Si_3N_4复合陶瓷的增韧方法及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术的发展,对材料性能的要求越来越高,在航空航天、核反应堆等领域,高强、高硬以及具有良好的高温力学性能的材料越来越被人们所重视,金属材料的高温性能难以满足人们需求,特种陶瓷进入人们的视线。而陶瓷材料除了具有硬度高的特性外,还具有优良的高温性能,因此逐渐在一些高温领域受到人们的重视。氮化硅是陶瓷材料中的优秀代表,因其良好的高温力学性能、优异的化学稳定性以及很好的耐腐蚀性能,引起了人们的广泛关注。
     众所周知,陶瓷材料虽然耐高温、耐磨损和耐化学腐蚀等一系列优良的性能,但是由于其致命的弱点——脆性,而限制了其优良性能的发挥,因此也限制了它的应用。为此,陶瓷材料的韧化便成为了近年来陶瓷材料的核心课题。到目前为止,已探讨出若干种陶瓷韧化的途径,并已取得了显著的效果。陶瓷的韧化可分为两类:一类是自增韧陶瓷,它是由烧结或热处理等工艺使其微观结构内部自生出增韧相(组分)。另一类是在试样制备中加入第二相组元,以达到增韧的目的。
     本研究以氧化铝和氧化钇为烧结助剂,采用液相烧结的方法,并通过力学性能测试、电子显微分析等一系列手法,研究了自增韧、第二相粒子增韧、相变增韧以及混合增韧等方面对氮化硅复合陶瓷材料的影响,以期提高氮化硅复合陶瓷材料的性能,从显微结构上对其进行调控,从而达到氮化硅材料的使用条件。
     本文主要分为两大部分:氮化硅复合陶瓷材料的制备以及性能的检测。主要研究结果如下:
     1.氮化硅复合陶瓷在烧结过程中,应该埋粉烧结,以免高温时,氮化硅发生分解而变成硅单质。
     2.在自增韧陶瓷的力学性能研究中,加入棒状β-Si3N4有利于长柱状晶粒的形成和长大,进而调控材料的显微结构,改善氮化硅复合陶瓷的强度和韧性。并且,随着p-Si3N4含量的增加,Si3N4复合陶瓷材料显微组织逐渐均匀化,致密度和力学性能均先增加后降低,当p-Si3N4含量达到40%时,陶瓷致密度和力学性能同时达到最大(此时致密度为93%,横向断裂强度为583.4MPa,断裂韧性为5.42MPa.m.1/2)。
     3.以MoSi2颗粒作为第二相材料对氮化硅材料进行增韧,结果显示:随着MoSi2含量的增加,氮化硅材料的致密度和抗弯强度同时减小,说明MoSi2并不能对氮化硅材料进行增韧。
     4以SiC颗粒作为增强相,研究了第二相粒子增韧对Si3N4复合陶瓷力学性能和显微结构的影响。结果显示:随着SiC含量的增加,Si3N4复合陶瓷的相对密度和横向断裂强度同时下降。当SiC含量为0时,Si3N4复合陶瓷的相对密度和横向断裂强度为最大值。说明,SiC相对Si3N4而言,是难烧结相,SiC的加入对复合材料的烧结起阻碍作用。
     5以ZrO2颗粒作为增强相,研究了ZrO2含量对氮化硅复合陶瓷性能的影响。结果表明:随着氧化锆含量的增加,氮化硅复合陶瓷致密度增加;横向断裂强度和断裂韧性先增加后减小,当ZrO2含量达到10%时,Si3N4的横向断裂强度和断裂韧性同时达到最大值,分别为362MP和7.0MPa.m1/2.断口形貌的显微结构观察表明,韧性的提高源于氧化锆应力诱导相变增韧。
     6.混合系列中,同时以β-Si3N4和ZrO2作为增强相,以期提高Si3N4复合陶瓷的性能。结果显示:混合系列复合陶瓷的致密度和力学性能均为最小值,并且出现β-Si3N4晶粒的异常生长,与预期的结果不符。
With the development of modern science and technology, on the material properties of the increasingly high demand in the aerospace, nuclear reactors and other fields, high strength, high hardness and excellent high temperature mechanical properties of materials has been growing attention to the metal materials high temperature performance is difficult to meet people's needs, special ceramics into sight. The ceramic material in addition to the characteristics of high hardness, it also has excellent high temperature performance, so gradually in some hot areas of attention has been paid. Silicon nitride is an excellent representative of ceramic materials, because of its good high temperature mechanical properties, excellent chemical stability and good corrosion resistance, has aroused extensive attention.
