffraction peaks, indicating that SiBON powder particles in this area were BN crystalline materials. The other one was cube, with particle size around100nm, and tended to be reunited. Electronic diffraction patterns were also sharp diffraction peaks, and very clear in different orbitals, indicating that SiBON powder particles in this area were crystalline materials. It was inferred these crystalline materials were BN and SiO2. Solid state11B nuclear magnetic resonance (NMR) analysis indicated that some h-BN crystals, t-BN crystals in SiBON powder. Solid state29Si NMR analysis showed that SiO4tetrahedron and Si3N4containing Si-N bond existed in SiBON powder. FT-IR analysis showed, after nitrogenizing the sample at1600℃, Si-O-Si, B-N, B-N-Si bonds, etc. and small amounts of B-O-Si, B-O-B bonds were contained in the structure, it indicated that the sample was the mixture of SiBON amorphous substances containing B-N-Si and B-O-Si key and crystalline phase material such as SiO2, h-BN, t-BN, and Si3N4.
     The grinding effect of nitrogenzed SiBON powder at1600℃has been studied. The laser particle size analysis showed that the particle size below100nm of SiBON powder was about10%, and the maximum particle size of326nm and the average particle size of166nm. After mechanical grinding for10min,20min and30min, the particle size below100nm of SiBON powder increased to about33%,70%and80%respectively. The results showed that the nitrogenzed SiBON powder at high temperature was nanoparticles reunion body.
     During the preparation of SiBO-sol, the NH3. H2O was added when regulating the pH value, oxygen in Si-O groups and boron oxygen groups, and nitrogen in amino groups were negative strong current center, contributing to the absorption to silicon hydroxyl in form of hydrogen bond, so that a circular structure could be formed. On the other hand, the etherification dehydration between Si-OH generated a layer structure of SiO4tetrahedron. During the nitrogenization of SiBO powder gel at a high temperature, N element replaced some oxygen atoms.
     SiBONC fiber precursor was prepared with the best technological conditions,3.5-4.0%boric acid,9.0-11.0%TEOS,3-3.5%melamine, reaction temperature of80℃, reaction time of3h, pH=8, then stand, drying and then SiBONC fiber precursor was prepared with the features of scattered evenly, smooth surface and aspect ratio of45. The results showed that when pH=4or pH=6, the (?) potential both reduced from-6mv to-9mv after3h, and the solution system was not stable; when pH=8or pH=10, the ζ potential decreased from-13mv to-17mv after3h, and the solution system was stable. It showed that stable SiBONC fiber precursor could be prepared in alkaline conditions.
     SiBON fiber precursor was nitrogenized at1400-1800℃. XRD analysis showed that when the SiBON fiber precursor was nitrogenized at1800℃, the product is still amorphous, while crystalline phase of SiO2and BN also existed. SEM analysis showed, after the carbon removal treatment, the micrograph of the SiBON fiber precursor was fibrous, and its fiber appeared to be long, narrow and the aspect ratio was45, while after being nitrogenized at1800℃, the fiber turned to be shorter, its diameter almost the same, and the distribution more even, but the aspect ratio reduced to25. EDS analysis showed that, after nitrogenizing the SiBON fiber precursor at a high temperature, the nitrogen content greatly increased by23%, indicating that either adding nitrogen during the preparation process with sol-gel method or nitrogenizing the precursor in the later stage, it was feasible to introduce element N into the SiBON fiber structure. TEM analysis showed that two kinds of structure existed after nitrogenizing the SiBON fiber at a high temperature. One was a particle structure of hexahedron column shape and the section length was about30nm, which was exactly BN hexahedron crystalline phase. The other one was a long flake structure, with its width20nm, and the electronic diffraction patterns were diffused and fuzzy, appearing to be amorphous. Solid state11B nuclear magnetic resonance (NMR) analysis indicated that some h-BN crystals and t-BN crystals existed. Solid state29Si NMR analysis showed that a large amount of SiO4tetrahedron and Si3N4existed in SiBON fiber. FT-IR analysis showed that after nitrogenizing SiBON fiber precursor at a high temperature, B-N, B-O, B-O-B, O-Si-O, B-N-Si bonds and small amounts of B-O-B, Si-O-Si bonds existed in SiBON fiber structure, and also Si-O tetrahedron appeared.
