Ti(C,N)基纳米复合金属陶瓷模具材料研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,模具是现代工业生产中不可缺少的重要装备,但模具工作条件较为恶劣,如冷挤压时的单位挤压力可达2000MPa以上,伴随模具内流动的金属与模具表面的剧烈摩擦以致模具温度随之升高,所以常常发生模具氧化、粘模或焊合等现象,加剧了模具的磨损,并降低了模具寿命。因此,选择高耐磨性、高硬度的模具材料已经成为提高模具寿命的一个重要途径。本文从提高金属陶瓷模具材料的综合力学性能出发,采用热压烧结方法制备出较高综合力学性能的Ti(C,N)基纳米复合金属陶瓷模具材料,对材料组分、微观结构、烧结工艺及其与材料综合力学性能之间的关系进行了研究。分析了Ti(C,N)基纳米复合金属陶瓷模具材料的增韧补强机理,并对Ti(C,N)基纳米复合金属陶瓷模具材料的摩擦磨损特性进行了研究。
     实验研究了纳米ZrO_2、微米WC对Ti(C,N)基纳米复合金属陶瓷模具材料力学性能和微观结构的影响,并对Ti(C,N)基纳米复合金属陶瓷模具材料的热压烧结工艺进行了优化,最终制备了综合力学性能较好的Ti(C,N)基纳米复合金属陶瓷模具材料,其抗弯强度为1144MPa、断裂韧性为8.60MPa·m~(1/2)、硬度为14.57GPa,与Ti(C,N)基金属陶瓷模具材料相比,虽然硬度降低,但是抗弯强度和断裂韧性分别提高了16.73%和40.07%。所制备的Ti(C,N)基纳米复合金属陶瓷模具材料中,纳米ZrO_2粉体的添加,细化了Ti(C,N)基金属陶瓷模具材料的晶粒,与Ti(C,N)基体形成了“晶内/晶间混合型”结构,形成了穿晶断裂/沿晶断裂混合断裂模式。此外,在纳米ZrO_2的相变增韧、裂纹的桥联、裂纹的偏转及分支等各种增韧补强机理的协同作用下Ti(C,N)基纳米复合金属陶瓷模具材料的综合力学性能得到了提高。
     对所制备的Ti(C,N)基纳米复合金属陶瓷模具材料进行了摩擦磨损性能实验研究,并借助扫描电子显微镜和X射线衍射仪对磨损试样表面进行了微观结构形貌观察与分析,研究了Ti(C,N)基纳米复合金属陶瓷模具材料的磨损机理,其磨损机理主要为磨粒磨损、氧化磨损和粘着磨损,而Ti(C,N)基金属陶瓷模具材料的磨损机理为晶粒的剥落和脆性断裂。最后进行初步的模具制造工艺验证。
Recently, die is one of the important equipments needed in modern industry. But the working condition of die is extremely harsh, for instance the unit extrusion pressure of cold extrusion is up to 2000MPa. So some phenomena often happen such as soldering, oxidation and even welding in the extrusion process, leading to the intensifying of wear and reduction of service life because of the friction between die and workpiece. Therefore, the major way of improving die service life is to select the materials with better wear resistance and higher hardness. From the performance requirement of cermet die materials, a new Ti(C,N)-based nano-composite cermet die material with better comprehensive mechanical properties was prepared by hot pressing technique under vacuum atmosphere. The correlations among the material composion, the microstrures, the hot pressing process technique and comprehensive mechanical properties were investigated. Then, the strengthening and toughening mechanism of the Ti(C,N)-based nano-composite cermets die material has been systematically investigated. Meanwhile, the friction and wear behaviors of the Ti(C,N)-based nano-composite cermets die material has been studied in detail.
     The influence of nano-ZrO_2 and micro-WC on the microstructure and mechanical properties of Ti(C,N)-based nano-composite cermets die material has been discussed, then the hot press sintering was optimized. Ti(C,N)-based nano-composite cermets die material were fabricated successfully with better comprehensive mechanical properties. Its flexural strength, fracture toughness and hardness is 1144MPa, 8.60MPa·m~(1/2) and 14.57GPa, respectively. Although the hardness is slightly decreased, the flexural strength and fracture toughness is nearly 16.73% and 40.07% higher than that of the cermet without any addition of nano-ZrO_2 and micro-WC. It is found that grain-refining trend and inter/trans mixed fracture mode happens with adidtion of nano-ZrO_2. Morever, some strengthening and toughening mechanisms, such as crack bridging, crack deflection and branching has improved the comprehensive mechanical properties of Ti(C,N)-based nano-composite cermet die material.
