氧化铝基纳米复合陶瓷及其工模具应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝陶瓷具有高硬度、耐磨损、耐高温、抗腐蚀、低密度、原料分布广等优点,但韧性和强度较差,限制了其广泛应用。寻求合适的方法提高氧化铝陶瓷的强韧性,具有重要的理论意义和应用价值。本文用纳米ZrO_2与Ti(C,N)多相复合协同强韧化Al_2O_3陶瓷,研制成功了纳米复合陶瓷工模具材料Al_2O_3/Ti(C,N)/ZrO_2,其抗弯强度为796 MPa、断裂韧性为8.92 MPa·m~(1/2)、硬度15.4GPa。
     探讨了组分含量、烧结工艺对纳米陶瓷工模具材料微观结构和力学性能的影响,与单一的Al_2O_3陶瓷材料相比,其抗弯强度和断裂韧性都得到大幅提高。在致密的烧结陶瓷中,纳米ZrO_2和Ti(C,N)与微米Al_2O_3形成了典型的晶内/晶间混合型结构,裂纹从晶间到晶内再到晶间的路径扩展,消耗了更多的断裂能,形成了沿晶/穿晶混合的断裂模式,是其综合力学性能得到较大提高的主要原因。裂纹偏转和桥联及裂纹分支和颗粒拔出,是复合材料韧性提高的表现。
     对纳米陶瓷工模具材料进行了摩擦磨损性能实验研究,其摩擦系数和摩擦率均明显低于单相Al_2O_3陶瓷。并对其磨损表面微观形貌进行了观察和分析,探讨了Al_2O_3/Ti(C,N)/ZrO_2纳米复合陶瓷工模具材料的磨损机理。单相Al_2O_3陶瓷的磨损机理为脆性断裂和磨粒磨损,Al_2O_3/Ti(C,N)/ZrO_2纳米陶瓷工模具材料的磨损机理为机械冷焊和磨粒磨损。分析了Al_2O_3/Ti(C,N)/ZrO_2纳米陶瓷刀具的磨损形貌和磨损机理,其主要磨损机理是磨粒磨损、粘结磨损。
The alumina ceramic has excellent hardness, wear resistance, high-temperature wear resistance, corrosion resistance, low density and wide raw materials, but the low fracture toughness and low strength limit its wide application.Exploiting an effective approach to improve the mechanical properties of the alumina ceramic, especially its fracture toughness and flexural strength, will be significant for widening the actual application, as well as for the theoretical value.Nano-ZrO_2 and Ti(C,N) have been added in the study. Nanocomposite ceramic tool and die material of Al_2O_3/Ti(C,N)/ZrO_2 was fabricated successfully, its flexural strength, fracture toughness and Vickers hardness are 796 Mpa, 8.92 MPa-m~(1/2) and 15.4 GPa respectively.
     The effects of constituent content and sintering technology on the microstructure and mechanical properties of nanocomposite ceramic tool and die materials were discussed. The flexural strength and fracture toughness are much higher than that of pure Al_2O_3 ceramic material. The nano-scale ZrO_2 and Ti(C,N) particles are located between or within Al_2O_3 matrix. Thus the typical mixture crystal microstructure is formed in the dense compacts, which resulted in the mixture granular fracture modes. The zigzag crack path, which is from the grain boundary into the grain and then turning to the boundary, can result in higher consumption of fracture energy and the increase of fracture toughness. Crack deflection, crack bridging, crack branching and grain pull-out reveals the improvement of the fracture toughness of the composites.
     The wear mechanism of nanocomposite ceramic tool and die materials were discussed by analyzing SEM micrographs of wear tracks on typical specimens. The friction coefficient and wear rate of Al_2O_3/Ti(C,N)/ZrO_2 nanocomposite ceramic tool and die materials are obviously lower than that of the monolithic Al_2O_3. The dominant wear mechanisms of pure Al_2O_3 may be brittle fracture and abrasive wear. While the dominant wear mechanisms of Al_2O_3/Ti(C,N)/ZrO_2 nanocomposite ceramic tool and die materials may be mechanical interlocking and abrasive wear. The wear pattern and mechanisms of Al_2O_3/Ti(C,N)/ZrO_2 nanocomposite ceramic tool and die materials were analyzed. The main wear mechanisms are abrasive and adhesion.
