固体氧化物燃料电池的相转化及流延法制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种可直接将化学能转换为电能的装置,因其具备全固态、高效、环境友好等众多优点而受到人们的日益关注。传统的高温SOFC对电池材料和制备技术的要求较高,导致了电池的制备成本过高,限制了SOFC的实际应用。因此降低SOFC的工作温度已成为目前SOFC主要的研究方向。
     制备薄膜电解质是实现SOFC的中低温操作的最有效方式之一,为了实现中低温SOFC的低成本和实用化目标,本论文主要侧重于阳极支撑的SOFC的制备工艺技术研究以及电化学性能表征上。此外,为了避开含钴阴极的不利影响,论文也对新型无钻钙钛矿阴极材料La0.6Ba0.4Fe1-xNixO3-δ的性能进行了研究。
     论文第一章概述了SOFC的工作原理、关键材料、发展趋势以及制备方法等。针对SOFC市场化面临的制备技术和阴极材料的挑战,提出了本论文的研究目标及研究内容。
     第二章中发展了相转化与真空辅助浸渍相结合的方法制备了阳极支撑的管状SOFC。首先用相转化法制备了NiO-YSZ(氧化钇稳定的氧化锆)阳极支撑体,再利用真空辅助浸渍技术来制备YSZ电解质薄膜。经过1400℃共烧后,成功的在1000℃预烧的NiO-YSZ阳极衬底上制备出了非常致密的YSZ电解质薄膜。以La0.8Sr0.2MnO3-δ-YSZ (LSM-YSZ)为复合阴极,单电池在700℃获得的最大功率密度为155mW/cm2。此外,通过引入阳极功能层使电池的性能进一步得到提高。研究表明相转化结合真空辅助浸渍技术是制备阳极支撑的管状SOFC的一种简便有效的方法。
     第三章作者研究了相转化方法制备了基于Ce0.8Sm0.2O2-δ(SDC)的中空纤维陶瓷管SOFC。纤维管NiO-SDC阳极衬底采用相转化法制备,在阳极衬底上采用真空辅助浸渍成功制备了20μm厚的SDC电解质。采用潮湿的氢气为燃料气,单电池在600℃获得的最大功率密度和开路电压分别为168mW/cm2和0.71V。此外,通过制备一层电子阻隔层显著地提高了此电池的开路电压。由于纤维管SOFC具有非常高的堆积密度,未来应用潜力很大。
     第四章我们通过原位相转化法和浆料浸渍的方法成功制备了NiO-BaZr0.1Ce0.7Y0.2O3-δ(NiO-BZCY)阳极支撑体以及厚度约为25μm的BaZr0.8Y0.2O3-δ (BZY)致密电解质薄膜。通过在凝固浴中引入酒精获得了满足需要的阳极衬底。电池表征给出,在550℃、600℃和650℃的功率密度分别是34、55和70mW/cm2,比传统的电解质支撑的BZY电池高出近一个数量级。实验表明相转化法制备平板状SOFC是非常可行的。
     第五章提出了通过流延、喷雾工艺制备阳极支撑的质子导体SOFC。 NiO-BZCY阳极衬底是利用流延法制备并对预烧温度优化后得到的。致密的BaZr0.1Ce0.7Y0.2O3-δ(BZCY)电解质是通过简单的喷雾技术制备的。电池在550℃获得了97mW/cm2的功率输出。另外,我们还将流延法应用于阳极支撑的单电池NiO-BZCY/BZY/Sm0.5Sr0.5CoO3-δ-SDC的制备中,获得的单电池在600℃的最大功率密度为91mW/cm2,其数值与当前的BZY薄膜电池性能的发展水平相当。实验结果充分证明流延结合喷雾技术是低成本制备阳极支撑的质子陶瓷膜燃料电池的可靠性路径。
     第六章对钙钛矿氧化物La0.6Ba0.4Fe1-xNixO3-δ (LBFN)作为中低温SOFC的一种无钴阴极的潜能进行了探索研究。电导率测试表明,电导率随着Ni掺杂量的增加而增加,La0.6Ba0.4Fe0.8Ni0.2O3-δ (LBFN2)在450℃的电导率达到了300S/cm。XRD表明,LBFN2与SDC的兼容性非常好。LBFN2-SDC/SDC/LBFN2-SDC对称电池的交流阻抗测试表明,LBFN2-SDC(质量比7:3)复合阴极的面极化电阻在700℃只有0.17Ωcm2。以其作为阴极,NiO-SDC阳极支撑20μm厚的SDC薄膜电解质单电池在600℃的最大功率密度达到了300mW/cm2,结果表明LBFN2是有潜力的一种无钴中低温SOFC阴极材料。
     论文第七章对本论文的工作进行了总结,并对阳极支撑的SOFC低成本制备技术的后续工作进行了展望。
Solid Oxide Fuel Cell (SOFC) is attracting more and more attention as a direct chemical-to-electrical energy conversion device for its solid-state structure, high efficiency, environmental friendly, etc. Conventional high-temperature SOFC has a strict demand on the materials and fabrication techniques, leading to a high cost on manufacture which limits the practical application of SOFC. Therfore, reducing the SOFC operating temperature is the current research trend.
     Fabrication of thin electrolyte membrane is one of the most effective techniques to lower the operating temperature of SOFC. In order to develop intermediate-to-low SOFC with lower cost and achieve practicality, this thesis mainly focuses on fabrication techniques for anode supported SOFC and characterization of the electrochemical performances. Moreover, to avoid the drawbacks of cobalt-based cathodes, novel La0.6Ba0.4Fe1-xNixO3-δ cobalt-free perovskite cathodes are also investigated in this thesis.
     Chapter1reviews the operating principle, critical materials, development tendency and preparation of SOFC. Furthermore, we propose that the thesis aims at the challenge of the cathode materials and fabrication techniques in successful industrialization of SOFC.
     Chapter2describes the phase inversion method combined with vacuum-assisted coating technique to fabricate the anode-supported tubular SOFC. Phase inversion method was applied to prepare the NiO-YSZ (Yttria-stabilized zirconia) anode support and vacuum assisted coating technique was used to fabricate the YSZ electrolyte membrane. After co-sintered at1400℃, a dense YSZ electrolyte membrane was successfully coated on NiO-YSZ anode substrate pre-sintered at1000℃. With La0.8Sr0.2MnO3-δ-YSZ (LSM-YSZ) as the composite cathode, a maximum power density of155mW/cm2was obtained at700℃for the single cell. Furthermore, the performance was improved significantly by introducing an anode functional layer. Based on the results, the phase inversion method combined with vacuum-assisted coating technique is a simple and efficient process to prepare the anode supported tubular SOFC.
     In Chapter3, we prepared and studied anode-supported hollow fiber Ce0.8Sm0.2O2-δ(SDC)-based SOFC. The NiO-Ce0.8Sm0.2O2-δ (NiO-SDC) anode hollow fiber was prepared by the phase inversion method and a20-μm-thick SDC electrolyte membrane was deposited on the anode substrate using vacuum-assisted coating technique. With the wet hydrogen (3%H2O) as the fuel, the single cell exhibited the maximum power density of168mW/cm2and the open-circuit voltage (OCV) of0.71V at600℃. Moreover, the OCV was significantly improved by incorporating an electron-blocking layer. Given the high stacking density of the hollow fiber, the hollow fiber SOFC has a high potential for practical applications.