     The friction and wear mechanisms of Ti(C,N)-based nano-composite cermets Die Material were investgated by the scanning electron microscopy and X-ray diffraction on the wearing sample of Ti(C,N)-based nano-composite cermets die material.Meanwhile, the friction and wear behaviors of the Ti(C,N)-based nano-composite cermets die material has been studied, its dominant wear mechanisms are abrasive wear, oxidative wear and adhesive wear, while the dominant wear mechanisms of Ti(C,N)-based cermet die material are grain stripping and brittle fracture. At last, a primary process validation of die manufacture was done.
引文
[1]许崇海.陶瓷模具材料的研究与应用[J].稀有金属材料与工程, 2005, 34(增刊1):262-265
    [2] Chonghai Xu, Guangchun Xue, Rongbo Zhang, et al. Reserach on the Advanced Ceramic Die Materials and Their Properties[J]. Key Engineering Materials, 2008, 375-376: 133-137
    [3]许育东,刘宁,石敏等. Mo添加量对纳米改性金属陶瓷显微组织的影响[J].矿冶工程, 2005, 25(2):77-80
    [4]李燕.镀钴碳纳米管/Ti(C,N)金属陶瓷的制备及抗热震性能[J].硬质合金, 2010, 27(3):129-134
    [5]谢峰,沈维蕾,杨海东等.金属陶瓷刀具用纳米TiN粉体分散的研究[J].应用科学学报, 2005, 23(5):535-538
    [6]于海军.纳米Ti(C,N)的机械合金化合成及其在金属陶瓷中的应用[D].南京:航空航天大学, 2007
    [7]谢峰,刘宁,张崇高等.纳米改性金属陶瓷刀具材料最佳纳米添加量的研究[J].中国机械工程, 2005, 16(15):1395-1397
    [8]沈维蕾,谢峰,杨海东.纳米改性金属陶瓷刀具切削塑形金属的影响规律[J].金属功能材料, 2005, 12(4): 15-19
    [9]谢峰,沈维蕾,杨海东等.纳米改性金属陶瓷刀具切削性能研究[J].农业机械学报, 2006, 37(1):132-135
    [10]周研,付建辉,刘磊等.纳米金属陶瓷刀具高速干切削性能的研究[J].机械工程师, 2006, (10):122-123
    [11]许育东,刘宁,石敏等.纳米增强金属陶瓷的组织及抗热冲击性能[J].复合材料学报, 23(5):44-50
    [12]张春友.一种纳米改性金属陶瓷材料的研究[J].硬质合金, 2010, 27(3): 148-152
    [13] Wang L, Shi J L. The influence of addition of WC particles on mechanical properties of alumina-matrix composite. Materials Letters, 2001, 50(2/3):179
    [14] Youren Xu, Avigdor Zangvil, Albert Kerber. SiC nanoparticle-reinforced A12O3 matrix composites:role of intra-and intergranular particles. Journal of the European Ceramic Society, 1997, 17(7):921-928
    [15]刘开琦,徐强,张会军.金属陶瓷的制备与应用[M].北京:冶金工业出版社, 2008:5-6
    [16] Chen-Nan Sun, Tyson Baldridge, Mool C. Gupta. Fabrication of ZrB2–Zr cermet using laser sintering technique[J]. Materials Letters, 2009, 63(28):2529-2531.
    [17] Ken-ichi, Takagi. Development and application of high strength ternary boride base cermets[J]. Journal of Solid Chemistry, 2006, 179(9):2809-2818.