     It was concluded that large amounts of amorphous materials and few crystals existed in SiBON fiber. Among these crystals was mainly SiO2, h-BN, t-BN and small amounts of Si3N4. It indicated that the sample was the mixture of SiBON amorphous substances containing B-N-Si and B-O-Si key and crystalline phase material such as SiO2, h-BN, t-BN, and Si3N4.
     The reaction mechanism of how SiBON fiber was generated was analyzed. The result showed that the melamine played a role of crystalline seed, which could react with silicon alcohol and boric acid to produce fiber. The oxygen in Si-O groups and boron oxygen groups, and nitrogen in amino groups of melamine were negative strong current center, contributing to the absorption to silicon hydroxyl in form of hydrogen bond, so that a circular structure could be formed. Etherification dehydration between Si-OH generated a layer structure. The growth of the Si-O-Si chain segments made the powder grow along the radial direction, and finally SiBON fiber of certain aspect ratio formed. During the nitrogenization of SiBON precursor products at a high temperature, N element replaced some oxygen atoms.
     SiBON composite was preparated with SiBON powder and SiBON fiber under the sintering temperature of1000-1300℃. The results showed that, when the sintering temperature is1300℃and the SiBON fiber content is12.5%, the SiBON composite showed the best properties with bending strength of108.7MPa, dielectric constant of2.1and dielectric loss tangent value of0.012.
引文
[1]陆佩文.无机材料科学基础[M].武汉:武汉理工大学出版社,2007.7:1-1.
    [2]仝毅,周馨我.微波透波材料的研究进展[J].材料导报,1997,11(3):1-5.
    [3]王光辉,梁小平,史奕同,等.高介电常数微波介质陶瓷材料的研究现状[J].硅酸盐通报,2008,27(2):312-317.
    [4]宋麦丽,崔红,闫联生,等.高硅氧/有机硅透波材料介电性能实验分析[J].固体火箭技术,2006,29(5):364-366.
    [5]Li A J, Zhen Y H, Yin Q, et al. Microstructure and properties of (SiC, TiB2)/B4C composites by reaction hot pressing[J]. Ceramics International,2006, 32:849-856.
    [6]Jeschke G, Kroschel M, Jansen M. A magnetic resonance study on the structure of amorphous networks in the Si-B-N(-C) system[J]. Journal of Non-Crystalline Solids,1999,260:216-227.
    [7]张煜东,苏勋家,侯根良.高温透波材料研究现状和展望[J].飞航导弹,2006,(3):56-58.
    [8]Naruhiro K, Takeo O, Masahiro I, et al. Structures and purification of boron nitride nanotubes synthesized from boron-based powders with iron particles[J]. Journal of Materials Science,2008,43(8):2955-2961.
    [9]Cornish A D, Mills D P, Lewis W, et al. Reactions of alkali metal and yttrium alkyls with a sterically demanding bis(aryloxysilyl)methane:Formation of aryloxide complexes by Si-O bond cleavage[J]. Comptes Rendus Chimie,2010, 13(6-7):593-602.
    [10]黎义,李建保.航天透波多功能复合材料的介电性能分析[J].宇航材料工艺,2001,31(6):4-9.
    [11]Delcamp A, Maille L, Saint Martin S, et al. Al-O-N and Al-O-B-N thin films applied on Si-O-C fibers[J]. Composites Science and Technology,2010, 70(4):622-626.
    [12]Tang Y, Wang J, Li X D, et al. Thermal stability of polymer derived SiBNC ceramics[J]. Ceramics International,2009,35(7):2871-2876.
    [13]黎义,张大海,陈英,等.航天透波多功能材料研究进展[J].宇航材料工艺,2000,30(5):1-5.
    [14]全保刚SiBON及BN纳米粉末的合成及其陶瓷材料的制备[D].哈尔滨工业大学硕士学位论文,2003.7.
