SiC_(f(w))对C_f/SiO_2陶瓷复合材料力学与抗热震性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以C_f、SiC_f、熔石英粉、SiC_w等为原料,采用真空热压烧结工艺制备了SiC_(f(w))-C_f/SiO_2陶瓷基复合材料。采用XRD、SEM、TEM等分析手段和三点弯曲、单边缺口梁法等试验方法,研究了在复合材料10vol%C_f/SiO_2基础上,进一步引入SiC_f、同时引入SiC_f和SiC_w时,其含量变化对SiC_(f(w))-C_f/SiO_2陶瓷基复合材料力学、热学及抗热震性能的影响规律。
     结果表明,所加SiC_f含量分别为0vol%、5vol%、10vol%、15vol%时,其致密度和抗弯强度呈降低-增加-降低的趋势变化,而断裂韧性和断裂功先不断增加后降低。其中,5vol%SiC_f-C_f/SiO_2复合材料中熔石英发生大量析晶,析晶量约42%,析出产物为α-方石英。而10vol%SiC_f-C_f/SiO_2复合材料的综合力学性能最好,抗弯强度、断裂韧性和断裂功分别为97.9MPa、2.15MPa·m1/2、287.2J/m2,弹性模量为46.3GPa。
     引入SiC_f后,复合材料的热导率随着SiC_f含量的增加而增加,材料的热膨胀系数先增加后下降。材料具有优良的抗热震性能,经过T=1100℃热震之后,材料的最低残余强度保持率为58.8%。
     在5vol%SiC_f-C_f/SiO_2中加入5vol%SiC_w以及在10vol%SiC_f-C_f/SiO_2的复合材料中加入10vol%SiC_w时,复合材料中熔石英的析晶量大大降低。并且材料的抗弯强度、断裂韧性、断裂功都明显增加。由于SiC_w具有较高的模量,因此加入晶须后复合材料的弹性模量明显增加。
     加入SiC_w后,复合材料的热膨胀系数降低,热导率增加,经过T=1100℃热震之后,材料的最低残余强度保持率为56.5%。
     通过对复合材料的断裂行为的分析发现,本实验所制备的复合材料的断裂方式均为伪塑性断裂。
SiC_(f(w))-C_f/SiO_2 composites were fabricated by vacuum hot-pressing using carbon fiber, silicon carbide fiber, fused silica powder and silicon carbide whisker as raw materials. The effect of SiC_f and SiC_w amounts on mechanical, thermal properties and thermal shock resistance of the 10vol%C_f/SiO_2 composites is studied by means of XRD, SEM, TEM as well as three point bending and single edge notched beam bending tests.
     Results show that density and bending strength of composites exhibited a tendency of drop-increase-drop while fracture toughness and work of fracture increased first then drop with the increase of SiC_f content. Theα-cristobalite formed as a result of crystallization of fused silica was detected in 5vol%SiC_f-C_f/SiO_2 composites and its content was up to 42%. The 10vol%SiC_f-C_f/SiO_2 composites show the best mechanical properties with bending strength, fracture roughness and work of fracture were 97.9MPa, 2.15MPa·m~(1/2), and 287.2J/m~2, respectively.
     The thermal conductivity increased with an increased addition of SiC_f content, and the thermal expansion coefficient increased and then decreased. The composites show good thermal shock resistance, after a thermal shock, underΔT=1100℃, with the minimum residual strength retention of 58.8%.
     The content of crystallized fused SiO_2 was dropped dramatically, and the bending strength, fracture roughness and work of fracture were increase obviously after 5vol%SiC_w was added in 5vol%SiC_f-C_f/SiO_2 and 10vol%SiC_w was added in 10vol%SiC_f-C_f/SiO_2. The elastic modulus of the composites was increased remarkably due to the high modulus of the SiC_w..
     Thermal expansion coefficient of composite was decreased while the thermal conductivity was increased after whisker was added in. And the composites minimum residual strength retention was 56.5% after a thermal shock with△T=1100℃.
     Investigation on the fractured behaviors of composites, it was found that fracture occurred in the composites was pseudo-plastic fracture, instead of elastic catastrophic fracture.