     It's well known that ceramic materials although the high temperature, abrasion and chemical resistance and a series of excellent performance, but because of its fatal weakness-brittle, and limit its excellent performance of the play, and therefore limits its application. Therefore, the toughening of ceramic materials in recent years has become the core issues of ceramic materials. So far, of the several ways of toughening ceramics, and has achieved remarkable results. Toughening of ceramics can be divided into two types:one is self-toughened ceramics, it is by sintering or heat treatment process from birth to the internal microstructure of the toughening phase (fraction). The other is the preparation of the sample group to join the second phase element, in order to achieve the purpose of toughening.
     In this study, alumina and yttria as sintering aids, the use of liquid phase sintering method, and by mechanical property test, electron microscopy and a series of techniques to study the self-toughening, the second phase particle toughening, phase change and mixed toughened toughening silicon nitride ceramic materials and other aspects of the impact, in order to improve the performance of silicon nitride ceramics, from the microscopic structure of its control, to achieve the silicon nitride material conditions of use.
     This paper is divided into two parts:the preparation of silicon nitride ceramics and performance testing. The main results are as follows:
     1. Nitride ceramic in the sintering process, sintered powder should be buried to avoid high temperature, silicon nitride decompose and become a single mass.
     2. In the mechanical properties of self-toughening ceramic study, rod-likeβ-Si3N4 added benefit of elongated grain formation and growth, regulating the material microstructure, silicon nitride ceramics to improve strength and toughness. And, with increasing the content ofβ-Si3N4, Si3N4 ceramics gradually homogenized microstructure, density and mechanical properties are first increased and then decreased, while (3-Si3N4 content of 40%, the density and mechanical properties of ceramic while achieving the way (93% density, transverse rupture strength 583.4MPa, fracture toughness 5.42MPa.m.1/2).
     3. To MoSi2 particulate material as the second phase toughening silicon nitride materials, the results show:With the increase of MoSi2 content, silicon nitride materials, the density and bending strength decrease simultaneously, indicating that nitrogen is not MoSi2 toughening of silicon materials.
     4. to SiC particles as reinforcement, the second phase particles of Si3N4 ceramic toughening of the mechanical properties and microstructure. The results show:With the increase of SiC content, Si3N4 ceramics relative density and transverse rupture strength also decreased. When the SiC content is 0, Si3Nt ceramics relative density and transverse rupture strength is maximum. Note, SiC relative Si3N4, it is a difficult phase sintering, SiC addition on sintering of composite materials from the impediment.
     5. ZrO2 particles as reinforcement to study the ZrO2 content on the properties of silicon nitride ceramics. The results show that:with the increase of zirconia content, increased density of silicon nitride ceramics; transverse rupture strength and fracture toughness first increases and then decreases, when the content reached 10% ZrO2, Si3N4 transverse rupture strength and fracture toughness while the maximum value,respectively,362MPa and 7.0MPa.m1/2.Microstructure of fracture surface observations showed that the improvement of toughness of zirconia from the stress induced transformation toughening.
     6. Mixed series, bothβ-Si3N4 and ZrO2 as a reinforcement to improve the performance of Si3N4 ceramics. The results show:mixed series of ceramic density and mechanical properties of both the minimum and appear abnormalβ-Si3N4 grain growth, with the expected findings.
引文
[1]王零森.特种陶瓷[M].长沙:中南工业大学出版社,2000:111.