    [15]胡连成,黎义,于翘.俄罗斯航天透波材料现状考察[J].宇航材料工艺,1994,24(1):48-52.
    [16]张谟杰,俄罗斯导弹天线罩研制情况介绍——赴俄罗斯考察报告[J].制导与引信,1998,(1):16-19.
    [17]Golden K E. The prediction and measure of dielectric properties and RF transmission through ablating BN antenna windows[J]. In:A IAA 16th thermo physical conference. Palo Alto, A IAA-81-1085,1981:23-25.
    [18]沈强,陈斐,闫法强等.新型高温陶瓷天线罩材料的研究进展[J].材料导报,2006,20(9):1-4.
    [19]齐共金,张长瑞,胡海峰等.陶瓷基复合材料天线罩制备工艺进展[J].硅酸盐学报,2005,33(5):632-638.
    [20]Peng Z H, Fu X L, Zhu N, et al. Preparation and growth mechanism of clustered one-dimensional SiOx amorphous nanowires by catalytic pyrolysis of a polymer precursor[J]. Journal of Non-Crystalline Solids,2009,355 (43-44): 2156-2159.
    [21]魏美玲,滕祥红,赵小玻,等.石英陶瓷天线罩封孔增强涂层的研究[J].硅酸盐通报,2005(4):3-5.
    [22]姜勇刚,张长瑞,曹峰,等.高超音速导弹天线罩透波材料研究进展[J].硅酸盐通报,2007,26(3):501-504.
    [23]崔文亮.熔融石英陶瓷的性能改进研究[D].武汉:武汉理工大学硕士论文,2003.
    [24]徐常明,王士维,黄校先,等.无压烧结制备Si3N4/SiO2复合材料[J].无机材料学报,2006,(4):935-938.
    [25]王磊.Si3N4基导弹天线罩材料的研究[D].济南:山东大学硕士学位论文,2005.
    [26]陈虹,张联盟,罗文辉.透波陶瓷材料的研究现状[J].陶瓷学报,2003,24(3):189-192.
    [27]肖永栋,刘红影,方晓敏.新型无机烧蚀材料的性能及潜在用途[J].玻璃钢/复合材料,2003,(3):46-47.
    [28]王新鹏,田莳.碳化硅纤维增强磷酸铝基复合材料的制备和性能研究[J].功能材料,2005,36(11):1693-1696.
    [29]曹海琳,张杰,黄玉冬,等.磷酸铬铝高温透波材料的制备和性能研究[J].宇航材料工艺,2004,34(2):29-31.
    [30]Riley F L. Silicon nitride and related materials[J]. Journal of the American Ceramic Society,2000(83):245-265.
    [31]Ziegler A, Idrobo JC, Cinibulk MK et al. Interface Structure and Atomic Bonding Characteristics in Silicon Nitride Ceramics[J]. Science,2004,306(3):1768-1770.
    [32]李家亮,姜洪义,牛会叶.多孔陶瓷透波材料研究现状及进展[J].硅酸盐通报,2006(2):91-93.
    [33]Barta J, Manela M. Si3N4 and Si2N2O for high performance radomes[J]. Matrials Science and Engineering,1985,71:265-272.
    [34]张伟儒,王重海,刘建,等.高性能透波Si3N4-BN基陶瓷复合材料的研究[J].硅酸盐通报,2003,(3):3-6.
    [35]闫联生,李贺军,崔红.高温陶瓷透波材料研究进展[J].宇航材料工艺,2004,34(2):14-16.
    [36]顾立德.氮化硼陶瓷[M].北京:中国建筑工业出版社,1987:60-105.
    [37]Bai H W, Wen G, Huang X X, et al. Synthesis and structural characterization of SiBOC ceramic fibers derived from single-source polyborosiloxane[J]. Journal of the European Ceramic Society,2011,31(5):931-940.
    [38]Paquette D G. Method of making a radar transparent window material operable above 2000℃[P]. United Patent,5627542,1997.
    [39]姜勇刚,张长瑞,曹峰,等.高超音速导弹天线罩透波材料研究进展[J], 硅酸盐通报,2007,26(3):500-505.
