BaTiO_3基多层片式热敏陶瓷材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,随着微电子技术和表面贴装技术的快速发展,电子元器件的集成化、微型化、片式化已经成为当今微电子技术发展的趋势,而正温度系数热敏电阻(PTCR)陶瓷器件也朝着微型化、片式化和低阻化方向发展。由于传统的单层式BaTiO_3基PTCR陶瓷材料的固有电阻率很高,无法进一步地降低其室温电阻,而多层片式BaTiO_3基PTCR陶瓷材料不仅具有较低的室温电阻和较高的升阻比,而且还具有尺寸小、稳定性好、耐大电流冲击能力好等优点,常用作过载电流保护元件,是一个具有巨大的市场前景和实用价值的研究课题。
     采用流延的制作方法和还原再氧化的烧结工艺来制备多层片式BaTiO_3基PTCR陶瓷材料,通过系统地研究Ba/Ti比、A位施主掺杂、B位施主掺杂、烧结温度、降温方式、再氧化热处理工艺等对该多层片式PTCR陶瓷材料的影响,成功地制备出室温电阻为0.3和升阻比(Lg(Rmax/Rmin))为3.3的多层片式Ba(Ti_(1-x)Nb_x)O_3基陶瓷以及室温电阻为0.13和升阻比为3.2的多层片式Ba_(1.001)(Ti_(1-x)Nb_x)O_3基陶瓷。其具体的研究如下:
     采用流延法来制备片式BaTiO_3基PTCR陶瓷,研究了Ba/Ti比对其电性能、微结构以及PTCR效应的影响,结果表明了Ti过量样品的平均晶粒尺寸大小变化不大,它的室温电阻率很小,受再氧化时间和Ba/Ti比的影响也较小;与之相反,Ba过量的样品晶粒大且颗粒大小分布不均,它的室温电阻率较大,受再氧化时间和Ba/Ti比的影响也较大。实验研究表明Ba/Ti为1.006的(Ba_(m-0.007)Sm_(0.007))TiO_3基陶瓷的室温电阻率和升阻比分别为80.8·cm和3,高Ba/Ti比(m=1.026)的(Ba_(m-0.007)Sm_(0.007))TiO_3基陶瓷的室温电阻率和升阻比分别为108.5·cm和3.8。
     对于高Ba/Ti比片式Ba_(1.022-x)Sm_xTiO_3基陶瓷来说,采用同样的共烧法研究了烧结温度和冷却方式对该样品的微观结构、电性能和PTCR特性等的影响,结果表明了高施主掺杂浓度可以抑制样品晶粒的生长,样品的室温电阻率和升阻比都随着烧结温度的升高而减小,较高温度烧结的样品的室温电阻率变化很小,低温烧结可以获得较高的耐压值。此外,样品的冷却速率越慢,气孔就越少,该陶瓷样品的室温电阻率随着冷却速率的增加而增加,并且适当地延长冷却时间可以降低样品的室温电阻率。样品的临界施主掺杂浓度随着冷却速率的增加而逐渐地向着低浓度方向移动,冷却速率为4℃/min的样品具有较好的PTCR效应,它的室温电阻率、升阻比、受主态密度(NS)和肖特基势垒高度()分别为157.4·cm、3.16、6.911013cm–2和0.59eV。高冷却速率可以导致样品晶界内比晶粒内更易于失氧,而低冷却速率比高冷却速率更容易使晶粒和晶界失氧。
     采用还原再氧化的烧结方法,研究了施主掺杂量、烧结温度和再氧化温度对多层片式Ba(Ti_(1-x)Nb_x)O_3基陶瓷的电性能和PTCR特性的影响,成功地制备出了尺寸为3.6mm×1.8mm×1.4mm、室温电阻为0.3和升阻比为3.3的多层片式PTCR陶瓷器件。样品在还原气氛中1100℃~1220℃下烧结2h且在空气中600℃再氧化1h后它的受主态密度NS是介于2.47×10~(13)~7.19×10~(130cm~(–2)范围内。
     最后研究了施主掺杂0.35mol%Nb~(5+)的多层片式Ba(Ti_(1-x)Nb_x)O_3基陶瓷在还原气氛中1160℃烧结2h且在空气中600℃再氧化0~8h,实验结果表明样品在600℃低温下再氧化也可以得到很低的室温电阻和较好的PTCR效应,700℃是晶粒获得再氧化的临界温度,理想的再氧化温度和时间应分别控制在850℃和6h以内。另外,还推断出在Ni Ba(Ti_(1-x)Nb_x)O_3界面层内Nb~(5+)替代Ti~(4+)位起施主作用和Ni~(2+)替代Ti~(4+)位起受主作用是相互补偿的,这是B位施主掺杂的优势。成功地制备出了尺寸为3.6mm×1.8mm×1.4mm、室温电阻为0.38和升阻比为3.5的多层片式Ba(Ti_(1-x)Nb_x)O_3基陶瓷器件,并且还成功地制备出尺寸为3.6mm×1.8mm×1.4mm、室温电阻为0.13、升阻比为3.2和温度系数约为6%/℃的多层片式Ba_(1.001)(Ti_(1-x)Nb_x)O_3基陶瓷器件。
In recent years, with the rapid development of microelectronics and surface-mountingtechnique (SMT), integration, miniaturization and chip type of electronic component havebecome the trend of today’s microelectronics technology. Accordingly micromation, chiptype and low room-temperature resistance are the developmental trend of the positivetemperature coefficient of resistivity (PTCR) ceramics. It is difficult to further reduce theinherent resistance of the BaTiO_3-based PTCR ceramics by the traditional method. However,the multilayer chip type PTCR ceramics not only have the lower room-temperatureresistance and the higher resistivity jump, but also have small size, well stability, goodenduring large current rushing, which are used to the protection component of the overloadcurrent in integrated circuit, therefore become a research subject with large market prospectand practical value.