     In chapter4, planar NiO-BaZr0.1Ce0.7Y0.2O3-δ (NiO-BZCY) anode substrates were prepared by the phase inversion method based on in-situ reaction and the thin BaZr0.8Y0.2O3-δ (BZY) electrolyte membranes with the thickness of25μm were fabricated by a dip-coating method. In order to fabricate suitable substrates, ethanol was introduced into the coagulation bath. The single cell generated maximum power densities of34,55and70mW/cm2at550,600and650℃, respectively, the performance of which is almost an order of magnitude higher than that of the electrolyte-supported SOFC based on BZY electrolyte. It can be concluded that the phase inversion process is also a facile method for fabricating planar SOFC.
     Chapter5describes a method of tape casting combined with spray coating for preparing the anode-supported proton-conducting SOFC. The NiO-BZCY anode substrates were prepared by tape casting and then pre-sintered at different temperatures. The dense BZCY electrolyte membranes were successfully prepared by a simple suspension spray coating technique. The maximum power density of the single cell achieved97mW/cm2at550℃. In addition, the performance of the single cell (NiO-BaZr0.1Ce0.7Y0.2O3-δ/BaZr0.8Y0.2O3-δ/Sm0.5Sr0.5CoO3-δ-SDC) prepared by spray-tape casting method was also studied. A maximum power density of91mW/cm2was obtained at600℃, which is comparable with the best performance of BZY-based SOFC by far. The results demonstrate the method of tape casting combined with spay coating technique is a low-cost and reliable route to prepare anode-supported proton-conducting SOFC.
     In Chapter6, perovskite oxides La0.6Ba0.4Fe1-xNixO3-δ (LBFN) were investigated for potential application as Co-free cathodes for intermediate-to-low SOFC. The conductivities increased with increasing Ni content, and the conductivity of La0.6Ba0.4Fe0.8Ni0.2O3-δ (LBFN2) reached300S/cm at450℃. The XRD results revealed that LBFN2and SDC showed excellent compatibility between each other. The AC impedance spectra of the symmetrical cell LBFN2-SDC/SDC/LBFN2-SDC were also investigated and the area specific resistance (ASR) of LBFN2-SDC (7:3in weight ratio) composite cathode was as low as0.17Qcm2at700℃. Using the LBFN2-SDC (7:3in weight ratio) as the composite cathode, the Ni-SDC support single cell with a20-μm-thick SDC membrane exhibited a desirable maximum power density of300mW/cm2at600℃. The results show that LBFN2might be a potential Co-free cathode material for intermediate-to-low SOFC.
     In chapter7, the researches presented in this dissertation are evaluated and future work concerning the cost-effective preparation techniques of anode supported SOFC is discussed.
引文
[1]毛宗强等,可再生能源丛书-燃料电池.化学工业出版社,2005.
    [2]韩明芳等,固体氧化物燃料电池材料及制备.科学出版社,2004.
    [3]T. Hibino, A.Hashimoto, T. Inoue, J. Tokuno, S. Yoshida and M. Sano, A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures. Science,2000.288: p.2031.
    [4]S. D. Park, J. M Vohs and R. J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature,2000.404:p.265-267.
    [5]J. Larminie and A. Dicks, Fuel Cell Systems Explained. Second Edition ed. John Wiley and Sons:,2003.
    [6]肖钢,燃料电池技术.电子工业出版社,2009.
    [7]A. L. Dicks. Advances in catalysts for internal reforming in high temperature fuel cells. Journal of Power Sources,1998.71(1-2):p.111-122.
    [8]A. L. Lee, R. F. Zabransky and W. J. Huber, Internal reforming development for solid oxide fuel cells, Industrial & Eegineering Chemistry Research,1990.29(5):p.766.
    [9]Y. Hiei, T. Ishihara and Y. Takita, Partial oxidation of methane for internally reformed solid oxide fuel cell, Solid State Ionics,1996.86-88, Part 2(0):p.1267-1272.
    [10]S. P. Harvey and H. J. Richter, Gas turbine cycles with solid oxide fuel cells. Part I:Improved gas turbine power plant efficiency by use of recycled exhaust gases and fuel cell technology. Journal of Energy Resources Technology,1994.116(4):p.305.
    [11]A. U. Dufour. Fuel cells-a new contributor to stationary power. Journal of Power Sources, 1998.71(1-2):p.19-25.
    [12]P. Aguiar, D. J. L. Brett and N. P. Brandon, Feasibility study and techno-economic analysis of an SOFC/battery hybrid system for vehicle applications, Journal of Power Sources,2007. 171(1):p.186-197.
    [13]W. Nernst, Z. Electrochem.,1899.6:p.41.
    [14]E. Baur and H. Preis, Z. Electrochem.,1937.43:p.727.
    [15]C. Allan,, A consortium approach to commercialized Westinghouse solid oxide fuel cell technology, Journal of Power Sources,1998.71(1-2):p.65-70.
    [16]S. C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ionics,2000. 135(1-4):p.305-313.
    [17]Y. Suzuki, T. Takahashi and N. Nagae, The behavior of electrical conductivity of Y2O3-stabilized zirconia, Solid State Ionics,1981.3-4(0):p.483-487.
    [18]V. V. Kharton, E. N. Naumovich and A. A.Vecher, Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. I. ZrO2-based ceramic materials. Journal of Solid State Electrochemistry,1999.3:p.61.
    [19]S. C. Singhal and K. Kendall, High-temperature Solid Oxide Fuel Cells Fundamentals, Design and Applications, Elsevier Advanced Technology,2003.
    [20]M. L. Fontaine and Y. Larring, Shaping of advanced asymmetric structures of proton conducting ceramic materials for SOFC and membrane-based process applications Journal of the European Ceramic Society,2009.29(5):p.931-935.
    [21]B. C. H. Steele, Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500℃, Solid State Ionics,2000.129(1-4):p.95-110.
    [22]M. Mogensen, N.M. Sammes, and G. A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics,2000.129(1-4):p.63-94.
    [23]S. Wang, H. Inaba, H. Tagawa, M. Dokiya and T. Hashimoto, Nonstoichiometry of Ceo.9Gd0.1O1.95-x·Solid State Ionics,1998.107(1-2):p.73-79.
    [24]A. Tomita, S. Teranishi, M. Nagao, T. Hibino and M. Sanob, Comparative Performance of Anode-Supported SOFCs Using a Thin Ce0.9Gd0.1O1.95 Electrolyte with an Incorporated BaCe0.8Y0.2O3-δ-layer in Hydrogen and Methane. Journal of The Electrochemical Society,2006. 153(6):p. A956.
    [25]K. Eguchi, T. Setoguchi, T. Inoue and H. Arai, Electrical properties of ceria-based oxides and their application to solid oxide fuel cells, Solid State Ionics,1992.52(1-3):p.165-172.
    [26]Y. Mishima, H. Mitsuyasu, M. Ohtaki and K. Eguchi, Solid Oxide Fuel Cell with Composite Electrolyte Consisting of Samaria-Doped Ceria and Yttria-Stabilized Zirconia. Journal of the Electrochemical Society,1998.145(3):p.1004-1007.
    [27]M. H. D. Othman, N. Droushiotis, Z. Wu, G. Kelsall and K. Li, Novel fabrication technique of hollow fibre support for micro-tubular solid oxide fuel cells. Journal of Power Sources,2011. 196(11):p.5035-5044.