    [40]李俊生,张长瑞,王思青,等SiO2/(Si3N4+BN)透波材料表面涂层的防潮性能和透波性能研究[J].涂料工业,2007,37(1):5-10.
    [41]Drevet B, Voytovych R, Israel R, et al. Wetting and adhesion of Si on Si3N4 and BN substrates[J]. Journal of the European Ceramic Society,2009, 29(11):2363-2367.
    [42]张晓东,温广武,全保刚,等.先驱体法制备纳米SiBON陶瓷粉体[J].稀有金属与工程,2008,37(1):709-712.
    [43]张俊宝,雷廷权,温广武,等.纳米SiBON陶瓷粉末的合成与表征[J].材料科学与工艺,2003,11(3):230-232.
    [44]Hotta M, Tatami J, Zhang C, et al. Ca-α SiAlON hollow spheres prepared by carbothermal reduction-nitridation from different SiO2 powders[J]. Ceramics International,2010,36(5):1553-1559.
    [45]Kane W F, Cohen S A, Hunnel J P, et al. Use of SiBN and SiBON Films Prepared by Plasma Enhanced Chemical Vapor Deposition from Borazine as Interconnection Dielectrics[J]. Electrochem Soc.,1997,144(2):658-663.
    [46]Bois L, Haridon P L, Laurent Y, et al. Characterization of a Boro-silion Oxynitride Prepared by Thermal Nitridation of a Polyborosiloxane[J]. Journal of Alloys and Compounds.1996,232:244-253.
    [47]张俊宝.SiBON粉末的溶胶-凝胶制备及其陶瓷的组织性能[D].哈尔滨:哈尔滨工业大学博士论文,2001.
    [48]Wideman T, Cortez E, Remsen E E, et al. Reactions of Monofunctional Boranes With Hydridopolysilazane:Synthesis, Characterization, and Ceramic Conversion Reactions of New Processible Precursors to SiBON Ceramic Materials[J]. Chemistry Material,1997,9(10):2218-2230.
    [49]张健泓,陈优生.溶胶-凝胶法的应用研究[J].广东化工,2008,35(3):47-49.
    [50]张俊宝,雷廷权,温广武,等.先驱体法合成氮化硼研究进展[J].材料科学与工艺,2000,8(2):1-7.
    [51]刘军,雷玉成,包旭东,等.氮化硼粉体的合成研究[J].陶瓷科学与艺术,2003,(5):31-33.
    [52]韩兵强,李楠.高能球磨法在纳米材料研究中的应用[J].耐火材料,2002,36(4):240-242.
    [53]温广武.不连续体增强熔石英复合材料组织结构与性能[J].哈尔滨:哈尔滨工业大学博士论文,1996.
    [54]Wideman V L, Sneddon L G. Amine-Modfied Polyborazylenes: Second-Generation Precursors to Boron Nitride[J]. Chemistry Material,1998, 10(1):412-421.
    [55]Mallick D, Kayal T K, Ghosh J, et al. Development of multi-phase B-Si-C ceramic composite by reaction sintering[J]. Ceramics International,2009, 35(4):1667-1669.
    [56]Zhang W R, Wang C H, Li L, et al. Study on temperature resistance and scour resistance of Si-B-O-N based ceramic transparent materials[J]. Journal of Synthetic Crystals,2007,36:348-352.
    [57]Wang J, Wen G W, Meng Q C. Preparation of BN/SiO2 ceramics by PIP method[J]. Journal of Center South University of Technology, 2005,12(l):31-34.
    [58]陈贵清,韩杰才,杜善义.高压气-固燃烧合成h-BN-SiO2和h-BN陶瓷材料的研究[J].材料工程,2001,(10):9-12.
    [59]陈贵清,韩杰才,张宇民,等.高压气-固自蔓延高温合成h-BN-SiO2陶瓷材料的研究[J].无机材料学报,1999,14(3):437-442.
    [60]王重海,张伟儒,高芳,等.纳米Si02对Si3N4/BN复合材料性能的影响[J].硅酸盐通报,2005,(6):43-45.