    [2]王林.制备工艺与氮化硅显微结构及性能的相关性[D].西安:西北工业大学,2004:1.
    [3]陈常连a-Si3N4陶瓷的液相烧结及其介电性能研究[D].武汉:武汉理工大学,2005:1.
    [4][澳大利亚]M.V.斯温主编.郭景坤等译[M].北京:科学出版社,1998:111-112.
    [5]杜大明.不同烧结助剂对氮化硅常压烧结的影响[D].武汉:武汉理工大学,2004:2.
    [6]李世普.特种陶瓷工艺学[M].武汉:武汉工业大学出版社,2007.
    [7]陈常连Si3N4陶瓷的液相烧结机制介电性能研究[J].2005.
    [8]邱关明.新型陶瓷[M].北京:兵器工业出版社,1993:61.
    [9][日]坂野久夫.最新精密陶瓷-从材料、制法到应用[M].上海:同济大学出版社,1990:140.
    [10]邹强,徐延献,郭文利,薛义丹.Si3N4陶瓷烧结中烧结助剂的研究进展[J].硅酸盐通报,2004(1):81-84.
    [11]杜大明,赵世坤,李华平,高玲,杨海涛.氮化硅常压烧结研究进展[J].山东陶瓷,2003,26(4):32-35
    [12]杨明辉,郝春云,高玲.常压烧结Si3N4-MgO-Y2O3-CeO2陶瓷的研究[J].佛山陶瓷,2005,(4):1-3.
    [13]百度文库,高等教育[Z].http://wenku.baidu.com/view/f0f58beb172ded630b1cb637.html.
    [14]蒋沂萍.氮化硅复合陶瓷:极具前途的轴承材料[J].陶瓷工程,2001,10:23-25.
    [15]Bocanegra-Bernal M.H, B.Matovic.Dense and near-net-shape fabrication of Si3N4 ceramics[J].Materials Science and Engineering A,2009,500:130-149.
    [16]郭景坤等.陶瓷的结构与性能[M].北京:科学出版社,1998::10-112..
    [17]曾庆丰,徐永东,张立同,成来飞,吕杰.自增韧氮化硅复合陶瓷显微结构与力学性能的表征[J].无机材料学报,2002,17(1):105-110.
    [18]仝建峰,钟凌生.以MgO为助剂β-Si3N4晶种的制备和表征[J].航空材料学报,2008,28(6):93-95.
    [19]马光华,汪永清.氮化硅复合陶瓷韧化的研究与进展[J].陶瓷学报,2001,22(2):99-102.
    [20]贾雄,何京彦,夏志华.SiC颗粒弥散强韧化Si3N4陶瓷刀具材料[J].稀有金属材料与工程,1999,28(3):182-185.
    [21]陈力,冯坚.氮化硅复合陶瓷材料的研究现状及其应用[J].硬质合金,2002,19(4):226-229.
    [22]黄莉萍,陈源,孙兴伟,葛其名.离子弥散强化氮化硅基陶瓷[J].上海化工,2000,5:5-9.
    [23]罗学涛,袁润章.p晶种增韧Si3N4复合材料的制备和力学性能[J].硅酸盐学报,1999,27(4):461-465.
    [24]Xin xu, Liping Huang, Xuejian Liu, Xiren Fu.Effects of α/β ratio in starting power on microstructure and mechanical properties of silicon nitride ceramics[J].Ceramica International,2008, (28):279-281.
    [25]陈殿营,张宝林,庄汉锐,李文兰.添加β-Si3N4棒晶对氮化硅复合陶瓷力学性能的影响[J].无机材料学报,2003,18(5):1139-1142.
    [26]徐鑫,黄莉萍,陈源,符锡仁.低纯度β-Si3N4粉末的无压烧结及其性能[J].无机材料学报, 1999,,1(3):403-407.
    [27]陈力,冯坚,李永清,张长瑞.烧结助剂对自增韧Si3N4陶瓷显微结构和性能的影响[J].硅酸盐学报,2003,31(4):382-385.