    [28]T. Ishihara, H. Matsuda and Y. Takita, Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor. Journal of the American Chemical Society,1994.116(9):p.3801-3803.
    [29]T. Ishihara,, Novel electrolytes operating at 400-600℃, in Handbook of Fuel Cells.2010, John Wiley & Sons, Ltd.
    [30]E. Fabbri, D. Pergolesi, and E. Traversa, Materials challenges toward proton-conducting oxide fuel cells:a critical review Chemical Society Reviews,2010.39:p.4355-4369.
    [31]N. Q. Minn and T. Takahashi, Science and technology of ceramic fuel cells. Elsevier Science B. V.,ISBN:0-444-895668-X,1995.11:p.98-101.
    [32]P. Shuk, H. D. Wiemhofer, U. Guth, W. Gopel and M. Greenblatt, Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics,1996.89(3-4):p.179-196.
    [33]S. A. Kramer, and H. L. Tuller, A novel titanate-based oxygen ion conductor:Gd2Ti2O7. Solid State Ionics,1995.82(1-2):p.15-23.
    [34]T. Takahashi and H. Iwahara, Solid-state Ionics-protonic conduction in perovskite type oxide solid-solutions. Revue de chimie minerale,1980.17(4):p.243-253.
    [35]H. Iwahara, T. Esaka, H. Uchida and N. Maeda, Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics,1981.3-4(0):p. 359-363.
    [36]H. Iwahara, T.Yaima, T. Hibino and H. Ushida, Performance of Solid Oxide Fuel Cell Using Proton and Oxide Ion Mixed Conductors Based on BaCe1-xSmxO3-δ. Journal of the Electrochemical Society,1993.140(6):p.1687-1691.
    [37]H. Uchida, N. Maeda and H. Iwahara, Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures. Solid State Ionics,1983.11(2):p.117-124.
    [38]G. Ma, T. Shimura and H. Iwahara, Ionic conduction and nonstoichiometry in BaxCe0.90Y0.10O3-a. Solid State Ionics,1998.110(1-2):p.103-110.
    [39]L. Bi, Z. Tao, C. Liu, W. Sun, H. Wang and W. Liu, Fabrication and characterization of easily sintered and stable anode-supported proton-conducting membranes. Journal of Membrane Science,2009.336(1-2):p.1-6.
    [40]P. Pasierb, M. Wierzbicka, S. Komornicki and M. Rekas, Electrochemical impedance spectroscopy of BaCeO3 modified by Ti and Y. Journal of Power Sources,2009.194(1):p. 31-37.
    [41]S. Tao and J.T.S. Irvine, Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325℃. Journal of Solid State Chemistry,2007.180(12):p.3493-3503.
    [42]L. Bi, E. Fabbri, Z. Q. Sun abd E. Traversa, Sinteractive anodic powders improve densification and electrochemical properties of BaZr0.8Y0.2O3-delta electrolyte films for anode-supported solid oxide fuel cells. Energy & Environmental Science,2011.4(4):p. 1352-1357.
    [43]Z. Zhong, Stability and conductivity study of the BaCe0.9-xZrxY0.1O2.95 systems. Solid State Ionics,2007.178(3-4):p.213-220.
    [44]H. G Bohn, T. Schober, T. Mono and W. Schilling, The high temperature proton conductor Ba3Ca1.18Nb1.82O9-δ. I. Electrical conductivity. Solid State Ionics,1999.117(3-4):p.219-228.
    [45]G. Ma, F. Zhang, J. Zhu and G. Meng, Proton Conduction in Lao.9Sr0.1Gao.8Mg0.2O3-α. Chemistry of Materials,2006.18(25):p.6006-6011.
    [46]T. Fukui,, S. Ohara, and S. Kawatsu, Conductivity of BaPrO3 based perovskite oxides. Journal of Power Sources,1998.71(1-2):p.164-168.
    [47]C.-H. Lee, C. Lee, H. Lee and S. M. Oh, Microstructure and anodic properties of Ni/YSZ cermets in solid oxide fuel cells. Solid State Ionics,1997.98(1-2):p.39-48.
    [48]R. M. Ormerod, Solid oxide fuel cells. Chemical Society Reviews,2003.32(1).
    [49]J. H. Kuo, H.U. Anderson, and D.M. Sparlin, Oxidation-reduction behavior of undoped and Sr-doped LaMnO3 nonstoichiometry and defect structure. Journal of Solid State Chemistry, 1989.83(1):p.52-60.
    [50]S. P. Jiang, A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes. Solid State Ionics,2002.146(1-2):p.1-22.
    [51]T. Kenjo and M. Nishiya, LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature solid oxide fuel cells. Solid State Ionics,1992.57(3-4):p.295-302.
    [52]C. Clausen, C. Bagger, J. B. Bilde-S(?)rensen and A. Horsewell, Microstrucrural and microchemical characterization of the interface between La0.85Sr0.15MnO3 and Y2O3-stabilized ZrO2. Solid State Tonics,1994.70-71, Part 1(0):p.59-64.
    [53]A. Petric, P. Huang and F. Tietz, Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics,2000.135(1-4):p.719-725.
    [54]L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin and S. R. Sehlin, Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 2. The system La1-xSrxCoo.2Fe0.8gO3. Solid State Ionics,1995.76(3-4):p.273-283.
    [55]Z. P. Shao, and S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, nature,2004.431(7005):p.170-173.
    [56]Q. L. Liu, K. A. Khor and S. H. Chan, High-performance low-temperature solid oxide fuel cell with novel BSCF cathode. Journal of Power Sources,2006.161(1):p.123-128.
    [57]S. P. Simner, J. F. Bonnett, N. L. Canfield, K. D. Meinhardt, V. L. Sprenkle and J. W. Stevenson, Optimized Lanthanum Ferrite-Based Cathodes for Anode-Supported SOFCs. Electrochemical and Solid-State Letters,2002.5(7):p. A173-A175.
    [58]V. V. Kharton, A. A. Yaremchenko, A. L. Shaula, M. V. Patrakeev, E. N. Naumovich, D. I. Logvinovich, J. R. Frade and F. M. B. Marques, Transport properties and stability of Ni-containing mixed conductors with perovskite-and K2NiF4-type structure. Journal of Solid State Chemistry,2004.177(1):p.26-37.
    [59]P. S. Anderson, C. A. Kirk, J. Knudsen, I. M. Reaney and A. R. West, Structural characterisation of REBaCo2O6-δ phases (RE=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho). Solid State Sciences,2005.7(10):p.1149-1156.
    [60]G. Kim, S. Wang, A.J. Jacobson, Z. Yuan, W. Dormer, C. L. Chen, L. Reimus, P. Braodersen and C. A. Mims, Oxygen exchange kinetics of epitaxial PrBaCo205+8 thin films. Applied Physics Letters,2006.88(2):p.024103.
    [61]G. Kim, S. Wang, A. J. Jacobson, L. Reimus, P. Brodersen and C. A. Mims, Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+5 with a perovskite related structure and ordered A cations. Journal of Materials Chemistry,2007.17(24).
    [62]E.V. Tsipis, C. N. Munnings, V.V. Kharton, S. J. Skinner and J. R. Frade, Transport properties and structural stability of tetragonal CeNbO4+5. Solid State Ionics,2006.177(11-12):p. 1015-1020.