    [61]Wen G, Wu G L, Lei T Q. Co-enhanced SiO2-BN ceramics for high-temperature dielectric applications[J]. Journal of the European Ceramic Society,2000,20:1923-1928.
    [62]杨治华,贾德昌,周玉.SiC-BN及Si-B-C-N复合陶瓷的研究进展[J].机械工程材料,2005,9(3):7-10.
    [63]Najafi A, Golestani-Fard F, Rezaie H R, et al. Effect of APC addition on stability of nanosize precursors in sol-gel processing of SiC nanopowder[J]. Journal of Alloys and Compounds,2010,505(2):692-697.
    [64]Gian Domenico Soraru, Florence Babonneau, Stefano Maurina, et al. Sol-gel synthesis of SiBOC glasses[J]. Journal of Non-Crystalline Solids,1998, 224:173-183.
    [65]Aylin Karakuscu, Romain Guider, Lorenzo Pavesi, Gian Domenico Soraru, Broad-band tunable visible emission of sol-gel derived SiBOC ceramic thin films[J].Thin Solid Films,2011,519:3822-3826.
    [66]C. Vakifahmetoglu, I. Menapace, R. Riedel, et al. Highly porous macro-and micro-cellular ceramics from a polysilazane precursor[J]. Ceramics International,2009,35:3281-3290.
    [67]洪新华,李保国.溶胶-凝胶(Sol-Gel)方法的原理与应用[J].天津师范大学学报(自然科学版),2001,21(1):5-8
    [68]Fukui H, Ohsuka H, Hino T, et al. Influence of polystyrene/phenyl substituents in precursors on microstructures of Si-O-C composite anodes for lithium-ion batteries[J]. Journal of Power Sources,2011,196(1):371-378.
    [69]Rami A O, Houssam E R. Surface characterization by nitrogen adsorption of silica aerogels synthesized from various Si(OR)4 and R"Si(OR')3 precursors [J]. Applied Surface Science,2010,257(1):276-281.
    [70]Hwang T, Pu L, Kim S W, et al. Synthesis and barrier properties of poly(vinylidene chloride-co-acrylonitrile)/SiO2 hybrid composites by sol-gel process[J]. Journal of Membrane Science,2009,345(1-2):90-96.
    [71]Yari A, Abdoli H A. Sol-gel derived highly selective optical sensor for sensitive determination of the mercury(II) ion in solution[J]. Journal of Hazardous Materials,2010,178(1-3):713-717.
    [72]Crisan D, Dragan N, Raileanu M, et al. Structural study of sol-gel Au/TiO2 films from nanopowders[J]. Applied Surface Science,2011,257(9):4227-4231.
    [73]Crescimbeni M C, Nolan V, Clop P D, et al. Activity modulation and reusability of β-D-galactosidase confined in sol-gel derived porous silicate glass[J]. Colloids and Surfaces B:Biointerfaces,2010,76(2):387-396.
    [74]Das G, Ferraioli L, Bettotti P, et al. Si-nanocrystals/SiO2 thin films obtained by pyrolysis of sol-gel precursors[J]. Thin Solid Films,2008, 516(20):6804-6807.
    [75]Nallamuthu N, Prakash I, Satyanarayana N, et al. Electrical conductivity studies of nanocrystalline lanthanum silicate synthesized by sol-gel route[J]. Journal of Alloys and Compounds,2011,509(4):1138-1145.
    [76]Zeman P, Capek J, Cerstvy R, et al. Thermal stability of magnetron sputtered Si-B-C-N materials at temperatures up to 1700℃[J]. Thin Solid Films,2010, 519(1):306-311.
    [77]Tavakoli A H, Gerstel P, Golczewski J A, et al. Kinetic effect of boron on the thermal stability of Si-(B-)C-N polymer-derived ceramics[J]. Acta Materialia, 2010,58(18):6002-6011.
    [78]Yang Z H, Jia D C, Zhou Y, et al. Fabrication and characterization of amorphous SiBCN powders[J]. Ceramics International.2007,33:1573-1577.