引文
[1]A.M.Stoneham. The Challenges of Nanostructures for Theory[J]. Materials Science and Engineering C.2003, 2(23):235-241
    [2]M. Wautelet, J. p. Dauchot, M. Hecq. Size Effects on the Phase Diagrams of Nanoparticles of Various Phases [J].Materials Science and Engineering C.2003,2(23):187-190
    [3]高濂,李蔚.纳米陶瓷[M].北京:化学工业出版社,2002
    [4]新原皓一,中平敦.最近の微粒子制御技术[J].粉体工学会志,1993,30(12):870-877
    [5]Morrell R. Hand book of properties of technical & Engineering Ceramics [M].Her Majesty's Stationery Office, 1985
    [6]Vincernzini. P. Ceramics Today-Tomorrow Ceramics [M]. Elsevier Science Publisher's B V , 1991
    [7]Vincernzini P. High tech ceramics [M]. Elsevier Science Publisher's B V , 1987
    [8]师昌绪.材料大词典[M].北京:化学工业出版社,1994
    [9]钦征骑.新型陶瓷材料手册[M].南京:江苏科学技术出版社,1996
    [10]焦绥隆,Boces C.E.,氧化铝/碳化硅纳米复合陶瓷的力学性能和强化机理[J].材料导报,1996(增):89-93
    [11]#12
    [12]#12
    [13]Levin I, Kaplan W D, Brandon D G. Effects of SiC Sub micrometer particle size and control on fracture toughness of alumina-SiC nano composites [J]. J.Am. Ceram . Soc, 1995, 78(l):254-260
    [14]Becher P. F. , Sun E .Y. Microstructural design of Si_3N_4 with improved fracture toughness-effects of grain shape and size [J]. J Am. Ceram. Soc, 1998,81(11):28-31
    [15]Sternitzke M. Review: structural ceramic nanocomposites [J]. J.Eur.Ceram.Soc. , 1997 , 3(12) :1061-1064
    [16]Chheda M. S. , Flinn B .D., Influences of nano-particles on properties of Si_3N_4-matrixcomposite [M], Trans. Tech. Publications , 1997
    [17]Andreas Rendtel etal. Silicon nitride/ silicon carbide nanocomposite materials:, hot strength , creep , and oxidation resistance [J]. J. Am. Ceram Soc. , 1998 ,81(5) :1109-1112
    [18]Jan Dusza , Pazol Sajgalik. Fracture toughness of Si_3N_4 /SiC nanocomposites at 1350℃[J].J.Am. Ceram. Soc , 1999, 82(12) :3613-3617
    [19]L. C. SreanrsM., p. Hamrer. Partiel Inhibited Grain:Growth in Al_2O_3/SiC:I.Experimental, Results [J]. J. Am. Ceram. Soc.1996 ,79(12):3013-3019
    [20]高濂,靳喜海,郑珊.纳米复合陶瓷[M].北京:化学工业出版社.2004
    [21]熊惟皓,胡镇华,崔昆.Ti(C,N)基金属陶瓷中包覆结构的研究[J].华中理工大学学报,1998,26(3):32-34.
    [22]熊惟皓,胡镇华,崔昆.Ti(C,N)基金属陶瓷的相界面过渡层[J].金属学报,1996,32(10):1075-1080
    [23]Irene A. Chou, Helen M. Chan, and Martin P. Harmer, Effect of Annealing Environment on the Crack Healing and Mechanical Behavior of Silion Carbide-Reinforced Alumina nanocomposites [J]. J. Am. Ceram. Soc, 1998,81(5):1203-1208
    [24]JunhongZhao, Laura. C. Martin., P. Harmer, Helen M.Chan, and Gary A.Miller, Mechanical Behavior of Alumina-Silicon Carbide nanocomposites [J].J. Am. Ceram. Soc., 1993, 76(2):503-510
    [25]Borsa Carlos E., Todd Richard I., Brook Richard J., Mechanical Strength of Alumina Reinforced by SiC nanocomposites [J]. Ceramic(Sao Paulo Brazil),1997, 4(2):84-87
    [26]顾培芷,张伟儒,李勇,等.采用有机前驱体制备Si_3N_4/SiC纳米复合陶瓷[J].硅酸盐学报,1995,23(3):266-271
    [27]Lee J.W, Munir.Z.A. Synthesis of dense TiB_2-TiN nanocrystalline composites through mechanical and field activation [J]. J. Am. Ceram. Soc. , 2001,84(6): 1209-1216
    [28]高濂,王宏志,洪金生.放电等离子超快速烧结SiC/Al_2O_3纳米复合陶瓷[J].无机材料学报,1999,14(1):55-59
    [29]高濂,王宏志,洪金生.SiC-ZrO_2(3Y)-Al_2O_3纳米复合陶瓷的力学性能和显微结构[J].无机材料学报,1999,14(5):795-801
    [30]张立德,牟季美.纳米材料学[M].辽宁科技出版社,1994
    [31]靳喜海,高濂.纳米复合陶瓷的制备、显微结构和性能[J].无机材料学报, 2001,16(2):200-206
    [32]Niihara. K, Nakahira .A , Sasaki G. Proceeding of the international meeting on advanced materials [J] . Materials Research Society ,1989(4):558-560
    [33]#12
    [34]王宏志,高濂,归林华,等.内晶型Al_2O_3-SiC纳米复合陶瓷的制备[J].无机材料学报,1997,12(5):671-674.