    [18]周泽华.金属切削原理[M].上海:上海科学技术出版社, 1994, 112-140
    [19]谢峰,张崇高,刘宁等. Ti(C,N)基金属陶瓷刀具与纳米改性[J].中国机械工程, 2002, 13(12):1062-1064
    [20]雷燕.纳米复合Ti(C,N)基金属陶瓷材料研究[D].华中科技大学. 2005
    [21]许育东,刘宁,石敏等.纳米改性Ti(C,N)基金属陶瓷研究进展[J].硬质合金, 2005, 22(2):112-116
    [22] Guo Zhixing, Xiong Ji, Yang Mei, et al. Microstructure and properties of Ti(C,N)-Mo2C-Fe cermets[J]. International Journal of Refractory Metals & Hard Materials, 2009, 27:781-783
    [23]张红芹.粘结相对Ti(C,N)基金属陶瓷组织和切削性能的影响[D].合肥:合肥工业大学, 2009
    [24] Zhang Xiaobo, Liu Ning, Rong Chunlan, Zhou Jun. Microstructure and mechanical properties of TiC-TiN-Zr-WC-Ni-Co cermets[J]. Ceramics International, 2009, 35:1187-1193
    [25] S. Cardinal, A. Malchère, V. Garnier, G. Fantozzi. Microstructure and mechanical properties of TiC-TiN based cermets for tools application[J]. International Journal of Refractory Metals & Hard Materials, 2009, 27:521-527
    [26] Li Yan, Liu Ning, Zhang Xiaobo, Rong Chunlan. Effect of Mo addition on the microstructure and mechanical properties of ultra-fine grade TiC-TiN-WC-Mo2C- Co cermets[J]. International Journal of Refractory Metals & Hard Materials, 2008, 26:190-196
    [27] Li Yan, Liu Ning, Zhang Xiaobo, Rong Chunlan. Effect of WC content on the microstructure and mechanical properties of (Ti,W)(C,N)-Co cermets[J]. International Journal of Refractory Metals & Hard Materials, 2008, 26:33-40
    [28]李燕,朱绍峰,陈凤琴.钼含量对Ti(C,N)-Co金属陶瓷抗热震性能的影响[J].热处理, 2009, 24(3):25-28
    [29]王赛玉. Mo对Ti(C,N)基金属陶瓷组织性能的影响[J].黄石理工学院学报, 2009, 25(2):1-5
    [30]徐立强,王随莲,黄传真等.纳米A12O3对Ti(C,N)基金属陶瓷性能的影响[J].稀有金属材料与工程, 2008, 37(4):732-735
    [31] Peng Wu, Yong Zheng, Yongle Zhao, ea al. Effect of TaC addition on themicrostructures and mechanical properties of Ti(C,N)-based cermets[J]. Materials and Design, 2010, 31:3537-3541
    [32] Xiaobo Zhang, Ning Liu. Microstructure, mechanical properties and thermal shock resistance of nano-TiN modified TiC-based cermets with different binders[J]. International Journal of Refractory Metals & Hard Materials, 2008, 26:575-582
    [33]李振红.纳米TiN改性TiC基金属陶瓷材料性能及刀具切削性能的研究[D].合肥工业大学, 2002
    [34]田春艳,姜海,刘宁.纳米TiN改性TiC基金属陶瓷刀具切削性能的研究[J].工具技术, 2003, 37(2):8-10
    [35]姜海,田春艳,刘宁.纳米TiN改性的TiC基金属陶瓷刀具切削试验与分析[J].现代制造工程, 2002, 11:42-43
    [36] Jun Qu, Weihao Xiong, Dameng Ye, et al. Effect of WC content on the microstructure and mechanical properties of Ti(C0.5N0.5)-WC-Mo-Ni cermets[J]. International Journal of Refractory Metals & Hard Materials, 2010, 28:243-249
    [37] Shiquan Zhou, Wei Zhao, Weihao Xiong. Microstructure and properties of the cermets based on Ti(C,N)[J]. International Journal of Refractory Metals & Hard Materials, 2009, 27:26-32