     The multilayer chip BaTiO_3-based PTCR ceramics are prepared by tape casting andreduction reoxidation method. The influence of Ba/Ti rate, donor dopants of A site, donordopants of B site, sintering temperature and reoxidation heat treatment on the electricalproperties of the multilayer chip Ba(Ti_(1-x)Nb_x)O_3ceramics has been studied. The ceramicswith the room-temperature resistance of0.3and a resistance jump (Lg(Rmax/Rmin)) of3.3were successfully prepared. moreover, the multilayer chip Ba1.001(Ti1-xNbx)O3ceramics withroom-temperature resistance of0.13and a resistance jump of3.2. The detailed research isas follows:
     The chip type BaTiO_3-based ceramics are prepared by reduction reoxidation method.The effect of Ba/Ti rate on the electrical properties, microstructure, and PTCR effect of thesamples is studied. The results indicated that the mean grain size of the excess-Ti sampleshas a little change; its room-temperature resistivity is very small and rarely affected by thereoxidation time and Ba/Ti rate, while the characteristics of the excess-Ba samples is justcontrary to the excess-Ti samples. The room-temperature resistivity and the resistivity jumpof the (Ba_(m-0.007)Sm_(0.007))TiO_3ceramics with Ba/Ti rate (m) of1.006and1.026are80.8·cm,3and108.5·cm,3.8, respectively.
     The effect of the sintering temperature and the cooling mode on microstructure, electrical properties and PTCR characteristics of the chip type Ba_(1.022-x)Sm_xTiO_3ceramicswith high Ba/Ti rate has been investigated. The results indicated that the grain growth isinhibited by the high donor-doped concentration, the room-temperature resistivity and theresistivity jump of the samples decrease with an increase of the sintering temperature. Thelow room-temperature resistivity of the samples can be obtained by the higher sinteringtemperature. The higher breakdown voltage of the samples is obtained based on the lowersintering temperature. In addition, it is indicated that the lower cooling rate, the porosity isless. The room-temperature resistivity of the samples increases with increase in the coolingrate, and lower room-temperature resistivity is obtained by prolonging the cooling duration;moreover, the corresponding dopant concentration of the minimum resistivity is shifted tolower values with increasing cooling rate. In addition, samples that have been cooled at acooling rate of4°C/min after sintering in a reducing atmosphere show pronounced PTCRcharacteristics, with a resistance-jumping ratio greater by3.16orders of magnitude, inaddition to achieving a low room-temperature resisitivity of157.4·cm. Furthermore, theacceptor-state density (Ns) and height of the potential barrier () for these samples are6.9110~(13)cm~(–2)and0.59eV, respectively. A higher cooling rate leads to a larger number ofoxygen losses in the grain-boundary region.
