高温烟气除尘用复合型陶瓷过滤材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于燃煤电厂排放大量可吸入颗粒物和重金属的高温烟气,针对日益严重的高温烟气污染问题,常规的除尘方法必须经降温冷却处理后,才能够进行除尘净化处理。且烟气在经过降温冷却处理阶段,损失了大量的能量,热利用率较低,耗能巨大,而且对细颗粒的脱除效果不好,不能满足目前日趋严格的环保要求,必须寻找脱除细微飞灰的新方法,研究脱除的新机理。利用多孔陶瓷除去可吸入颗粒物及其重金属等有毒物质的过滤方法愈来愈受到人们的重视。多孔陶瓷由于其具有耐高温、高压、抗酸碱腐蚀性能、热稳定性好、过滤效率高、使用寿命长等特点而得到广泛应用。但是其致命缺点是性脆,强度小,力学性能差。针对此问题,本课题采用陶瓷纤维制品和氧化锆增韧陶瓷基体的多孔陶瓷过滤材料是值得探索研究开发的课题,对高温环境下除尘技术发展和增韧新型复合陶瓷过滤材料的发展具有实用价值和工程指导意义。
     首先,本课题采用冷态实验法模拟实际工况环境,对叠加和缝制方式下不同厚度的陶瓷纤维制品进行了过滤性能测试,得到在洁净状态下的陶瓷纤维制品过滤阻力与过滤风速近似呈一次方线性变化规律,并根据试验数据得到拟合曲线;通过对陶瓷纤维制品过滤效率的测试,总体满足高温除尘技术的要求,但是部分过滤效果不是很好,测得个别实验值计算为负,分析其原因是由于陶瓷纤维制品内部含有结晶微粒和微细纤维,故在使用前需要进行预处理。
     其次,利用陶瓷纤维制品增强方法和氧化锆的相变增韧机理,采用注浆覆膜涂抹法,通过不同的试样配比、试验工艺和烧成制度制得陶瓷纤维制品和氧化锆增韧氧化铝、氧化硅和高岭土陶瓷基体的高温除尘用复合型多孔陶瓷过滤材料试样。
     再次,对氧化硅、氧化铝、氧化锆和高岭土4种陶瓷粉料进行基本性能测试,得到其平均粒径,化学含量和粒径分布;通过对陶瓷烧结坯体的TG、DTA、DTG和DSC等综合热分析测试,得到试样受热变化的各种热分析数据,为确定烧成制度提供了依据;通过对烧结体的XRD测试,得到4种陶瓷粉料的化学组成和物相分布,测试得到部分试样中发生了氧化锆的马氏体相变,即氧化锆相变增韧陶瓷基体的变化;通过对烧结体的SEM显微形貌观察,分析所制得的复合型陶瓷过滤材料具有丰富的气孔,但在高温烧结过程中部分陶瓷粉料和过量粘结剂熔融成液相填充了骨料之间孔隙,应当避免堵塞已形成的气孔;通过对烧结体吸水率、气孔率和体积密度的测试,得到烧结体试样体积密度较小,范围为1.0094~1.8255g/cm~3;烧结体试样的吸水率范围主要为20~60%,试样气孔率范围主要为30%~70%;通过对烧结体强度的测试发现,抗弯强度达到3.5MPa,抗压强度达到16MPa,随着烧结时间的延长,抗弯强度有所增加,抗压强度显著提高:通过对试样烘干和烧结的线变化率测试,总体表现为长度、宽度方向收缩和厚度方向膨胀;通过对烧结坯体烧结后表观密度测试,得到表观密度范围在0.34~0.84g/cm~3;随着烧成温度的升高和保温时间的延长,试样的气孔率呈逐渐下降的趋势。随着高温粘结剂加入量的增加,陶瓷烧结体的强度缓慢增加,气孔损失增大,气孔率减少。
     最后,采用冷态实验法对复合型陶瓷过滤材料进行了过滤性能测试,得到在在洁净状态下的复合型陶瓷过滤板的过滤阻力与过滤风速呈二次方变化规律,并根据试验数据得到拟合曲线,相关性很好,基本符合多孔陶瓷过滤理论要求;通过对陶瓷过滤板的过滤效率的测试,过滤效率在30%~40%,虽然过滤效果不是最优,但是需要进一步提高和改善。本课题在制备复合型陶瓷过滤材料的基础上有其创新和改进措施,具有一定的研究意义、有很好的开发价值和广泛的应用前景。
Due to lots of inhaled particles and heavy metals in the high temperature gas dusts were emitted form coal fired power generetion plants,it became increasingly serious air pollution of hightemperature gas dusts.it must be reduced them temperature and coolling treated,then these high temperature gas dusts could be dust-removalled and cleanned.At this moment,heat was lost,heat-utilizing was low,energy consuming was huge,and dust cleaning effect was bad,the routine methods of dust removal were not satisfacted with the rigorous standard environmental protection.Used porous ceramics to clean inhaled particles and heavy metals toxicants of new filtering ways had quite recognized.It took on excellent high temperature and high pressure resistance,good acid and alkali eorrosion resistance,high filtration efficiency and long service life.But its fetal weakness were lowly intensity,badly brittleness.Aimed at this issue,the paper was put forward to rein-forced porous ceramic relying on ceremic fiber rein-forced and zirconia transformation toughening mechanisms.The resultant theory and method are given to design and optimize the ceramic filter element.