    [38] N. Liu, Y.D. Xu, H. Li, et al. Effect of nano-micro TiN addition on the microstructure and mechanical properties of TiC based cermets[J]. Journal of the European Ceramic Society, 2002, 22:2409-2414
    [39] Ning Liu, Chengliang Han, Haidong Yang, et al. The milling performances of TiC-based cermet tools with TiN nanopowders addition against normalized medium carbon steel AISI1045[J]. Wear, 2005, 258:1688-1695
    [40] N. Liu, Y.D. Xu, H. Li, et al. Cutting and wearing characteristics of TiC-based cermets cutters with nano-TiN addition[J]. Journal of Materials Processing Technology, 2005, 161:478-484
    [41] Ning Liu, Yudong Xu, Zhenhong Li, et al. Influence of molybdenum addition on the microstructure and mechanical properties of TiC-based cermets with nano-TiN Modification[J]. Ceramics International, 2003, 29:919-925
    [42] Yong Zheng, Shengxiang Wang, Min You, et al. Fabrication of nanocomposite Ti(C,N)-based cermet by spark plasma sintering[J]. Materials Chemistry and Physics, 2005, 92:64-70
    [43] Yong Zheng, Weihao Xiong, Wenjun Liu, et al. Effect of nano addition on the microstructures and mechanical properties of Ti(C,N)-based cermets[J]. Ceramics International, 2005, 31:165-170
    [44]韩成良.纳米改性Ti(C,N)基金属陶瓷材料及铣刀性能的研究[D].合肥:合肥工业大学, 2004
    [45]邹斌.新型自增韧氮化硅基纳米复合陶瓷刀具及性能研究[D].济南:山东大学, 2006
    [46]娄本浊. Al2O3/TiO2纳米复相陶瓷的增韧机理研究[J].佛山陶瓷, 2008, 18(5): 4-7
    [47]丁燕鸿. SiC晶须增韧Ti(C,N)基金属陶瓷复合材料的研究[D].长沙:中南大学, 2006
    [48]刘炳强.复相陶瓷刀具材料增韧方式及机理[J].潍坊学院学报, 2008, 8(2): 56-59
    [49]邹东利,路学成.陶瓷材料增韧技术及其韧化机理[J].陶瓷, 2007, (6):6-10
    [50]闫洪,窦明民,李和平.二氧化锆陶瓷的相变增韧机理和应用[J].陶瓷学报, 2000, 21(1):46-49
    [51]卢新江,储凯,李晓.纳米复合陶瓷ZTA的强韧化机理[J].西川工业学院学报, 2004, 23(增刊):256-271
    [52]王惠,刘含莲,黄传真等.纳米复合陶瓷刀具材料增韧补强机理的研究进展[J].工具技术, 2008, 42(4):3-7
    [53]李文旭,于德珍,王福平等. ZrO2纳米颗粒的添加对ZrO2/HA复合陶瓷物相和力学性能的影响[J].高校化学工程学报, 2007, 21(5):838-842
    [54]许育东,刘宁,曾庆梅等.纳米TiN改性金属陶瓷刀具的磨损性能[J].硬质合金, 2001, 18(3):142-145
    [55]张伟,蒋勇.新一代金属陶瓷的制造、性能及应用[J].稀有金属与硬质合金, 1997, (129):55-60
    [56]钱中良,熊惟皓,张杰等.金属陶瓷拉伸模具材料[J].材料导报, 1996, (5):8-11
    [57]王洪涛.细晶粒Ti(C,N)基金属陶瓷模具材料研究[D].武汉:华中科技大学, 2006
    [58]许育东,刘宁,曾庆梅等.纳米TiN改性金属陶瓷刀具的磨损性能[J].硬质合金, 2001, 18(3):142-145
    [59]许育东,刘宁,李华等.纳米改性金属陶瓷刀具切削参数优化[J].合肥工业大学学报(自然科学版), 2001, 24(4):498-502
    [60]蔡威.纳米改性Ti(C,N)基金属陶瓷组织性能及其刀具切削性能的研究[D].合肥:合肥工业大学, 2009
    [61] Ning Liu, Xu Yu-dong, Li Zhen-hong, et al. Cutting and wear behaviors of TiC based cermets cutter with nano-TiN modification [J]. Transactions of Nonferrous Metals Society of China, 2003, 13(4):869-875
    [62]程秀萍,吴敏,葛明桥.纳米材料对浆料性能的影响[J].棉纺织技术, 2006, 34(1): 24-25
    [63]徐立强,侯志刚,黄传真等.微米/纳米Ti(C,N)基金属陶瓷刀具材料的研制[J].钛工业进展, 2007, 24(5):29-32
    [64]石增敏,郑勇,刘文俊等. Ti(C,N)基金属陶瓷刀具的切削性能[J].中国有色金属学报, 2006, 16(5):805-810
    [65]章晓波,刘宁,于超等.纳米改性Ti(C,N)基金属陶瓷的抗热震性能研究[J].金属热处理, 2008, 33(3):47-50
    [66]石增敏,郑勇,丰平.金属陶瓷刀具切削淬火钢的磨损机理研究[J].稀有金属材料与工程. 2007, 36(增刊3):26-30