     On the basis of the reduction reoxidation method, the influence of the donor-dopedconcentration, the sintering temperature and reoxidation temperature on the electricalproperties and PTCR characteristics of the multilayer chip type Ba(Ti_(1-x)Nb_x)O_3ceramicshave been investigated. The ceramics with a size of3.6mm×1.8mm×1.4mm obtained ata low reoxidized temperature of600°C after sintering at1160°C show a remarkable PTCReffect, with a resistance jump larger by3.3orders of magnitude, along with a low RTresistance of0.3. Furthermore, the acceptor-state density of the samples sintered at thesintering temperature of1100–1220°C is in the range from2.47×1013to7.19×1013cm–2.Finally, the influence of the annealing treatment on the electrical properties and PTCRbehavior of mutilayer Ba(Ti_(1-x)Nb_x)O_3-based ceramics with Ni internal electrode has beeninvestigated. The results indicate that the room-temperature resistance and grain-boundaryresistance of the ceramics both increase with the increasing reoxidation temperature or time.In addition, the0.35mol%Nb~(5+)-doped Ba(Ti_(1-x)Nb_x)O_3ceramics with a size of3.6mm×1.8mm×1.4mm reoxidized under a low temperature of600°C for6h after sintering1160°C for2h showed a remarkable PTCR behavior, with a resistance jump of3.5orders ofmagnitude, along with a low RT resistance of0.38. Meanwhile, the multilayer chip typeBa_(1.001)(Ti_(1-x)Nb_x)O_3-based ceramics with a size of3.6mm×1.8mm×1.4mm, a resistanceof0.13, a resistance jump of3.2, and a temperature coefficient of6%/C was successfullyprepared. In addition,700C for the grains is the critical reoxidation temperature. Theperfect reoxidation temperature should be controlled as not longer than850C, moreover,the suitable reoxidation time should be controlled within6h. In particularly, it is consideredthat Ti site in BaTiO_3should be replaced by Nb~(5+)in order to compensate the acceptor actionsof Ni diffused from inner electrodes for the interface layer of Ni Ba_(1.001)(Ti_(1-x)Nb_x)O_3, this isthe advantages of the B-site donor dopant to the multilayer chip type BaTiO_3-based PTCRceramics.
引文
[1] Haayman P. W., Romeijn F. C., Van Oosterhout G. W.. Controlled valencysemiconductors. Philips Res.Rep.,1950,5(6):173187.
    [2] Heywang W.. Resistivity anomaly in doped barium titanate. J. Am. Ceram. Soc.,1964,47(10):484490.
    [3] Heywang W.. Barium titanate as a semiconductor with blocking layers. Solid StateElectron.,1961,3(1):5158.
    [4] Heywang W.. Semiconducting barium titanate. J. Mater. Sci.,1971,6(9):12141226.
    [5] Jonker G. H.. Some aspects of semiconducting barium titanate. Solid State Electron.,1964,7(10):895903.
    [6] Daniles J, Hardtl K H, Wernicke R. The PTC effect of barium titanate. Philips Tech.Rev.,1978-1979,38(3):7382.
    [7] Peria W. T., Bratschun W. R., Fenity R. D.. Possible explanation of positivetemperature coefficient in resistivity of semiconducting ferroelectrics.1961,44(5):249250.
    [8] Chiang Y. M., Takagi T.. Grain-boundary chemistry of barium titanate and strontiumtitanate:Ⅱ, origin of electrical barriers in positive-temperature-coefficient thermistors.Am. Ceram. Soc.,1990,73(11):3286–3291.