    [79]Yang Z H, Jia D C, Zhou Y, et al. Processing and characterization of SiB0.5C1.5N0.5 produced by mechanical alloying and subsequent spark plasma sintering[J]. Materials Science and Engineering A.2008,488:241-246.
    [80]温广武,张俊宝,雷廷权,等.原位析出片晶韧化相的SiBON玻璃陶瓷的结构与力学性能[J].陶瓷科学与艺术,2003,(6):16-20.
    [81]温广武,张晓东,全保刚,等.一种纳米SiBON陶瓷粉体的制备方法[P].中国专利,申请号200710072702.0.
    [82]张晓东,温广武,全保刚,等.先驱体法制备纳米SiBON陶瓷粉体[J].稀有金属材料与工程,2008,37(suppll):709-712.
    [83]Zhang X D, Wen G W, Quan B G, et al. Nano-Sized SiBON Ceramics Powders from Polymer Precursor[J]. RARE METAL MATERIALS AND ENGINEERING, 2008,37:709-712.
    [84]张俊宝,雷廷权,温广武.纳米Si-O-N陶瓷粉末的合成与表征[J].材料科学与工艺,2003,11(9):230-232.
    [85]李峰,温广武,宋亮,等.Si-B-O-N陶瓷粉末的制备与性能表征[J].陶瓷 科学与艺术,2003,(6):37-39.
    [86]Wen G, Li F, Song L. Structural characterization and mechanical properties of SiBONC ceramics derived from polymeric precursors[J]. Materials Science and Engineering A,2006,432:40-46.
    [87]Li F, Wen G, Song L. Growth of nanowires from annealing SiBONC nanopowders[J]. Jounal of Crystal Growth,2006,290:466-472.
    [88]Li F, Wen G, Bai H W. Synthesis and structural characterization of amorphous nano-sized SiBONC ceramics powders via polymer pyrolysis[J]. Journal of Non-crystalline Solids,2007,353:379-383.
    [89]Sadjadi M S, Farhadyar N, Zare K. Preparation and characterization of the transparent SiO2-Ag/PVP nanocomposite mirror film for the infrared region by sol-gel method[J]. Superlattices and Microstructures,2009,46(3):483-489.
    [90]Bunjes N, Muller A, Sigle W, etal. Crystallization of polymer-derived SiC/BN/C composites investigated by TEM[J]. Journal of Non-Crystalline Solids.2007,353:1567-1576.
    [91]Latthe S S, Dhere S L, Kappenstein C, et al. Sliding behavior of water drops on sol-gel derived hydrophobic silica films[J]. Applied Surface Science,2010, 256(10):3259-3264.
    [92]Okur S, Yakuphanoglu F, Stathatos E. High-mobility pentacene phototransistor with nanostructured SiO2 gate dielectric synthesized by sol-gel method[J]. Microelectronic Engineering,2010,87(4):635-640.
    [93]Schiavon M A, Armelin N A, Yoshida I. Novel poly(borosiloxane) precursors to amorphous SiBCO ceramics[J]. Materials Chemistry and Physics,2008, 112(3):1047-1054.
    [94]Yoshida K, Hyuga H, Kondo N, et al. Synthesis of precursor for fibrous mullite powder by alkoxide hydrolysis method[J]. Materials Science and Engineering:B,2010,173(1-3):66-71.
    [95]丁根娣,吴杰,许志遂.硫酸钡吸光比浊法测定机理的探讨[J].理化检验-化学分册,2001,37(3):111-112.
    [96]GB/T 4741-1999,陶瓷材料抗弯曲强度试验方法[S].
    [97]david j.green著,龚江宏译.陶瓷材料力学性能导论[M].北京:清华大学出版社.2003:208.
    [98]BAHHLLITEHHEK, Modern Crystall oraphyg[M]. Hefei:China University of Science and Technology Press,1990.14-23.
    [99]Christopher G. The molecular structures of SiX3OBX2 (X-H, F, Cl) [J]. Journal of Molecular Structure. THEOCHEM,1981,85(3-4):373-380.
    [100]Badens E. Crystallization of gypsum from hemihydrate in presence of additives [J]. Journal of Crystal Growth,1999,198/199:704-709.