    [28]罗学涛,张立同.氮化硅复合陶瓷自增韧技术进展[J].复合材料学报,1997,14(3):1-8.
    [29]李杰Si3N4-SiC材料的微观结构对性能影响的研究[J].山东化工.2009,38(8):4-9.
    [30]贾雄,何京彦,夏志华.SiC颗粒弥散强韧化Si3N4陶瓷刀具材料[J].稀有金属材料与工程.1999,28(3):182-185.
    [31]饶平根,陈玉如,叶建东,林广勇,徐之文GPS ZrO2(Y-TZP)-Si3N4复合材料的显微结构[J].华南理工大学学报(自然科学版),1999,27(10):70-74.
    [32]周瑾,饶平根,毛俊飙,叶建东GPS ZrO2-Si3N4复合材料性能的研究[J].中国陶瓷,1998,34(4):5-8.
    [33]Terao F F, Miyamoto Y, Koizumi M.Characteristics of ZrO2-dispersed Si3N4 without additives fabricated by hot isostatic pressing[J].J Am Ceram Soc,1988, 71(3):167-169.
    [34]岳振星,徐杰,盛绪敏ZrO2对热压烧结Si3N4性能的影响[J].硅酸盐通报,1993,12(4):9-14.
    [35]L.K.L.Falk, K.Rundren, Microstructure and short-term oxidation of hot-pressed Si3N4/ZrO2(+Y2O3)ceramics[J].J.Am.Ceram.Soc,1992,75(1):28-35.
    [36]S.Hirano, T.hayashi, T.Nakashima, Characterization of pressureless sintered β-Sialon with Y2O3-doped ZrO2[J].Advance in Ceramics Vol.24.Science and Technology of Ziconia, Ⅲ,1988, p127-132.
    [37]刘小强.复相陶瓷的结构与性能[D].浙江:浙江大学,2003:1-136.
    [38]陈守刚,尹衍升,周春华.氧化锆相变稳定机制的研究进展及应用[J].硅酸盐通报,2004,(3):73-76.
    [39]翟萍,王重海,于宏林,王卫,陈达谦,李伶,邢政鹏.Zr02颗粒对Si3N4/SiO2陶瓷复合材料性能的影响[J].陶瓷,2008,(10):51-54.
    [40]岳振星,徐杰,盛绪敏ZrO2对热压烧结Si3N4性能的影响[J].硅酸盐通报,1993,12(4):9-14.
    [41]臧建兵,王明智,王艳辉ZrO2(Y2O3)增韧的氮化硅烧结体的性能及相关系[J].复合材料学报,2000.17(7):76-79.
    [42]张长瑞,郝元恺.陶瓷基复合材料-原理、工艺、性能与设计[M].长沙:国防科技大学出版社,2001,:69-70.
    [43]张艳丽, 许煜汾.ZrO2对热压Si3N4陶瓷材料断裂韧性及显微结构的影响[J].安徽工学院学报.1996,15(1):16-21.
    [44]Hans Jurgen Seifert, Fritz Aldinger.Phase Equilibria in the Si-B-C-N System[C].Germany:Springer Verlag Berlin Heidelberg,2002:1-58.
    [45]qqqmzhang.导热高分子材料的研究进展[EB/OL]. http://www.bokee.net/newcirclemodule/article_viewEntry.do?id=4292490&cir cleId=100119
    [46]娜么狂.氮化硅[EB/OL].http://baike.baidu.com/view/877481.htm
    [47]wwwwww最新历史版本:氮化硼制品[EB/OL]. http://baike.gqsoso.com/edition-view-20162-1.
    [48]于政波, 侯伟华Si3N4陶瓷气氛压力烧结(GPS)技术[J].现代技术陶瓷.1995(4):45-49.
    [49]张炳荣,沈建兴Si3N4/MoSi2陶瓷的制备工艺与组织研究[J].机械工程材料.2000.24(5):8-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700