    [9] Kuwabara M.. Determination of the potential barrier height in BaTiO3ceramics. SolidState Electron.,1984,27:929–935.
    [10] Alles A. B., Amarakoon V. R.W., Burdick V. L.. Positive temperature coefficient ofresistivity effect in undoped, atmospherically reduced barium titanate. J. Am. Ceram.Soc.,1989,72(1):148–151.
    [11] Alles A. B., Burdick V. L.. Grain boundary oxidation in PTCR BaTiO3thermistors. J.Am. Ceram. Soc.,1993,76(2):401–408.
    [12] Hasegawa A., Fujitsu S., Koumoto K., et al.. The enhanced penetration of oxygenalong the grain boundary in semiconducting barium titanate. Jpn. J. Appl. Phys.,1991,30(6):1252–1255.
    [13] Amine A.. Phenomenological description of stree related grain boundary properties insemiconducting perovskite. Ferroelectr.,1988,87(1):41–53.
    [14] Sinclair D. C., West A. R.. Use of succinic acid to test the stability of PTCR bariumtitanate ceramics under reducing conditions. J. Am. Ceram. Soc.,1995,78(1),241–244.
    [15] Desu S. B.. Interfacial segregation in perovskites:Ⅰ, theory. J. Am. Ceram. Soc.,1990,73(11):33913397.
    [16] Desu S. B.. Interfacial segregation in perovskites:Ⅱ, experimental evidence. J. Am.Ceram. Soc.,1990,73(11):33983406.
    [17] Desu S. B.. Interfacial Segregation in perovskites:Ⅲ,microstructure and electricalproperties. J. Am. Ceram. Soc.,1990,73(11):34063411.
    [18] Desu S. B.. Interfacial segregation in perovskites:Ⅳ, internal boundary layer devices.J. Am. Ceram. Soc.,1990,73(11):34113416.
    [19] Roseman R. D.. High temperature poling effects on conducting barium titanateceramics. Ferroelectr.,1998,215:31–45.
    [20]朱盈权. PTC热敏电阻的现状与发展趋势(续二).电子元件与材料,2002,21(8):22~25.
    [21] Wang L. H., Zhang X. Z., Zhou Z. G.. A new smart material-multilayer PTC thermistor.IEEE transactions on components, packaging, and manufacturing technology-part A,1995,18:249251.
    [22]周志刚,王玲玲,周和平等.一种制备多层叠片热敏电阻器的方法,中国, CN93120338.4,1996.14.
    [23]王利臣,周志刚.独石结构PTC陶瓷材料与器件的研究.压电与声光,1997,19(4):14.
    [24]康雪雅,王海珍,韩英等.叠层片式负温度系数热敏电阻的制备方法,中国, CN102270531A,2011.510.
    [25]陈艳,龚树萍,周东祥.轧膜成型PTCR瓷片平整烧成工艺的研究.电子元件与材料,2002,21(11):46.
    [26]龚树萍;陈艳;张道礼等.轧膜成型对BaTiO3片式PTCR性能的影响.电元件与材料,2002,21(5):1416.
    [27] Gong S. P., Sang P. G., Zhou D. X.. Research on the manufacture of laminatedBaTiO3-based thermistor by roll forming. Mater. Sci. Eng., B,2003,99:425427.
    [28]周东祥,郑志平,龚树萍. PTC片式元件注凝成型工艺的研究.华中科技大学学报(自然科学版),2005,33(1):3437.
    [29]郑志平,周东祥,龚树萍等.多层片式PTCR热敏陶瓷注凝成型工艺.中国有色金属学报,2002,15(11):34~37.
    [30]郑志平, BaTiO3基热敏陶瓷材料及其叠层片式元件的湿化学法制备及理论研究.:[博士论文].武汉:华中科技大学图书馆,2005.
    [31]陈艳,龚树萍.多层片式PTCR注浆成型工艺的研究.华中科技大学学报.2003,31(7):2224.
    [32]郑志平,周东祥,龚树萍.成型工艺对片式PTCR素坯及瓷片性能的影响.功能材料,2005,36(2):252255.