    [63]J.-H. Kim, D. Peck, R. Song, G. Lee. D. Shin, S. Hyun, J. Wackerl and K. Hilpert, Synthesis and sintering properties of (La0.8Ca0.2-xSrx)Cr03 perovskite materials for SOFC interconnect. Journal of Electroceramics,2006.17(2):p.729-733.
    [64]J. H. Shim, C. C. Chao, and H. Huang, Atomic layer deposition of yttria-stablized zirconia for solid oxide fuel cells. Chemistry of Materials,2007.19(15):p.3850-3854.
    [65]D. Perednis and L. J. Gauckler, Solid oxide fuel cells with electrolytes prepared via spray pyrolysis. Solid State Ionics,2004.166(3-4):p.229-239.
    [66]Y. Yeong, Fabrication and characterization of thin film electrolytes deposited by RF magnetron sputtering for low temperature solid oxide fuel cells. Journal of Power Sources,2006. 160(1):p.202-206.
    [67]S. Cho, Y. Kim, J. Kim, A. Manthiram and H. Wang, High power density thin film SOFCs with YSZ/GDC bilayer electrolyte. Electrochimica Acta,2011.56(16):p.5472-5477.
    [68]S. Zhang, L. Bi, L. Zhang, Z. Tao, W. Sun, H. Wang, W. Liu, Stable BaCe0.5Zr0.3Y0.16Zn0.04O3-δthin membrane prepared by in situ tape casting for proton-conducting solid oxide fuel cells. Journal of Power Sources,2009.188(2):p.343-346.
    [69]Y. Zhang, X. Huang, Z. Lu, X. Ge, J. Xu, X. Xin, X. Sha and W. Su, Effect of starting powder on screen-printed YSZ films used as electrolyte in SOFCs. Solid State Ionics,2006.177(3-4):p. 281-287.
    [70]Z. Cai, T. N. Lan, S. Wang and M. Dokiya, Supported Zr(Sc)O2 SOFCs for reduced temperature prepared by slurry coating and co-firing. Solid State Ionics,2002.152-153(0):p. 583-590.
    [71]N. Shikazono, Y. Sakamoto, Y. Yamaguchi and K. Kasagi, Microstructure and polarization characteristics of anode supported tubular solid oxide fuel cell with co-precipitated and mechanically mixed Ni-YSZ anodes. Journal of Power Sources,2009.193(2):p.530-540.
    [72]T. Suzuki, T. Yamaguchi, Y. Fujishiro and M. Awano, Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature. Journal of Power Sources, 2006.160(1):p.73-77.
    [73]L. Zhang, H. Q. He, W. R. Kwek, J. Ma. E. H. Tang and S. P. Jiang, Fabrication and characterization of anode-supported tubular solid-oxide fuel cells by slip casting and dip coating techniques. Journal of the American Ceramic Society,2009.92(2):p.302-310.
    [74]D. Dong, J. Gao, X. Liu and G. Meng, Fabrication of tubular NiO/YSZ anode-support of solid oxide fuel cell by gelcasting. Journal of Power Sources,2007.165(1):p.217-223.
    [75]L. Zhang, S.P. Jiang, W. Wang and Y. J. Zhang, NiO/YSZ, anode-supported, thin-electrolyte, solid oxide fuel cells fabricated by gel casting. Journal of Power Sources,2007.170(1):p. 55-60.
    [76]C. C. Wei and K. Li, Yttria-Stabilized Zirconia (YSZ)-Based Hollow Fiber Solid Oxide Fuel Cells. Industrial and Engneering Chemistry Research,2008.47:p.1506-1512.
    [77]C.L.Yang, W. Li, S. Zhang, L. Bi, R. Peng, C. Chen and W. Liu, Fabrication and characterization of an anode-supported hollow fiber SOFC. Journal of Power Sources,2009. 187(1):p.90-92.
    [78]X.B. Li, G.Q. Shao, X.H. Yu, J.A. Wang and H.X. Gu, Sintering and electrical properties of Ce0.8Sm0.2O1.9 film prepared by spray pyrolysis and tape casting. Journal of Materials Science-Materials in Electronics,2011.22(2):p.189-192.
    [79]S. Loeb and S. Sourirajan, Seawater demineralization by means of an osmotic membrane. Advances in Chemistry Series,1963.38:p.117-132.
    [80]K.H. Lee and Y. M. Kim, Asymmetric hollow inorganic membranes. Key Engineering Materials,1992.61/62:p.17-22.
    [81]杨春丽,陶瓷中空纤维膜在气体分离及固体氧化物燃料电池中的应用与研究博士论文,2010.
    [82]J. Ren, Z. Li, and F.-S. Wong, Membrane structure control of BTDA-TDI/MDI (P84) co-polyimide asymmetric membranes by wet-phase inversion process. Journal of Membrane Science,2004.241(2):p.305-314.
    [83]B.K. Chaturvedi, A.K. Ghosh, V. Ramachandhran, M.K. Trivedi, M.S. Hanra and B.M. Misra, Preparation, characterization and performance of polyethersulfone ultrafiltration membranes. Desalination,2001.133(1):p.31-40.
    [84]J.H. Kim, B.R. Min, H.C. Park, J. Won and Y.S. Kang, Phase behavior and morphological studies of polyimide/PVP/solvent/water systems by phase inversion. Journal of Applied Polymer Science,2001.81(14):p.3481-3488.
    [85]C. Feng, B. Shi, G. Li and Y. Wu, Preparation and properties of microporous membrane from poly(vinylidene fluoride-co-tetrafluoroethylene) (F2.4) for membrane distillation. Journal of Membrane Science,2004.237(1-2):p.15-24.
    [86]Y. Liu, O.Y. Chen, C.C. Wei and K. Li, Preparation of yttria-stabilised zirconia (YSZ) hollow fibre membranes. Desalination,2006.199(1-3):p.360-362.
    [87]B.F.K. Kingsbury and K. Li, A morphological study of ceramic hollow fibre membranes. Journal of Membrane Science,2009.328(1-2):p.134-140.
    [88]C.C. Wei, O.Y. Chen, Y. Liu and K. Li, Ceramic asymmetric hollow fibre membranes-One step fabrication process. Journal of Membrane Science,2008.320(1-2):p.191-197.
    [89]J. Luyten, A. Buekenhoudt, W. Adriansens, J. Cooymans, F. Servaes and R. Leysen, Preparation of LaSrCoFe03-x membranes. Solid State Ionics,2000.135(1-4):p.637-642.
    [90]W. Li, J.-J. Liu, and C.-S. Chen, Hollow fiber membrane of yttrium-stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation. Journal of Membrane Science,2009.340(1-2):p.266-271.
    [91]B. Zydorczak, Z. Wu, and K. Li, Fabrication of ultrathin La0.6Sr0.4Co0.2Fe0.8O3-δ hollow fibre membranes for oxygen permeation. Chemical Engineering Science,2009.64(21):p.4383-4388.
    [92]S. Liu, X. Tan, K. Li and R. Hughes, Preparation and characterisation of SrCe0.95Yb0.05O2.975 hollow fibre membranes. Journal of Membrane Science,2001.193(2):p.249-260.
    [93]X. Tan, S. Liu and K. Li, Preparation and characterization of inorganic hollow fiber membranes. Journal of Membrane Science,2001.188(1):p.87-95.