引文
1 Sarika Mishra, R. Mitra, M. Vijayakumar. Structure and Properties of Short Fibre Reinforced Silica Matrix Composite Foams. Ceram Int. 2009, 38: 3111-3116
    2 D. C. Jia, Y. Zhou, Effect of Fiber Content on Properties of a Short Carbon Fiber Reinforced Fused Silica Matrix Composite. J. Adv. Mater. 2006, 38(3): 21-26
    3沈强,陈斐,闫法强,张联盟.新型高温陶瓷天线罩材料的研究进展.材料导报. 2006, 20(9): 1-4
    4于翘.材料工艺(下).宇航出版社. 1993:1-21.
    5 N. Eswara Prasad, Sweety Kumari, S. V. Kamat, Fracture Behavior of 2D weaved, Silica–silica Continuous Fibre-reinforced, Ceramic–Matrix Composites (CFCCs). Eng Frac Mechanics. 2004, 71:2589–2605
    6 G. H. Zhou, S. W. Wang, J. K. Guo. Low Temperature Mechanical Behavior of 1D-Cf /SiO_2 Composite. Ceram Int. 2009, 35: 1003-1006
    7贾德昌. SiC_w增韧Si3N4, SiO_2陶瓷复合材料的组织结构与抗热震性.哈尔滨工业大学硕士论文. 1994:33-43
    8宁伟. ZrO_2/BN-SiO_2复合材料的制备与性能.哈尔滨工业大学硕士论文. 2006:23-33
    9 C. S. Xiang, Y. B. Pan, J. K. Guo. Electromagnetic Interference Shielding Effectiveness of Multiwalled Carbon Nanotube Reinforced Fused Silica Composites. Ceram Int. 2007, 33: 1293-1297
    10陆佩文.硅酸盐物理化学.武汉理工大学出版社. 2006:174-175
    11素木洋一著.硅酸盐手册.刘兴达,陈世兴译.北京轻工业出版社.1982: 153-189
    12温广武,雷廷权,周玉.石英玻璃粉末析晶的析晶特性.鸡西大学学报, 2001(1):3-9
    13 F. E. Wagstaff, S. D. Brown, I. B. Cuter. The Influence of H2_O and O_2 Atmosphere on the Crystallization of Vitreous Silica. Phys, Chem. Glass. 1964, 5(3): 76-81
    14 F. E. Wagstaff, K. J. Richards. Preparation and Crystallization Behavior of Oxygen-Deficient Vitreous Silica. J. Am. Soc. 1965, 48(7):382-383
    15 F. E. Wagstaff, K. J. Richards. Kinetics of Stoichiometric SiO_2 Glasses in H2_O Atmosphere. J. Am. Soc. 1966, 49(3): 118-121
    16 H. Li, M. Tomozawa and V. K. Lou. Effect of Nitrogen and Carbon Ion Implantation Diversification of Silica Glass. J. Non-Crystalline Solid. 1993. 168: 56-63
    17 N. G. Ainslie, C. R. Morelock, D. Turnbull. Symposium Nucleation and Crysallization in Glass and Melts. Am Ceram Soc. 1962:97-107
    18任风琴. BN-SiO_2-Al_2O_3系陶瓷复合材料的组织,抗热震和抗等离子侵蚀性能.哈尔滨工业大学硕士论文. 2007: 8-9
    19 C. Alexandra. Various Scale Levels of the Gel to Glass Transformation. J. Am. Ceram. Soc. 1993,76(6):1563-1567
    20 F. P. Meyer, G. D. Quinn, J. C. Walck. Reinforcing Fused Silica with High Purity Fiber. Ceram. Eng. Sci. Proc. 1985, 6(7):646-656
    21徐常明,王士维,黄校先,郭景坤.热压烧结制备SiO_2f/SiO_2复合材料的析晶行为以及力学性质.硅酸盐学报. 2006, 34(3): 284-288