    [33]刘欢,多层片式PTCR热敏元件制备技术研究:[硕士论文].武汉:华中科技大学图书馆,2004.
    [34]龚树萍,邓钊洁,刘剑桥等.片式PTC热敏电阻瓷片再氧化工艺的研究.华中科技大学学报(自然科学版),2011,39(6):4649.
    [35]陈文仿,片式热敏元件流延成型及其共烧技术研究:[硕士论文].武汉:华中科技大学图书馆,2006.
    [36]黄日明,片式PTCR用镍电极浆料的制备及与瓷体收缩率匹配研究:[硕士论文].武汉:华中科技大学图书馆,2007.
    [37]陈勇, PTC陶瓷的细晶化及其与Ni电极共烧技术研究:[博士论文].武汉:华中科技大学图书馆,2010.
    [38]祝蓉, Ni电极浆料性能的研究及在叠层片式PTCR中的应用:[硕士论文].武汉:华中科技大学图书馆,2011.
    [39]张波,多层片式PTCR材料配比与还原-再氧化工艺研究:[硕士论文].武汉:华中科技大学图书馆,2011.
    [40]郑志平,周东祥,龚树萍等.水基流延制备片式PTCR陶瓷的研究.电子元件与材料,2007,26(10):4043.
    [41]周东祥,陈文仿,龚树萍等.水基流延法制备片式PTC陶瓷.电子元件与材料,2007,26(5):4-6.
    [42]薛泉林.叠层PTC热敏电阻器的近期研制动向.江苏陶瓷,1996,29(2):27~30.
    [43]万代治文.正の抵抗温度特性を有すゐ半导体磁器とその製造方法.特开昭61-15302.1986,1~23.
    [44] Niimi H., Yoneda Y., Sakabe Y.. Laminated semiconductor ceramic element. JapanesePatent,1993, JP05121204:16.
    [45] Niimi H., Yoneda Y., Sakabe Y.. Laminated semiconductor ceramic element. JapanesePatent,1993, JP05144608:17.
    [46] Niimi H., Yoneda Y., Sakabe Y.. Stacked semiconductor ceramic element. JapanesePatent,1993, JP05159903:18.
    [47] Mihara K., Niimi H., Kikko T.. Lamination type semiconductor ceramic element.Japanese Patent, JP06302403:16.
    [48] Niimi H., Mihara K., Sakabe Y.. Influence of Ba/Ti ratio on the positive temperaturecoefficient of resistivity characteristics of Ca-doped semiconducting BaTiO3fired inreducing atmosphere and reoxidized in air. J. Am. Ceram. Soc.,2007,90(6):1817–1821.
    [49] Niimi H., Mihara K., Sakabe Y. et al.. Preparation of multilayer semiconductingBaTiO3ceramics Co-fired with Ni inner electrodes. Jpn. J. Appl. Phys.,2007,46(10A):6715–6718.
    [50] Kawamoto M., Hirakata.. Barium titanate semiconductor ceramic powder andlaminated semiconductor ceramic device. United States Patent, US6542067B1,2003.16.
    [51] Niimi H., Matsunaga T.. Multilayer semiconductor ceramic device. Japanese Patent,JP2000256062A,2000.17.
    [52] Niimi H., Akira A.. Stacked positive-characteristic thermistor and designing methodthereof. Japanese Patent, JP2003370267,2003.18.
    [53] Niimi H.. Laminated type semiconductor ceramic element and production method forthe laminated type semiconductor ceramic element. United States Patent, US2004/0084132A1,2004.14.
    [54] Niimi H., Ando A., Kawamoto M. et al.. Semiconducting ceramic material, process forproducing the ceramic material, and thermistor. United States Patent, US2003/0030192A1,2003.13.
    [55] Kawamoto M., Niimi H., Urahara R., et al.. Barium titanate semiconductive ceramic.United States Patent, US2003/0022784A1,2003.14.
    [56]三原贤二良,岸本敦司,新见秀明.层叠型正特性热敏电阻.中国, CN101268528,2008.1-19.