    [94]N. Yang, X. Tan, and Z. Ma, A phase inversion/sintering process to fabricate nickel/yttria-stabilized zirconia hollow fibers as the anode support for micro-tubular solid oxide fuel cells. Journal of Power Sources,2008.183(1):p.14-19.
    [95]G. N. Hawatt, R.G. Brekenridge and J.M. Brownlow, Fabrication of thin ceramic sheets capacitors. Journal of the American Ceramic Society,1947.30:p.237-42.
    [96]S. de Souza, S.J. Visco, and L.C. De Jonghe, Thin-film solid oxide fuel cell with high performance at low-temperature. Solid State Ionics,1997.98(1-2):p.57-61.
    [97]S. H.Nien, C. S. Hsu, C. L. Chang and B. H. Hwang, Preparation of BaZr0.1Ce0.7Y0.2O3-delta Based Solid Oxide Fuel Cells with Anode Functional Layers by Tape Casting. Fuel Cells,2011. 11(2):p.178-183.
    [1]S.C. Singhal, Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics,2002.152-153(0):p.405-410.
    [2]B.C.H. Steele and A. Heinzel, Materials for fuel-cell technologies. Nature,2001.414(6861): p.345-352.
    [3]W. Bao, Q. Chang, and G. Meng, Effect of NiO/YSZ compositions on the co-sintering process of anode-supported fuel cell. Journal of Membrane Science,2005.259(1-2):p. 103-109.
    [4]K. Kendall and M. Palin, A small solid oxide fuel cell demonstrator for microelectronic applications. Journal of Power Sources,1998.71(1-2):p.268-270.
    [5]J.-H. Kim, R. Song, K. Song, S. Hyun, D. Shin and H. Yokokawa, Fabrication and characteristics of anode-supported flat-tube solid oxide fuel cell. Journal of Power Sources, 2003.122(2):p.138-143.
    [6]D.H. Dong, M.F. Liu, Y.C. Dong, B. Lin, J.K. Yang, G. Meng, Improvement of the performances of tubular solid oxide fuel cells by optimizing co-sintering temperature of the NiO/YSZ anode-YSZ electrolyte double layers. Journal of Power Sources,2007.171(2):p. 495-498.
    [7]J. Ding and J. Liu, Fabrication and electrochemical performance of anode-supported solid oxide fuel cells by a single-step cosintering process. Journal of the American Ceramic Society, 2008.91(10):p.3303-3305.
    [8]D. Dong, J. Gao, X. Liu and G. Meng, Fabrication of tubular NiO/YSZ anode-support of solid oxide fuel cell by gel-casting. Journal of Power Sources,2007.165(1):p.217-223.
    [9]L. Zhang, S. P. Jiang, W. Wang and Y.J. Zhang, NiO/YSZ, anode-supported, thin-electrolyte, solid oxide fuel cells fabricated by gel casting. Journal of Power Sources,2007.170(1):p. 55-60.
    [10]A. Casanova, A consortium approach to commercialized Westinghouse solid oxide fuel cell technology. Journal of Power Sources,1998.71(1-2):p.65-70.
    [11]S.L. Swartz,, M. M. Seabaugh, and W.J. Dawson, Low-cost Fabrication Process for YSZ Electrolyte Films. Electrochemical Society Proceedings,1999.19:p.135-143.
    [12]S. Loeb and S. Sourirajan, Seawater demineralization by means of an osmotic membrane. Advances in Chemistry Series,1963.38:p.117-132.
    [13]S. Liu and G. R. Gavalas, Oxygen selective ceramic hollow fiber membranes. Journal of Membrane Science,2005.246(1):p.103-108.
    [14]Y. Zhang, X. Huang, Z. Lu, Z. Liu, X. Ge, J. Xu, X. Xin, X. Sha and W. Su, A novel method for fabrication of Y2O3-stabilized ZiO2 electrolyte films. Journal of the American Ceramic Society,2006.89(7):p.2304-2307.
    [15]L. Liu, X. Tan and S. Liu, Yttria Stabilized Zirconia Hollow Fiber Membranes. Journal of the American Ceramic Society,2006.89(3):p.1156-1159.
    [16]C. C. Wei and K. Li, Yttria-Stabilized Zirconia (YSZ)-Based Hollow Fiber Solid Oxide Fuel Cells. Industrial and Engneering Chemistry Research,2008.47:p.1506-1512.
    [17]N. Droushiotis, U. Doraswami, K. Kanawka, G.H. Kelsall and K. Li, Characterization of NiO-yttria stabilised zirconia (YSZ) hollow fibres for use as SOFC anodes. Solid State Ionics, 2009.180(17-19):p.1091-1099.
    [18]杨春丽,陶瓷中空纤维膜在气体分离及固体氧化物燃料电池中的应用与研究博士论文,2010.
    [19]N. Yang,, X. Tan, and Z. Ma, A phase inversion/sintering process to fabricate nickel/yttria-stabilized zirconia hollow fibers as the anode support for micro-tubular solid oxide fuel cells. Journal of Power Sources,2008.183(1):p.14-19.
    [20]Yang, C.L., et al., Fabrication and characterization of an anode-supported hollow fiber SOFC. Journal of Power Sources,2009.187(1):p.90-92.
    [21]M.F. Liu, J.F. Gao, D.H. Dong, X.Q. Liu and G. Y. Meng, Comparative study on the performance of tubular and button cells with YSZ membrane fabricated by a refined particle suspension coating technique. International Journal of Hydrogen Energy,2010.35(19):p. 10489-10494.
    [22]C. Xia and M. Liu, Novel Cathodes for Low-Temperature Solid Oxide Fuel Cells. Advanced Materials,2002.14(7):p.521-523.
    [1]. T.L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z, Z. Zhang, H. Nie, W. Huang, Material research for planar SOFC stack. Solid State Ionics,2002.148(3-4):p.513-519.
    [2]L. Zhang, H.Q. He, W.R. Kwek, J. Ma, E.H. Tang and S.P. Jiang, Fabrication and characterization of anode-supported tubular solid-oxide fuel cells by slip casting and dip coating techniques. Journal of the American Ceramic Society,2009.92(2):p.302-310.
    [3]R. Campana,R.I. Merino, A. Larrea, I. Villarreal and V.M. Orera, Fabrication, electrochemical characterization and thermal cycling of anode supported microtubular solid oxide fuel cells. Journal of Power Sources,2009.192(1):p.120-125.
    [4]T. Yamaguchi and T. Suzuki, Examination of wet coating and co-sintering technologies for micro-SOFCs fabrication. Journal of Membrane Science,2007.300:p.45-50.
    [5]T. Suzuki, Y. Funahashi, T. Yamaguchi, Y. Fujishiro and M. Awano, Effect of anode microstructure on the performance of micro tubular SOFCs. Solid State Ionics,2008.180(6-8): p.546-549.
    [6]T. Yamaguchi, K.V. Galloway, J. Yoon and N.M. Sammes, Electrochemical characterizations of microtubular solid oxide fuel cells under a long-term testing at intermediate temperature operation. Journal of Power Sources,2011.196(5):p.2627-2630.
    [7]Y. Liu, O.Y. Chen, C.C. Wei and K. Li, Preparation of yttria-stabilised zirconia (YSZ) hollow fibre membranes. Desalination,2006.199(1-3):p.360-362.
    [8]C. C. Wei. and K. Li, Yttria-Stabilized Zirconia (YSZ)-Based Hollow Fiber Solid Oxide Fuel Cells. Industrial and Engneering Chemistry Research,2008.47:p.1506-1512.