    [101]Yonekura D, Fujikawa K, Murakami R. Influence of film structure on gas barrier properties of SiOxNy films[J]. Surface and Coatings Technology,2010, 205(1):168-173.
    [102]Yang K R, Liu W H, Wei Q G. The effect of different cation on the hydration and indurations process of -hemihydrates gypsum based on double-layer theory[J]. Journal of Hebei Institute of Technology,2005,5 (2):87-90.
    [103]Li G Z, Li J Q, Guan R F. Investigation of the water resistance of gypsum materials[J]. ZKG International,2003,56(8,9):87-93.
    [104]邓志银,袁义义,孙骏,等.反应条件对脱硫石膏晶须生长行为的影响[J].矿产综合利用,2009,(4):19.
    [105]王泽红,乔景慧,韩跃新,等.PH值对硫酸钙晶须直径的影响[J].金属矿山,2004,340(10):39.
    [106]陈敬艳,于立军,齐海燕,等.正硅酸乙酯成胶机理及铁氧体纳米复合材料合成机理[J].长春师范学院学报(自然科学版),2008,27(50):26-28.
    [107]戴英,裴新美,张跃,等.一维ZnO晶须的制备与生长机理『J].湖北化工2003,(4):8
    [108]Eom J H, Chan T L, Chelikowsky J R. Vacancies and B doping in Si nanocrystals[J]. Solid State Communications,2010,150(1-2):130-132.
    [109]Szekeres A, Vlaikova E, Lohner T, et al. Ellipsometric characterization of SiOx films with embedded Si nanoparticles[J]. Vacuum,2009,84(1):115-118-
    [110]Stina W, Sigbritt K. Biofilms on silicone rubber insulators microbial composition and diagnostics of removal by use of ESEM/EDS Composition of biofilms infecting silicone rubber insulators[J]. Polymer Degradation and Stability,2004,85:841-846.
    [111]Barbara G K, Ann G K. Fly ash characterization by SEM-EDS[J]. Fuel, 2006,85:2537-2544.
    [112]Hopf, A. Markwitz. SEM/EDS study of metal-assisted oxide desorption [J]. Surface Science.2010,604:1531-1535.
    [113]Maria P F, Julio S C. SEM-EDS probing of morphological and physiological changes produced by a porphyrin photosensitizer in Psammobatis extenta electrocytes [J]. Micron,2007,38:668-673.
    [114]王进,陈克复,杨仁党,等.扫描电镜和X射线能谱应用于涂布纸涂层的分析[J].造纸科学与技术.2005,24(2):9-12.
    [115]张建,陈志林,周建斌,等.竹炭基SiC陶瓷材料的显微结构及能谱分析[J].材料工程,2009,supl 1:254-257.
    [116]Lee J S, Butt D P, Ronald H. Synthesis and pyrolysis of novel polysilazane to SiBCN ceramic[J]. Journal of Non-Crystalline Solids,2005,351:2995-3005.
    [117]Nghiem Q D, Jeon J K, Hong L Y. Polymer derived Si/C/B/N ceramics via hydroboration from borazine derivatives and trivinylcyclotrisilazane [J]. Journal of Organometallic Chemistry,2003,688:27-35.
    [118]Kumar N V, Prinz S, Cai Y, et al. Crystallization and creep behavior of Si-B-C-N ceramics[J]. Acta Materialia,2005,53:4567-4578.
    [119]Mazin S, Wafaa A M, Isam A. Formation of Si-C-N ceramics from melamine- carbosilazane single source precursors [J]. Journal of Solid State Chemistry,2008,181 (1):150-157.
    [120]Niedzielski P, Kurzyca I, Siepak J. A new tool for inorganic nitrogen speciation study:Simultaneous determination of ammonium ion, nitrite and nitrate by ion chromatography with post-column ammonium derivatization by Nessler reagent and diode-array detection in rain water samples [J]. Analytica Chimica Acta,2006,577(2):220-224.
    [121]Koyuncu I. Effect of operating conditions on the separation of ammonium and nitrate ions with nanofiltration and reverse osmosis membranes [J]. Journal of Environmental Science & Health, Part A:Toxic/Hazardous Substances & Environmental Engineering,2002,37(7):1347.