    [35]高家化,沈志坚,丁子上.陶瓷基纳米复合材料[J].复合材料学报.1994,11(1):1-6
    [36]李海林,邬柱,王正东.铬粒弥散增韧氧化铝复合材料的研究[J].无机材料学报.1995,10(3):313-317
    [37]李国军,赵世柯,黄校先,郭景坤.Ni包裹Al_2O_3复合粉体的制备[J].无机材料学报.2002,17(2):235-240
    [38]卢金山,高濂,归林华等.Al_2O_3/Ni包裹粉体的制备、烧结行为及其显微结构研究[J].无机材料学报.2001,16(2):277-282
    [39]Tohru , Sekino , Koichi , Niihara. Reduction and sintering of a Nickel-dispersed-aluminacomposite and its Properties [J]. J. Mater. Sci. 1997,80(5):1139-1145
    [40]茅东升,郭绍义,郦剑,毛志远.新型Al_2O_3/Co陶瓷的力学性能及其断裂行为[J].稀有金属材料与工程.1997,26(5):23-25
    [41]周世权,程敏,沈豫立.工艺参数对Al_2O_3/Al复合材料组织与性能的影响[J].材料研究学报.1995,9(5):473-476
    [42]王宏志,高濂,归林华等.Al_2O_3-ZrO_2(3Y)-SiC纳米复合材料的制备及性能[J].无机材料学报,1999,14(2):280-286
    [43]李云凯,纪康俊.纳米Al_2O_3-ZrO_2(3Y)相陶瓷的微波烧结.硅酸盐学报[J],1998,26(6):740-744
    [44]李云凯,钟家湘,朱鹤孙等.碳化硅、氧化锆增韧氧化铝复合陶瓷的研究[J].北京理工大学学报,1996,16(5):561-565
    [45]王宏志,高濂,郭景坤.氧化铝基纳米复合陶瓷显微结构的研究[J].硅酸盐学报,1999,27(1):1-7
    [46]曾照强,胡晓清,林旭平,等.添加Cr_2O_3对Al_2O_3-TiC陶瓷烧结及纳米结构形成的影响[J].硅酸盐学报,1998,26(2):178-181
    [47]K. F. Cai. etal. PreParation, Microstrutures and Properties of Al_2O_3-TiC composites [J]. Ceram. Int., 2004, 3(28):217-222
    [48]Wahi. R, llsehner.B. Fracture behavior of composites based on Al_2O_3-T1C [J]. J.Mater.Sci., 1980, 15(4):875-885
    [49]Zbigniew.S. RakJerzy Czechowski. Manufacture and Properties of Al_2O_3-TiN particulate composites [J]. Key. Eng. Mater., 1997, 132(36):2048-2051
    [50]Gong. J. H., Miao. H. Z., Zhao. Z. etal. Effect of TiC partiele size on the toughness Characteristics of Al_2O_3-TiC composites [J].Mater. Lett., 2001,2(4):235-238
    [51]邹斌.新型自增韧氮化硅基纳米复合陶瓷刀具及性能研究[D].济南:山东大学.2006
    [52]吕志杰.高性能Si_3N_4/TiC纳米复合陶瓷刀具材料的研制与性能研究[D].济南:山东大学,2005
    [53]丁代存.Si_3N_4/TiC纳米复合陶瓷刀具材料的研制与性能研究[D].济南:山东大学,2005
    [54]M. Sazrfan, E. Bobyrk, D. Kukla. Si_3N_4-Al_2O_3-TiC-Y_2O_3 Composites Intended of the Edges of Cutting Tools [J].Ceramics Internantional.2000,4(26):579-582
    [55]仝建峰,陈大明,陈宇航等.热压工艺参数对纳米SiC-Al_2O_3/TiC新型陶瓷刀具材料力学性能的影响[J].粉末冶金技术.2000,18(2):33-56
    [56]宋世学.高性能Al_2O_3系陶瓷刀具材料的研制及其性能的研究[D].济南:山东大学,2000.