     Firstly,This subject was used cold-simulation testing method to the actual environmental conditions,the filtration resistance and the filtration velocity was accorded with the linear law,and got the fitting curve.The filtering efficiency of the ceramic fiber products was also tested,The effect was not very good,some of the experimental data was negative,The reason that was the ceramic fiber products containing crystalline particles and microfibers.
     Secondly,using ceramic fiber products and the zirconia transformation toughening mechanism,with grouting film method,The'ratio of different samples and testing and firing process of ceramic fiber products.The zirconia toughened alumina,silica and kaolin ceramic matrix of porous ceramic filter material sample were created
     And silica,alumina,zirconia and kaolin four basic ceremic power materials were tested them performance,including the average sizes,size distributions and chemical contents.The thermal analysis of sintering bodies were studied by TG,DTA,DTG and DSC.In order to determine the sintered body,the XRD of four ceramic powders were applied,some samples taken place the zirconia martensitic transformation,which was the transformation toughening zirconia ceramic matrix changes.microstructure were analyzed and observed by SEM.But in the process of sintering,ceramic powders and some liquid phase filled and blocked among the aggregate pores,water absorption, density,porosity were also tested,density was 1.0094-1.8255g/cm~3;water absorp tion was 20-60%,Mainly sample porosity was 30%-70%,bending strength was 3.5MPa, compressive strength was 16 MPa.The sintering strength with the sintering time,the slow increase in bending strength and compressive strength to increase significantly.By drying the sample and rate of change sintering line test for the performance of the overall direction of the width of the length of the shrinkage and the thickness direction of expansion.By sintering body after apparent density test,the apparent density was 0.34~0.84g/cm~3,whicf was meeted the high-porous ceramic filter results.With the sintering temperature and holding time of the extension,the porosity of the sample showed a gradual downward trend,ceramic sintered slow increase in strength,porosity loss increased to reduce the porosity.
     Finally,the composite ceramic filter materials were tested by colding-state,filters pressure and wind speeds was accorded with the quadratic law,ceramic filter through the filter efficiency of the board of the test.Filtration efficiency of 30%-40%,although the effect of filtering is not optimal,yet to some extent to the strength of materials and mechanical properties improved.Preparation of the porous ceramic filter had its innovations and improvements,the study has some significance great economical value in heat utilization and extensive applications foreground.