    [122]Akhmetov V D, Ulyashin A G, Holt A, et al. Hydrogen transformations in Si-based solar structures studied by precise FTIR spectroscopy[J]. Materials Science and Engineering:B,2009,159-160(3):182-185.
    [123]Jeon J K, Nghiem Q D, Kim D P, etal. Olefin hydroboration of borazine with vinylsilanes as precursors of Si-B-C-N ceramics [J]. Journal of Organometallic Chemistry,2004,689:2311-2318.
    [124]Samadi M, Abdolraouf, Ehsani, et al.29Si NMR Spectroscopy Investigation of Alcoholic Phenyltrimethyl Ammonium Silicate Solutions [J]. Journal of Solution Chemistry,2008,37(3):413-419.
    [125]Wullen L V, Jansen M. The role of carbon in the nitridic high performance ceramics in the system .0i-B-N-C[J]. Solid State Nuclear Magnetic Resonance, 2005,27:90-98.
    [126]Zhang G J, Beppu Y, Ohji T. Reaction mechanism and microstructure development of strain tolerant in situ SiC-BN composites [J]. Acta Mater,2001, 49:77-82.
    [127]修玉英,王书红,罗钟瑜.三聚氰胺在聚氨酯泡沫领域中的应用[J].合成材料老化与应用,2006,35(3):49.
    [128]Dahlsten P, Prochniak P, Kosmulski M, et al. Electrokinetic behavior of melamine-formaldehyde latex particles at moderate electrolyte concentration[J]. Journal of Colloid & Interface Science,2009,339 (2):409-415.
    [129]Li X H, Yang S Z, Xiang W D, et al. A novel porous supramolecular complex constructed by the co-crystallization of melamine and sulfate via hydrogen bonds and aromatic interaction [J]. Structural Chemistry,2007, 18(5):661-666.
    [130]郝保红,向兰,方克明.纳米A1OOH晶须生长结晶形态的“逆转”现象[J].新技术新工艺,2009,(9):88.
    [131]Osenbach J W. Creep and its effect on Sn whisker growth [J]. Journal of Applied Physics,2009,106(9):094903-1-094903-10.
    [132]袁亚莉周德凤.无机化学[M].华中科技大学出版社,2007.9.
    [133]苏建峰,张金虎,林永辉,等.正相硅胶/选择洗脱气相色谱法、液相色谱质谱法检测食品中甲胺磷残留及其作用机理研究[J].分析化学,2009,37(1 0):1426-1432.
    [134]Cai G M, Zheng F, Yi D Q, et al. Experimental investigation and thermodynamic modeling of Hf-Si-B system[J]. Journal of Alloys and Compounds,2010,494(1-2):148-154.
    [135]Benini S; Rypniewski W R. Wiison K S. Molecular Details of Urease Inhibition by Boric Acid:Insights into the Catalytic Mechanism[J]. Journal of the American Chemical Society,2004,126(12):3714-3715.
    [136]隋学叶,刘世权,程新.正硅酸乙酯的水解缩聚反应及多孔Si02粉体的制备[J].中国粉体技术,2006,(3):36.
    [137]Li L Y, Gu H, Tian Y J, et al. Interfacial structure of oxidized inner pores in precursor-derived Si-C-N ceramics [J]. Journal of Non-Crystalline Solids, 2009,355 (48-49):2390-2395.
    [138]闻荻江.复合材料原理[M].武汉:武汉理工大学出版社.1997.
    [139]Adam F, Hello K M, Osman H. The heterogenation of melamine and its catalytic activity[J]. Applied Catalysis A:General,2010,382(1):115-121.
    [140]Vollet DR. Nunes L M. Donatti D A. et al. Structural characteristics of silica sonogels prepared with different proportions of TEOS and TMOS [J]. Journal of Non-Crystalline Solids,2008,354(14):1467-1474.
    [141]张强,沈卫平,顾淑媛.加工氮化硅/BN复相陶瓷的制备『J].硅酸盐学报,2007,35(3):337-341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700