    [9]C.L. Yang, W. Li, S.Q. Zhang, L. Bi, R.R. Peng, C.S. Chen and W. Liu, Fabrication and characterization of an anode-supported hollow fiber SOFC. Journal of Power Sources,2009. 187(1):p.90-92.
    [10]M.H.D. Othman, N. Droushiotis, Z. Wu, Z. Wu, G. Kelsall and K. Li, Novel fabrication technique of hollow fibre support for micro-tubular solid oxide fuel cells. Journal of Power Sources,2011.196(11):p.5035-5044.
    [11]T. Suzuki, T. Yamaguchi, Y. Fujishiro and M. Awano., Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature. Journal of Power Sources, t 2006.160(1):p.73-77.
    [12]F. Calise, G. Restucccia and N. Sammes, Experimental analysis of micro-tubular solid oxide fuel cell fed by hydrogen. Journal of Power Sources,2010.195(4):p.1163-1170.
    [13]T. Suzuki, Fabrication of micro-tubular solid oxide fuel cells with a single-grain-thick yttria stabilized zirconia electrolyte. Journal of Power Sources,2010.195:p.7825-7828.
    [14]X. Zhang, B. Lin, Y. Lin, Y. Dong, G. Meng, X. Liu, An anode-supported micro-tubular solid oxide fuel cell with redox stable composite cathode. International Journal of Hydrogen Energy, 2010.35:p.8654-8662.
    [15]C. Jin, J. Liu, L. Li and Y. Bai, Electrochemical properties analysis of tubular NiO-YSZ anode-supported SOFCs fabricated by the phase-inversion method. Journal of Membrane Science,2009.341(1-2):p.233-237.
    [16]K. Kanawka, M.H.D. Othman, Z.T. Wu, N. Droushiotis, G. Kelsall and K. Li, A dual layer Ni/Ni-YSZ hollow fibre for micro-tubular SOFC anode support with a current collector. Electrochemistry Communications,2011.13(1):p.93-95.
    [17]N.T. Yang and X.Y. Tan, Fabrication and Characterization of Ce0.8Sm0.2O1.9 Microtubular Dual-Structured Electrolyte Membranes for Application in Solid Oxide Fuel Cell Technology, journal of American ceramic society,2009.92(11):p.2544-2550.
    [18]N. Droushiotis, M.H.D. Othman, U. Doraswami, Z. Wu, G. Kelsall and K. Li, Novel co-extruded electrolyte-anode hollow fibres for solid oxide fuel cells. Electrochemistry Communications,2009.11(9):p.1799-1802.
    [19]A.Tomita, S. Teranishi, M. Nagao. T. Hibino and M. Sanob, Comparative Performance of Anode-Supported SOFCs Using a Thin Ce0.9Gd0.1O1.95 Electrolyte with an Incorporated BaCe0.8Y0.2O3-δ Layer in Hydrogen and Methane. Journal of The Electrochemical Society,2006. 153(6):p.A956-A960.
    [20]D. Hirabayashi, A. Tomita, T. Hibino, M. Nagao and M. Sano, Design of a Reduction-Resistant Ce0.8Sm0.2O1.9 Electrolyte Through Growth of a Thin BaCe1-xSmxO3-α Layer over Electrolyte Surface. Electrochemical and Solid-State Letters,2004.7(10):p. A318-A320.
    [21]杨春丽,陶瓷中空纤维膜在气体分离及固体氧化物燃料电池中的应用与研究博士论文,2010.
    [22]V. Gil, J. Gurasukis, R. Campana, R.I. Merino, A. Larrea and V. M. Orera, Anode-supported microtubular cells fabricated with gadolinia-doped ceria nanopowders. journal of Power Sources,2011.196:p.1184-1190.
    [23]Y. Liu and S.I. Hashimoto, Fabrication and characterization of micro-tubular cathode-supported·SOFC for intermediate temperature operation. Journal of Power Sources, 2007.174:p.95-102.
    [24]Y. Liu, S. Hashimoto, H. Nishino, K. Takei and M. Mori, Fabrication and characterization of a co-fired La0.6Sr0.4Co0.2Fe0.8O3-δ cathode-supported Ce0.9Gd0.1O1.95 thin-film for IT-SOFCs. Journal of Power Sources,2007.164(1):p.56-64.
    [25]M.H.D. Othman, Z.T. Wu, N. Droushiotis, U. Doraswami, U. Doraswami, G. Kelsall and K. Li, Single-step fabrication and characterisations of electrolyte/anode dual-layer hollow fibres for micro-tubular solid oxide fuel cells. Journal of Membrane Science,2010.351(1-2):p. 196-204.
    [26]W.P. Sun, Y.Z. Jiang, Y. F. Wang, S.M. Fang, Z.W. Zhu and W. Liu, A novel electronic current-blocked stable mixed ionic conductor for solid oxide fuel cells. Journal of Power Sources,2011.196:p.62-68.
    [27]C. Xia and M. Liu, Novel Cathodes for Low-Temperature Solid Oxide Fuel Cells. Advanced Materials,2002.14(7):p.521-523.
    [28]D. Chen, R. Ran, K. Zhang, J. Wang, Z. Shao, Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+i cathode on samarium-doped ceria electrolyte. Journal of Power Sources,2009.188:p.96-105.
    [1]B.C.H. Steele and A. Heinzel, Materials for fuel-cell technologies. Nature,2001.414(6861): p.345-352.
    [2]D.J.L. Brett, A. Atkinson, N.P. Brandon and S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chemical Society Reviews,2008.37(8):p.1568-1578.
    [3]N. Bonanos, K.S. Knight, and B. Ellis, Perovskite solid electrolytes:Structure, transport properties and fuel cell applications. Solid State Ionics,1995.79(0):p.161-170.
    [4]H. Iwahara,, Proton conducting ceramics and their applications. Solid State Ionics,1996. 86-88, Part 1(0):p.9-15.
    [5]K.D. Kreuer, On the development of proton conducting materials for technological applications. Solid State Ionics,1997.97(1-4):p.1-15.
    [6]E. Fabbri, D. Pergolesi and E. Traversa, Materials challenges toward proton-conducting oxide fuel cells:a critical review. Chem Soc Rev,2010.39(11):p.4355-69.
    [7]S.W. Tao and J.T.S. Irvine, A Stable, Easily Sintered Proton-Conducting Oxide Electrolyte for Moderate-Temperature Fuel Cells and Electrolyzers. Advanced Materials,2006.18(12):p. 1581-1584.
    [8]K.D. Kreuer, T. Dippel, Y.M. Baikov and J. Maier, Water solubility, proton and oxygen diffusion in acceptor doped BaCeO3:A single crystal analysis. Solid State Ionics,1996.86-88, Part 1(0):p.613-620.
    [9]I. Ahmed, S.G. Eriksson, E. Ahlberg, C.S. Knee, M. Karlsson, A. Matic, D. Engberg and L. Bojesson, Proton conductivity and low temperature structure of In-doped BaZrO3. Solid State Ionics,2006.177(26-32):p.2357-2362.
    [10]A. Magrez and T. Schober, Preparation, sintering, and water incorporation of proton conducting Ba0.99Zr0.8Y0.2O3-8:comparison between three different synthesis techniques. Solid State Ionics,2004.175(1-4):p.585-588.