    [67]梁在国,熊惟皓,雷燕等.放电等离子烧结纳米复合Ti(C,N)基金属陶瓷[J].机械工程材料, 2006, 30(3):64-67
    [68]张晓明,封平,赵玉玲.细晶粒Ti(C,N)基金属陶瓷的研究进展[J].实用技术, 2009, 6(2):66-69
    [69]江玉和.非金属材料化学[M].北京:科学技术文献出版社, 1992:541-543
    [70] Sekino Tohru, Nakajima Toshio, Ueda Satoru, et al. Reduction and sintering of a Nickel-Dispersed-Alumina Composite and its properties[J]. Journal of Materials Science, 1997, 80(5):1139-1145
    [71]刘含莲.多元多尺度纳米复合陶瓷刀具材料的研制及其切削性能研究[D].济南:山东大学,2005
    [72]袁训亮. Al2O3/TiC/WC纳米复合陶瓷刀具的研制及切削性能[D].济南:山东大学,2008
    [73]赵诗奎.氧化锆基纳微米复合陶瓷模具材料及其摩擦磨损特性研究[D].济南:山东轻工业学院, 2009
    [74]张荣波.氧化锆基纳米陶瓷工模具材料研制及其应用基础研究[D].济南:山东轻工业学院, 2008
    [75] Xiaobo Zhang, Ning Liu, Chunlan Rong. Effect of molybdenum content on the microstructure and mechanical properties of ultra-fine Ti(C,N) based cermets[J]. Materials Characterization, 2008, 59:1690-1696
    [76] Ning Liu, Xuesong Liu, Xiaobo Zhang, et al. Effect of carbon content on the microstructure and mechanical properties of superfine Ti(C,N)-based cermets[J]. Materials Characterization, 2008, 59:1690-1696
    [77] Ping Feng, Yuehui He, Yifeng Xiao, et al. Effect of VC addition on sinterability and microstructure of ultrafine Ti(C,N)-based cermets in spark plasma sintering[J]. Journal of Alloys and Compounds, 2008, 460:453-459
    [78]张荣波,许崇海,冯曰美等.纳米陶瓷及其增韧补强研究[J].山东轻工业学院学报, 2007, 21(3):1-4
    [79]刘含莲,黄传真,秦惠芬等.纳米复合陶瓷材料的增韧补强机理研究进展[J].粉末冶金技术, 2004, 22(2):98-103
    [80]张长瑞,耗元凯.陶瓷基复合材料[M].长沙:国防科技大学出版社, 2001:123-124
    [81]张国军,岳雪梅,金宗哲.颗粒增韧陶瓷裂纹扩展微观过程[J].硅酸盐学报, 1995, 23(4):365-372
    [82]孟繁洁,阮国智,张智慧等. SiC陶瓷增韧的研究进展[J].材料导报, 2007, 21(专辑IX):425-427
    [83]衣明东.基于摩擦学设计的氧化锆纳米复合陶瓷模具材料的研究与应用[D].济南:山东轻工业学院, 2010
    [84]王柏昆.结构陶瓷韧化机理的研究进展[J].中国科技信息, 2007, (19):264-273
    [85]邹东利,路学成.陶瓷材料增韧技术及其韧化机理[J].陶瓷, 2007, (6):5-11
    [86]柏振海,罗兵辉,林莉,陈娇.热压烧结温度对两种金属陶瓷组织性能的影响[J].硬质合金, 2008, 25(3):148-153
    [87]朱流,郦剑,李军等.热压烧结工艺对超韧Al2O3-TiC-Co复合陶瓷性能的影响[J].材料热处理学报, 2007, 28(5):20-24
    [88] Frederic Monteverde, Valentina Medri, Alida Bellosi. Microstructure of hot-pressed Ti(C,N)-based cermets[J]. Journal of the European Ceramic Society, 2002, 22:2587-2593
    [89] S. Cardinal, A. Malchère, V. Garnier, G. Fantozzi. Microstructure and mechanical properties of TiC-TiN based cermets for tools application[J]. International Journal of Refractory Metals & Hard Materials. 2009, 27:521-527
    [90] Sean E. Landwehr, Gregory E. Hilmas, William G. Fahrenholtz, etal. Thermal properties and thermal shock resistance of liquid phase sintered ZrC-Mo cermets[J]. Materials Chemistry and Physics, 2009, 115:690-695
    [91]艾兴,萧虹.陶瓷刀具切削加工[M].北京:机械工业出版社, 1988
    [92]王惠,刘含莲,黄传真等.纳米复合陶瓷刀具材料增韧补强机理研究进展[J].工具技术, 2008, 42(4):3-6
    [93]艾桃桃. TiN改性Al2O3纳米复相陶瓷的研究进展[J].陶瓷, 2009, (5):24-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700