引文
[1]童志权.大气污染控制工程[M].北京:机械工业出版社,2006,7
    [2]王丽萍,李多松.大气污染控制工程[M].北京:煤炭工业出版社,2002
    [3]李名家.新型除尘器的理论分析及实验研究[D].哈尔滨船舶锅炉涡轮机研究所:中国舰船研究院七零三所硕士学位论文,2004,1-3
    [4]夏兴祥.高温除尘技术综述[J].化工机械,2000,27(1):47-53
    [5]付海明.高温烟尘颗粒捕集技术探讨[J].区域供热,2004,1:6-11
    [6]宋景郊.高温除尘技术发展和耐高温滤材市场前景[J].化工装备技术,2002,23(5):19-21
    [7]夏兴祥.高温除尘技术综述[C].第六届全国非均相分离学术交流会暨均相分离新型技术推广会,上海,1999:1-8
    [8]高铁瑜.先进燃煤联合循环陶瓷过滤器研究[D].西安交通大学博士学位论文,2003.
    [9]尹建威,况春红,高征铠,杨天钧.氧气高炉煤气高温除尘中间试验[J].北京科技大学学报,2002,24(1):19-21
    [10]高根树,杨云,张宝儒,周斌.新型高温除尘技术的应用[J].矿业工程,2005,3(1):45-47
    [11]邢毅,况春江.高温除尘过滤材料的研究[J].过滤与分离,2004,14(2):1-4
    [12]武威,田贵山,关键.用陶瓷过滤器进行高温煤气除尘技术研究[J].辽宁工程技术大学学报(自然科学报),2000,19(2):214-218
    [13]Cooke M J.Control of Particulates From Industrial Boilers[J].J Inst Energy,1991,64:239-246.
    [14]刘国荣,姬忠礼等.EPVC-Ⅱ型旋风管流场实验研究[J].化工机械,1995,22(5):249-253.
    [15]林玮,张宇宏,王乃宁.直流式旋风分离器内部流场的实验研究[J].华东工业大学学报,1997,19(3):26-30.
    [16]许世森,许晋源,许传凯.温度和压力对旋风分离器高温除尘性能影响研究[J].动力工程,1997,17(2):52-59.
    [17]宋雯雯.湿法除尘器在机立窑上的应用[J].四川水泥,1998,NO.6:34-36
    [18]Weber Eetal.Electrostatic Precipitation under Extreme Conditions of Temperature and Pressure[A].Proceeding of the 2nd International Conference on Electrostatic Precipitation[C]Kyoto:1984,85-95
    [19]李淑平.金属多孔材料高温气体过滤除尘过程的研究[D].北京化工大学硕士论文,2004.
    [20]郜时旺.移动床颗粒层过滤系统高温高压除尘研究[D].西安交通大学博士论文,2002.
    [21]Takematus T,Maude C.Coal Gasificationfor IGCC Power Generation[M].London:IEA Coal Research,1991.
    [22]Zevenhoven CAP.Particle Charging and Granular Bed Filtration for High Temperature Application[D].Delft:Delft University of Technology,1992.
    [23]袁竹林,许世森.颗粒层过滤除尘和分级过滤特性的数值模拟及实验对比[J].中国电机工程学报,2002,22(4):41-45.
    [24]郜时旺,许世森,危师让等.高温高压移动颗粒层除尘试验研究[J].燃烧化学学报,2001,29(6):532-536.
    [25]郜时旺,危师让等,邓润亚等.移动床过滤器设计优化和热煤气除尘实验研究[J].西安交通大学学报,2002,36(9):903-906.
    [26]郜时旺,危师让等,邓润亚等.移动颗粒层过滤除尘系统动力特性研究[J].中国电机工程学报,2002,22(5):125-129.
    [27]许世森.静电场对移动颗粒层过滤高温除尘效率促进作用探讨[J].中国电机工程学报,2000,20(1):60-64.
    [28]陈敏,袁竹林,许世森.用直接数值模拟对移动颗粒层除尘研究[J].洁净煤燃烧与发电技术,2002,(2):19-23
    [29]许世森,论整体煤气化联合循环中煤气净化技术选择[J].动力工程,1995,15(5):50-55.
    [30]尹建威,况春江,高征铠等.氧气高炉煤气高温除尘中间实验[J].北京科技大学学报,2002,24(1):26-29.
    [31]杨金权,吴晋沪等.高温煤气烧结金属丝网高温煤气除尘[J].煤炭转化,1998,21(4):45-47
    [32]Tassicker O J,Drenker S.Pilot scale gas filtration at extreme temperature and pressure Proceeding of the InternationalConference on Advanced Coal Power Technology and Hot Gas Cleaning[C].Dusseldorf:Electric Power Research Institute,1987.350-400.