    [11]S. Imashuku, T. Uda, Y. Nose, K. Kishida, S. Harada, H. Inui and Y. Awakura, Improvement of Grain-Boundary Conductivity of Trivalent Cation-Doped Barium Zirconate Sintered at 1600 ℃by Co-doping Scandium and Yttrium. Journal of the Electrochemical Society,2008.155(6): p. B581-B586.
    [12]I. Ahmed, M. Karlsson, S. Eriksson, C.S. Knee, K. Larsson, A.K. Azad, A. Matic and L. Bdrjesson, Crystal Structure and Proton Conductivity of BaZr0.9Sc0.1O3-δ. Journal of the American Ceramic Society,2008.91(9):p.3039-3044.
    [13]E. Fabbri, D. Pergolesi, S. Licoccia and E. Traversa, Chemically Stable Pr and Y Co-Doped Barium Zirconate Electrolytes with High Proton Conductivity for Intermediate-Temperature Solid Oxide Fuel Cells, Advanced Functional Materials,2011.21:p.158-166.
    [14]Z. Zhong, Stability and conductivity study of the BaCe0.9-xZrxY0.1O2.95 systems. Solid State Ionics,2007.178(3-4):p.213-220.
    [15]K.Katahira, Y. Kohchi, T. Shimura and H. Iwahara, Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics,2000.138(1-2):p.91-98.
    [16]E. Fabbri, A. D'Epifanio, E. Di Bartolomeo, S. Licoccia and E. Traversa, Tailoring the chemical stability of Ba(Ce0.8-xZrx)Y0.2O3-δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). Solid State Ionics,2008.179(15-16):p.558-564.
    [17]D. Shima and S.M. Haile, The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate. Solid State Ionics,1997.97(1-4):p.443-455.
    [18]P. Babilo and S.M. Haile, Enhanced Sintering of Yttrium-Doped Barium Zirconate by Addition of ZnO. Journal of the American Ceramic Society,2005.88(9):p.2362-2368.
    [19]C. Peng, J. Melnik, J. Li, J. Luo, A.R. Sanger and K.T. Chuang, ZnO-doped BaZr0.85Y0.15O3-δ proton-conducting electrolytes:Characterization and fabrication of thin films. Journal of Power Sources,2009.190(2):p.447-452.
    [20]D. Pergolesi, E.* Fabbri and E. Traversa, Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochemistry Communications,2010.12:p.977-980.
    [21]L. Bi, E. Fabbri, Z.Q. Sun and E. Traversa, Sinteractive anodic powders improve densification and electrochemical properties of BaZr0.8Y0.2O3-delta electrolyte films for anode-supported solid oxide fuel cells. Energy & Environmental Science,2011.4(4):p. 1352-1357.
    [22]W. Sun, L. Yan, Z. Shi, Z. Zhu and W. Liu, Fabrication and performance of a proton-conducting solid oxide fuel cell based on a thin BaZr0.8Y0.2O3-δ electrolyte membrane. Journal of Power Sources,2010.195(15):p.4727-4730.
    [23]谭小耀等,一种制备固体氧化物燃料电池的方法.2004.公开号:CN1484335A.
    [24]C. C. Wei and K. Li, Yttria-Stabilized Zirconia (YSZ)-Based Hollow Fiber Solid Oxide Fuel Cells. Industrial and Engneering Chemistry Research,2008.47:p.1506-1512.
    [25]H.Tikkanen, C. Suciu, I. Waernhus and A. Hoffmann, Examination of the co-sintering process of thin 8YSZ films obtained by dip-coating on in-house produced NiO-YSZ. Journal of the European Ceramic Society 2011.31:p.1733-1739.
    [26]C. Xia, S. Zha, W. Yang, R. Peng and D. Peng, Preparation of yttria stabilized zirconia membranes on porous substrates by a dip-coating process. Solid State Ionics,2000.133:p. 287-294.
    [27]毕磊,质子导体固体氧化物燃料电池的制备及其电化学研究.博士论文,2009.
    [28]A. D'Epifanio, E. Fabbri, E. Di Bartolomeo, S. Licoccia and E. Traversa, Design of BaZr0.8Y0.2O3-δ Protonic Conductor to Improve the Electrochemical Performance in Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). Fuel Cells,2008.8(1):p.69-76.
    [1]H. Iwahara, Proton conducting ceramics and their applications. Solid State Ionics,1996. 86-88, Part 1(0):p.9-15.
    [2]K. Katahira, Y, Kohchi, T. Shimura, H. Iwahara, Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics,2000.138(1-2):p.91-98.
    [3]H.G. Bohn and T. Schober, Electrical Conductivity of the High-Temperature Proton Conductor BaZr0.9Y0.1O2.95. Journal of the American Ceramic Society,2000.83(4):p.768-772.
    [4]J.H. Tong, D. Clark, L. Bernau, A. Subramaniyan and R. O'Hawyre, Proton-conducting yttrium-doped barium cerate ceramics synthesized by a cost-effective solid-state reactive sintering method. Solid State Ionics,2010.181(33-34):p.1486-1498.
    [5]H. P. Ding, Y. Y. Xie, and X. J. Xue, Electrochemical performance of BaZr0.1Ce0.7Y0.1Yb0.1O3-delta electrolyte based proton-conducting SOFC solid oxide fuel cell with layered perovskite PrBaCo2O5+delta cathode. Journal of Power Sources.196(5):p. 2602-2607.
    [6]L. Bi, Z.T. Tao, W.P. Sun, S.Q. Zhang, R.R. Peng and W. Liu, Proton-conducting solid oxide fuel cells prepared by a single step co-firing process. Journal of Power Sources,2009. 191(2):p.428-432.
    [7]F. Zhao and F.L. Chen, Performance of solid oxide fuel cells based on proton-conducting BaCe0.7In0.3-xYxO3-delta electrolyte. International Journal of Hydrogen Energy,2010.35(20):p. 11194-11199.
    [8]L. Bi, S. Zhang, S. Fang, Z. Tao, R. Peng and W. Liu, A novel anode supported BaCe0.7Ta0.1Y0.2O3-δ electrolyte membrane for proton-conducting solid oxide fuel cell. Electrochemistry Communications,2008.10(10):p.1598-1601.
    [9]K. Xie, R. Yan and X. Liu, Stable BaCe0.7Ti0.1Y0.2O3-δ proton conductor for solid oxide fuel cells. Journal of Alloys and Compounds,2009.479(1-2):p. L40-L42.
    [10]K. Xie, R. Yan and X. Liu, The chemical stability and conductivity of BaCe0.9-xYxSn0.iO3-δ solid proton conductor for SOFC. Journal of Alloys and Compounds,2009.479(1-2):p. L36-L39.
    [11]K. Xie, R. Yan, X. Xu, X. Liu and G. Meng, The chemical stability and conductivity of BaCeo9-xYxNb0.1O3-σ proton-conductive electrolyte for SOFC. Materials Research Bulletin, 2009.44(7):p.1474-1480.
    [12]C. Zuo, S. Zha, M. Liu, M. Hatano and M. Uchiyama, Ba(Zr0o.1Ce0.7Y0.2)O3-δ as an Electrolyte for Low-Temperature Solid-Oxide Fuel Cells. Advanced Materials,2006.18(24):p. 3318-3320.