    [57]刘含莲.多元多尺度纳米复合陶瓷刀具材料的研制及其切削性能研究[D].济南:山东大学2005
    [58]王随莲.高性能金属陶瓷刀具材料的研制及其切削性能研究[D].济南:山东大学2005
    [59]许煜汾,蒋贤俊.ZTA精密陶瓷拉丝模拉制钨丝的研究[J].合肥工业大学学报(自然科学版),1996,19(4):29-34
    [60]尹龙卫,李凤照,刘援朝等.TZP-TiC-Al_2O_3陶瓷复合材料在模具中的应用[J].粉末冶金技术,1997,15(4):274-277
    [61]杨学锋,邓建新,姚淑卿.Al_2O_3/TiC复合陶瓷拉丝模材料的摩擦磨损性[J].硅酸盐学报,2005,33(12):1522-1526
    [62]刘军,周飞.热挤压模用陶瓷材料的性能与应用研究[J].稀有金属材料与工程,2003,32(3):232-235
    [63]罗军明,杨刚,万润根等.3Y-TZP-Al_2O_3陶瓷拉拔模材料及应用研究[J].金刚石与磨料磨具工程,2002,(2):41-43
    [64]杨刚,艾云龙,罗军明等.TZP陶瓷拉丝模的开发与应用[J].模具工业,2001,(9):36-38
    [65]沈辉,易佑宁.PSZ陶瓷热挤压模的制备及应用研究[J].江苏陶瓷,1996,29(2):10-12
    [66]梁金生,梁广川.反应烧结氮化硅陶瓷模具材料的研究[J].中国陶瓷工业,2000,7(3):9-11
    [67]刘军,佘正国,罗启富.Sialon陶瓷热挤压模的应用研究[J].中国机械工程,1995,6(3):57-58
    [68]许崇海,孙德明.模具用Ti(C,N)/Al_2O_3陶瓷材料的微观结构与力学性能[J].粉末冶金技术.2005,23(4):243-247
    [69]孙德明,刘立红,刘玉婷等.Al_2O_3/Cr_3C_2/(W,Ti)C陶瓷模具材料研究[J].粉末冶金技术,2005,23(5):343-346
    [70]胡良页,李顺禄,李忠权.纳米复合TZP陶瓷模具的研制[J].佛山陶瓷,2002,(6):8-9
    [71]许崇海.复合陶瓷刀具材料设计、仿真及其应用研究[D].济南:山东工业大学,1998
    [72]Richerson D W. Modern ceramic engineering. New York: Marcel dekker publication, 1982, 76
    [73]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993
    [74]艾兴,萧虹.陶瓷刀具切削加工[M].北京:机械工业出版社,1988
    [75]崔忠圻.金属学与热处理[M].北京:机械工业出版社.1989
    [76]Tatsuki Ohji, Young-Keun Jeong, Yong-Ho Choa, et al. Strengthening an Toughening Mechanism of Ceramic Nanocomposites[J]. J.Am.Ceram.Soc.,1998, 81(6): 1453-1460
    [77]仝建峰,陈大明,陈宇航.纳米SiC-Al_2O_3/TiC多相陶瓷复合材料显微结构的研究[J].硅酸盐学报,2001,29(5):427-430
    [78]孙旭东,李继光,张民,等.Al_2O_3/SiC纳米复合陶瓷材料的强韧化[J].金属学报,1999,35(8):879-882
    [79]谭业发,王耀华,于爱兵等.氧化锆增韧莫来石复合陶瓷的摩擦磨损行为与磨损机制[J].摩擦学学报,2000,20(2):94-98
    [80]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990
    [81]材料耐磨抗蚀及其表面技术从书编委会.材料的磨料磨损[M].北京:机械工业出版社,1990
    [82]Evans. A. G, Wilshaw. T. R. Quasi-static solid Partiele damage inbrittle solids I:Obsevrations, analysis and implications[J].Acta Metall, 1976, 24:939-956
    [83]Wayne. S. F, Buljna.S. T. Microstrucutre and wear resistance of silicon nitride composites[A].in:Jahnmir. S, Friction and Wear of ceramics[M].New York, 1994
    [84]徐滨士,朱绍华.表面工程的理论与技术[M].北京:国防工业出版社,1999
    [85]材料耐磨抗蚀及其表面技术丛书编委会.材料的粘着磨损与疲劳磨损[M].北京:机械工业出版社,1989
    [86]Suh. N. P, Saka. N.Fundamentals of tribology[M]. MITPress, 1980
    [87]陈晓虎.材料转移层对Al_2O_3基自润滑陶瓷-铸铁摩擦副摩擦的影响[J].陶瓷科学与艺术,2002,(3):5-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700