    [57] Xiang P.H., Harinaka H., Takeda H., et al.. Annealing effects on the characteristics ofhigh Tclead-free barium titanate-based positive temperature coefficient of resistivityceramics. J. Appl. Phys.,2008,104(9):094108.
    [58] Chung Y.K. and Choi S.C.. Effects of the re-oxidation temperature and time on thePTC properties of Sm-doped BaTiO3. J. Korean Ceram. Soc.,2009,46:330–335.
    [59] Qi J., Gui Z., Wang Y., et al.. The PTCR effect in BaTiO3ceramics modified by donordopant. Ceram. Int.,2002,28(2):141.
    [60] Chan H.M., Harmer M.P., and Smyth D.M.. Compensating defects in highlydonor-doped BaTiO3. J. Am. Ceram. Soc.,1986,69(6):507.
    [61] Y.P. Pu, H.D. Wu, J.F. Wei, B. Wang, J. Mater. Sci.–Mater. Electron.,2011,22():1480.
    [62] M.T. Buscaglia, V. Buscaglia, M. Viviani, et al.. Influence of foreign ions on thecrystal structure of BaTiO3. J. Eur. Ceram. Soc.,2000,20(12):2004.
    [63] Morrison F.D., Sinclair D.C., and West A.R.. An alternative explanation for the originof the resistivity anomaly in La-doped BaTiO3. J. Am. Ceram. Soc.,2001,84(2),474–476.
    [64] Niimi H., Ishikawa T., Mihara K. et al.. Effects of Ba/Ti ratio on positive temperaturecoefficient of resistivity characteristics of donor-doped BaTiO3fired in reducingatmosphere. Jpn. J. Appl. Phys.,2007,46(2):675680.
    [65] Lee J.K., Hong K.S., Jang J.W.. Roles of Ba/Ti ratios in the dielectric properties ofBaTiO3ceramics. J. Am. Ceram. Soc.,2001,84(9):2001–2002.
    [66] Lee W.H., Tseng T.Y., Hennings D.. Effects of A/B cation ratio on the microstructureand lifetime of (Ba1-xCax)z(Ti0.99-yZryMn0.01)O3(BCTZM) sintered in reducingatmosphere. J. Mater. Sci.-Mater. Electron.2000,11(2):157162.
    [67] Jo S.K. and Han Y.H.. Effects of reoxidation process on positive temperaturecoefficient of resistance properties of Sm-doped Ba0.85Ca0.15TiO3. Jpn. J. Appl.Phys.2007,46(3A):10721080.
    [68] M.L. Liu, D.A. Yang, Y.F. Qu. Effect of sintering procedure on the resistivity of(1x)BaTiO3x(Bi0.5Na0.5)TiO3ceramics. J. Alloys Compd.2010,508(2),559–564.
    [69] Y. Luo, X.Y. Liu, X.Q. Li, et al.. PTCR behaviour of Ba2LaBiO6-doped BaTiO3ceramics. J. Alloys Compd.2008,452:397–400.
    [70] Jonker G.H., and Havinga E.E.. The influence of foreign ions on the crystal lattice ofbarium titanate. Mat. Res. Bull.,1982,17(3):345.
    [71] Brzozowski E., Castro M.S.. Influence of Nb5+and Sb3+dopants on the defect profile,PTCR effect and GBBL characteristics of BaTiO3ceramics. J. Eur. Ceram. Soc.,2004,24(8):2499–2507.
    [72] Lee J.K., Park J.S., and Hong K.S.. Role of liquid phase in PTCR characteristics of(Ba0.7Sr0.3)TiO3Ceramics. J. Am. Ceram. Soc.,2002,85(5):1173–1179.
    [73] Chang H.Y., Liu K.S. and Lin I.N.. Modification of PTCR behavior of (Sr0.2Ba0.8)TiO3materials by post-heat treatment after microwave sintering, J. Eur. Ceram. Soc.,1996,16(1):63–70.
    [74] Zubair M.A. and Leach C.. Modeling the effect of SiO2additions and cooling rate onthe electrical behavior of donor-acceptor codoped positive temperature coefficientthermistors. J. Appl. Phys.2008,103(12):123713.