    22 JedS. Loyns, Thomas L. Start. Strength and Toughness of Slip-casted Sillica Composities. J. Am. Ceram. Soc. 1994, 77(6): 1673-1675
    23 J. K. Guo, T. S. Yen, Micro structure and Properties of Ceramic Materials [M ], Beijing: Science Press, 1984: 281-2981
    24韩欢庆,雷廷权.碳纤维补强增韧熔石英性能研究.机械工程材料. 1996, 20(3): 28-30
    25贾德昌.碳纤维含量对Cf/SiO_2复合材料组织与性能的影响.宇航材料工艺. 2001, (4): 30-35
    26贾德昌,周玉,雷廷权. Cf/SiO_2复合材料的组织性能与强韧化机理.稀有金属材料与工程. 2001, (12): 6-12
    27曹俊,李建保.短碳纤维增韧石英复合材料性能研究.宇航材料工艺. 2003, (6):43-46
    28韩欢庆,雷廷权.晶须补强增韧熔石英材料的热学性能.材料科学与工艺. 1999, 7(1): 30-32
    29韩欢庆.几种SiO_2基复合材料的组织结构与性能.哈尔滨工业大学硕士学位论文, 1995 : 5-65
    30贾德昌.石墨颗粒增韧SiO_2基复合材料韧化机理.固体火箭技术. 2000, (9): 3-23
    31 T. Vasilos. SCS-SiC Fiber Reinforced Fused Silica Composites. Ceram, Eng. Sci. Proc. 1993, 9(10): 955-962
    32刘岩,贾德昌.纳米SiC_p/SiO_2陶瓷基复合材料的制备和性能研究.宇航材料工艺. 2002, (5): 34-37
    33韩欢庆,雷廷权.熔石英基复合材料的性能研究.粉末冶金技术. 1999, 17(3): 201-203
    34 D. C. Jia, Y. Zhou, T. C. Lei. Ambient and Elevated Temperature Mechanical Properties of Hot-press Fused Silica Matrix Composite. J Euro Ceram Soc. 2003, (23): 801-808
    35 G. H. Zhou, S. W. Wang. Unidirectional Carbon Fiber and Sic Particulate Co-reinforced Fused Silica Composite. Ceram Inte. 2007, (33):1395-1398
    36 G. H. Zhou, S. W. Wang, X. X. Huang, J. K. Guo. Improvement of Oxidation Resistance of Unidirectional C_f/SiO_2 Composites by the Addition of SiC_p. Ceram Inter. 2008, (34):331-335
    37贾德昌,宋桂明.无机非金属材料性能.科学出版社. 2008, (1):61
    38 H. L. Tao, X. R. Ceng, X. B. Xiong, et al. Effect of Short Carbon Fiber Content on the Mechanical Properties of Composite C_(sf)/SiC. J Chine Ceram Soc. 2007, 35(8): 1057–1061
    39李玉涛. C_f/Al_3O_2-BN陶瓷基复合材料的制备与性能.哈尔滨工业大学硕士学位论文. 2007, (7):14-18
    40 J. Y. Deng. Y. L. Wei, et al. Carbon-fiber Reinforced Composites with Graded Carbon-silion Carbide Matrix Composition. J. Am. Ceram. Soc. 1999, 82: 1629-1632
    41 R. A. J. Sambell, D. H. Bowen, and D. C. Phillips. Carbon Fibre Composites with Ceramic and Glass Matrices: Part 1 Discontinuous Fibres. J. Mater. Sci. 1972, 7: 663-675
    42宋桂明,武英.碳纤维增强TiC复合材料的制备与高温强度.材料工程. 2001, 9:3-7
    43 L. Y. Shen, M. J. Liu, X. Z. Liu, Thermal Shock Resistance of the Porous AlO3/ZrO_2 Ceramics Prepared by Gelcasting. Master. Res. Bull. 2007, 2(1): 1-9
    44陈尔凡,郝春功,李素莲.晶须增韧陶瓷复合材料.化工新型材料. 2006, 5: 1-2
    45杨治华,贾德昌,周玉,石鹏远,宋成斌. SiC_(sf)/SiC-BN复合陶瓷的制备及抗氧化性能.材料工程. 2004, 7: 3-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700