    [13]R. Peng, Y. Wu, L. Yang and Z. Mao, Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film. Solid State Ionics, 2006.177(3-4):p.389-393.
    [14]E. Fabbri, D. Pergolesi, A. Epifanio, E. Bartolomeo, G. Balestrino, S. Licocciaa and E. Traversa, Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). Energy & Environmental Science, 2008(1):p.355.
    [15]Y. Guo, R. Ran, and Z. Shao, Fabrication and performance of a carbon dioxide-tolerant proton-conducting solid oxide fuel cells with a dual-layer electrolyte. International Journal of Hydrogen Energy.35(19):p.10513-10521.
    [16]M. Zunic, L. Chevallier, E. Di Bartolomeo, A. D'Epifanio, S. Licoccia and E. Traversa, Anode Supported Protonic Solid Oxide Fuel Cells Fabricated Using Electrophoretic Deposition. Fuel Cells,2011.11(2):p.165-171.
    [17]L. Bi, S. Zhang, B. Lin, S. Fang, C. Xia and W. Liu, Screen-printed BaCe0.8Sm0.2O3-δ thin membrane solid oxide fuel cells with surface modification by spray coating. Journal of Alloys and Compounds,2009.473(1-2):p.48-52.
    [18]M. Asamoto, H. Shirai, H. Yamaura and H. Yahiro, Fabrication of BaCe0.8Y0.2O3 dense film on perovskite-type oxide electrode substrates. Journal of the European Ceramic Society,2007. 27(13-15):p.4229-4232.
    [19]S. Zhang, L. Bi, L. Zhang, Z. Tao, W. Sun, H. Wang and W. Liu, Stable BaCe0.5Zr0.3Y0.16Zn0.04O3-[delta] thin membrane prepared by in situ tape casting for proton-conducting solid oxide fuel cells. Journal of Power Sources,2009.188(2):p.343-346.
    [20]S.H. Nien, C. S. Hsu, C.L. Chang and B.H. Hwang, Preparation of BaZr0.1Ce0.7Y0.2O3-delta Based Solid Oxide Fuel Cells with Anode Functional Layers by Tape Casting. Fuel Cells,2011. 11(2):p.178-183.
    [21]L. Bi, S. Zhang, S. Fang, L. Zhang, K. Xie, C. Xia and W. Liu, Preparation of an extremely dense BaCe0.8Sm0.2O3-δ thin membrane based on an in situ reaction. Electrochemistry Communications,2008.10(7):p.1005-1007.
    [22]E. Schuller, R. Vaβen, and D. Stover, Thin Electrolyte Layers for SOFC via Wet Powder Spraying (WPS). Advanced Engineering Materials,2002.4(9):p.659-662.
    [23]张磊,流延和湿粉喷雾制备固体氧化物燃料电池阳极和电解质的研究.博士论文,2011.
    [24]B. Lin, Y. Dong, R. Yan, S. Zhang, M. Hu, Y. Zhou and G. Meng, In situ screen-printed BaZr0.1Ce0.7Y0.2O3-δ electrolyte-based protonic ceramic membrane fuel cells with layered SmBaCo2O5+x cathode. Journal of Power Sources,2009.186(2):p.446-449.
    [1]M.A. Pena and J.L.G. Fierro, Chemical Structures and Performance of Perovskite Oxides. Chemical Reviews,2001.101(7):p.1981-2018.
    [2]C. Xia and M. Liu, Novel Cathodes for Low-Temperature Solid Oxide Fuel Cells. Advanced Materials,2002.14(7):p.521-523.
    [3]S.P. Jiang, A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes. Solid State Ionics,2002.146(1-2):p.1-22.
    [4]L. Yang, Z. Liu, S. Wang, Y. Choi, C. Zuo and M. Liu, A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors. Journal of Power Sources,2010.195(2):p.471-474.
    [5]C. Fu, K. Sun, N. Zhang, X. Chen and D. Zhou, Electrochemical characteristics of LSCF-SDC composite cathode for intermediate temperature SOFC. Electrochimica Acta,2007. 52:p.4589.
    [6]J.-W. Lee, Z. Liu, L. Yang, H. Abernathy, S. Choi, H. Kim and M. Liu, Preparation of dense and uniform Lao.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) films for fundamental studies of SOFC cathodes. Journal of Power Sources,2009.190(2):p.307-310.
    [7]Z.P. Shao and S.M. Haile., A high-performance cathode for the next generation of solid-oxide fuel cells nature,2004.431(7005):p.170-173.
    [8]Y. Zhang, J. Liu, X. Huang, Z. Lu and W. Su, Low temperature solid oxide fuel cell with Ba0.5Sr0.5Co0.8Fe0.2O3 cathode prepared by screen printing. Solid State Ionics,2008.179(7-8):p. 250-255.
    [9]C. Xia, W. Rauch, F. Chen and M. Liu, Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics,2002.149(1-2):p.11-19.
    [10]A. Ecija, K. Vidal, A. Larranaga, A. Martinez-Amesti, L. Ortega-San-Martin and M.I. Arriortua, Characterization of Ln0.5M0.5FeO3-δ (Ln=La, Nd, Sm; M=Ba, Sr) perovskites as SOFC cathodes. Solid State Ionics,2011.201(1):p.35-41.
    [11]J.M. Ralph, C. Rossignol and R. Kumar, Cathode Materials for Reduced-Temperature SOFCs. Journal of the Electrochemical Society,2003.150(11):p. A1518-A1522.
    [12]Y. Zhen and S.P. Jiang, Characterization and performance of (La,Ba)(Co,Fe)O3 cathode for solid oxide fuel cells with iron-chromium metallic interconnect. Journal of Power Sources, 2008.180(2):p.695-703.
    [13]D.J. Chen, R. Ran, and Z.P. Shao, Assessment of PrBaCo2O5+delta+Sm0.2Ce0.8O1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells. Journal of Power Sources,2010.195(21):p.7187-7195.
    [14]B. Wei, L. Zhe, X. Huang, M. Liu, N. Li and W. Su, Synthesis, electrical and electrochemical properties of Ba0.5Sr0.5Zn0.2Fe0.8O3-δ perovskite oxide for IT-SOFC cathode. Journal of Power Sources,2008.176(1):p.1-8.
    [15]L. Zhao, B. He, X. Zhang, R. Peng, G. Meng and X. Liu, Electrochemical performance of novel cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3-δ for solid oxide fuel cell cathode. Journal of Power Sources,2010.195:p.1859-1861.
    [16]Q. Zhou, W. Wang, T. Wei, X. Qi, Y. Liu, Y. Zou, Y. Liu, Z. Li and Y. Wu, LaBaCuFe05+5-Ce0.8Sm0.2O1.9 as composite cathode for solid oxide fuel cells. Ceramics International,2012.38(2):p.1529-1532.
    [17]Y-P. Fu., Electrochemical performance of La0.9Sr0.1Coo.8Ni0.2O3-δ-Ce0.8Sm0.2O1.9 composite cathode for solid oxide fuel cells. International Journal of Hydrogen Energy,2011.36(9):p. 5574-5580.
    [18]J. Park, J. Zou, H. Yoon, G. Kim and J.S. Chung, Electrochemical behavior of Bao.5Sr0.5Co0.2-xZnxFeo.8O3-δ (x= 0-0.2) perovskite oxides for the cathode of solid oxide fuel cells. International Journal of Hydrogen Energy,2011.36(10):p.6184-6193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700