    [75] Chen H.P. and Tseng T.Y.. The effect of cooling rate on the positive temperaturecoefficient resistivity characteristics of lanthanum-doped Ba0.8Sr0.2TiO3ceramics, J.Mater. Sci. Lett.,1989,8(12):1483–1485.
    [76] Zubair M.A., Leach C.. The influence of cooling rate and SiO2additions on the grainboundary structure of Mn-doped PTC thermistors. J. Eur. Ceram. Soc.,2008,28(9):1845–1855.
    [77] Lin T.F., Hu C.T., Lin I.N.. Defects restoration during cooling and annealing in PTCtype barium titanate ceramics, J. Mater. Sci.1990,25(6):3029–3033.
    [78] Yoon S.H., Kim H.. Space charge segregation during the cooling process and its effecton the grain boundary impedance in Nb-doped BaTiO3, J. Eur. Ceram. Soc.,2002,22(5):689–696.
    [79] Kuwabara M.. Effect of Microstructure on PTCR in Semiconducting Barium TitanateCeramics. J. Am. Ceram. Soc.,1981,64(11):639–644.
    [80] Polotai A.V., Yang G.Y., Dickey E.C., et al.. Utilization of multiple-stage sintering tocontrol Ni electrode continuity in ultrathin Ni–BaTiO3multilayer capacitors. J. Am.Ceram. Soc.,2007,90(12):3811.
    [81] Yang G.Y., Lee S.I., Liu Z.J., et al.. Effect of local oxygen activity on Ni–BaTiO3interfacial reactions. Acta Mater.,2006,54(13):3515.
    [82] T. Dechakupt, G. Yang, C.A. Randall, et al.. Chemical solution-deposited BaTiO3thinfilms on Ni foils: microstructure and interfaces. J. Am. Ceram. Soc.,2008,91(6):1845–1850.
    [83] Hu Y.H., Harmer M.P., and Smyth D.M.. Solubility of BaO in BaTiO3. J. Am. Ceram.Soc.,1985,68(7):372.
    [84] Johnson C.J., Some dielectric and electro-optic properties of BaTiO3single crystals.Appl. Phys. Lett.,1965,7(8):221.
    [85] Huybrechts B., Ishízaki K., and Takata M.. Experimental evaluation of theacceptor-states compensation in positive-temperature-coefficient-type barium titanate.J. Am. Ceram. Soc.,1992,75(3):722–724.
    [86] Mancini M.W., and Filho P.I. Paulin. Direct observation of potential barriers insemiconducting barium titanate by electric force microscopy. J. Appl. Phys.,2006,100(10):104501.
    [87] J. Illingsworth, H.M. Ai-Allak, A.W. Brinkman, and J. Woods, The influence of Mn onthe grain-boundary potential barrier characteristics of donor-doped BaTi03ceramics, J.Appl. Phys.67(1990)2088–2092.
    [88] Rase D.E. and Roy R.. Phase equilibria in the system BaO–TiO2. J. Am. Ceram. Soc.,1955,38(3):102.
    [89] Park K., Kim J.G.., Lee K.J., et al.. Electrical properties and microstructure of Y-dopedBaTiO3ceramics prepared by high-energy ball-milling, Ceram. Int.,2008,34(7):1573.
    [90] AlAllak H. M., Illingsworth J., Brinkman A.W., et al.. The effects of donor dopantconcentration on the grain boundary layer characteristics in n-doped BaTiO3ceramics.J. Appl. Phys.,1988,64(11):6480.
    [91] Kuwabara M.. Determination of the potential barrier height in barium titanateceramics. Solid-State Electron.,1984,27(11):933.
    [92] M.P. Chun, J.H. Nam, J.H. Cho et al.. Effect of re-oxidation firing on PTCR propertiesof Sm-doped barium titanate ceramics. J. Ceram. Process. Res.,2010,11(1):112–115.
    [93] Wei J.F., Pu Y.P., Mao Y.Q. et al.. Effect of the reoxidation on positive temperaturecoefficient behavior of BaTiO3-Bi0.5Na0.5TiO3. J. Am. Ceram. Soc.,2010,93(6):1527–1529.
    [94] Kim J.G., Cho W.S., Park K.. Effect of reoxidation on the PTCR characteristics ofporous (Ba,Sr)TiO3. Mater. Sci. Eng., B2002,94(2-3):149–154.
    [95] Pu Y, Chen X, Xu N, Wu H, and Zhao X2010Ferroelectr.403181–186.
    [96] Zajc I. and Drofenik M.. Preparation of PTCR ceramics in the BaO–Nb2O5–TiO2system. J. Eur. Ceram. Soc.,1999,19(67):893–896.
    [97] Ho I.C., Fu S.L.. Effect of reoxidation on the grain-boundary acceptor-state density ofreduced BaTiO3ceramics. J. Am. Ceram. Soc.,1992,15(3):728–730.
    [98] Al-Allak H.M., Russell G.J. and Woods J.. The effect of annealing on thecharacteristics of semiconducting BaTiO3positive temperature coefficient ofresistance devices. J. Phys. D: Appl. Phys.,1987,20(12):1645–1651.
    [99] Langhammer H.T., Makovec D., Pu Y., et al.. Grain boundary reoxidation ofdonor-doped barium titanate ceramics. J. Eur. Ceram. Soc.2006,26(14):2907.
    [100] Kolodiazhnyi T. and Petric A.. Effect of PO2on bulk and grain boundary resistance ofn-type BaTiO3at cryogenic temperatures. J. Am. Ceram. Soc.,2003,86(9):1554.
    [101] Makovec D., Ule N. and Drofenik M.. Positive temperature coefficient of resistivityeffect in highly donor–doped barium titanate. J. Am. Ceram. Soc.,2001,84(6):1273–1280.
    [102] Makovec D. and Drofenik M.. Microstructural changes during thereduction/reoxidation process in donor-doped BaTiO3ceramics. J. Am. Ceram. Soc.,2000,83(10):2593–2599.
    [103] Brzozowski E., Castro M.S., Foschini C.R. et al.. Secondary phases in Nb-dopedBaTiO3ceramics. Ceram. Int.,2002,28(7):773–777.
    [104] Nowotny J., Rekas M.. Defectstructure, electrical properties and transport in BariumTitanate. VII. Chemical diffusion in Nb-doped BaTiO3. Ceram. Int.,1994,20(4):265–275.
    [105] Yang G.Y., Dickey E.C., and Randall C.A.. Oxygen nonstoichiometry and dielectricevolution of BaTiO3. Part I—improvement of insulation resistance with reoxidation. J.Appl. Phys.,2004,96(12):7492–7499.
    [106] Haayman P. W., Dam R. W., Klasens H. A.. Method of preparation of semiconductingmaterials. German Patent,925350,1955.
    [107] Saburi O.. Properties of semiconductive barium titantes. J. Phys. Soc. Jpn.,1959,14(9):11591174.
    [108] Sauer H. A., Fisher J. R.. Processing of positive temperature coefficient thermistors. J.Am. Ceram. Soc.,1960,43(6):297301.
    [109] Tennery V. J., Cook R. L.. Investigation of rare-earth doped barium titanate. J. Am.Ceram. Soc.,1961,44(4):187193.
    [110] Huang Y.C., Chen S.S. and Tuan W.H.. Process window of BaTiO3–Niferroelectric–ferromagnetic composites. J. Am. Ceram. Soc.,2007,90(5):1442.
    [111] Tzing W.H., Tuan W.H.. Effect of NiO addition on the sintering and grain growthbehaviour of BaTiO3. Ceram. Int.,1999,25(1):72.
    [112] Levi R.D., Tsur Y.. The effect of oxygen vacancies in the early stages of BaTiO3nanopowder sintering. Adv. Mater.,2005,17(13):1607.
    [113]周东祥,龚树萍. PTC材料及应用.(第一版).武汉:华中理工大学出版社,1989.1~66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700