    [33]顾临,况春江等.刚性烧结金属丝网孔径计算[J].化工装备技术,2000,21(1):26-29
    [34]杨金权,吴晋沪,徐奕等.烧结金属丝网高温煤气除尘[J].煤炭转化,1998,21(4):79-81
    [35]黄戒介,陈寒石,杨金权等.高温煤气烧结金属丝网除尘工艺中试研究[J].煤炭转化,2001,24(4):45-47.
    [36]田贵山,马振吉.气体在陶瓷过滤器元件内流动研究[J].淄博学院学报,2000,2(4):40-45
    [37]李方文,吴建锋,徐晓虹,许中坚,杨学华.应用多孔陶瓷滤料治理环境污染[J].中国安全科学学报,2006,16(7):112-117
    [38]王乃计,徐振刚.美国高温气体除尘技术发展现状[J].洁净煤技术,1996,2(4):43-47
    [39]张金升,王美婷,许凤秀编著.先进陶瓷导论[P].北京:化学工业出版社,2007
    [40]王耀明,蔡伟庆.多孔陶瓷过滤材料[J].江苏陶瓷,2003,36(1):19-24
    [41]翟学良,胡亚伟,刘伟华.合成陶瓷纤维材料的制备工艺及发展趋势[J].无机盐工业,2006,38(5):7-10
    [42]崔之开编著.陶瓷纤维[M].北京:化学工业出版社,2004
    [43]张克铭 编著.耐火纤维应用技术[M].北京:冶金工业出版社,2007
    [44]鲁昌龙,洪超.陶瓷纤维在窑炉构筑中应用[J].科技创新导报,2008,NO.6,8
    [45]欧阳咏星.浅谈陶瓷纤维及其应用[J].纺织导报,2000,2:10-12
    [46]康定学.陶瓷纤维配抄空气过滤纸的研制[J].西南造纸,1999,6:9-10
    [47]危木建,吴晓波.陶瓷纤维在工业炉节能实践中的应用[J].工业炉,2007,29(6):47-49
    [48]李泉,宋慎泰.Al_2O_3基连续陶瓷纤维制备[J].科学技术与工程,2005,5(16):1137-1139
    [49]杨艳丽.陶瓷纤维纺织品的性能与应用[J].电力建设,2000,11:73-74
    [50]李湘洲.陶瓷纤维发展的现状与趋势[J].佛山陶瓷,2005,7:1-4
    [51]张克铭.陶瓷纤维衰变及损坏机理[J].工业炉,2006,28(2):44-47
    [52]曾令可,张明,李汝湘.陶瓷纤维在辊道窑中高温粉化初析[J].陶瓷学报,1998,1:27-32
    [53]鹿自忠,齐春山,唐文珍.陶瓷纤维产品及其应用[J].航空制造技术,2005,6:55-57
    [54]李湘洲.陶瓷纤维发展的现状与趋势[J].佛山陶瓷,2005,7:1-4
    [55]葛海桥.耐火陶瓷纤维发展综述[J].专家导报
    [56]穆柏春编著.陶瓷材料的强韧化[M].北京:冶金工业出版社,2002
    [57]Garvie RC,Hannink RH,Ceramic steel[J]Nature,1975,258:703.
    [58]Mcmeeking R M,Evans A G.Mechanics of transformation toughening in brittle materials[J].J.Am.Geram.Soc.1982;55:242.
    [59]B udiansky B,Hutchinson J,Lambropoulos J M.Continuum theory of dilatant transformation toughening in ceramics[J].Int.J.Solids structures,1983;19:337.
    [60]La mbropoulos J C.Shear,shape and orientation effects in transformation toughening[J].Int.J.Solids structure,1986;22:1083.
    [61]Marshall D B.Strength characteristics of transformation2toughened Zirconia[J].J.Am.Ceram.Soc.,1986;69:173.
    [62]Swain M V,Rose J R F.Strength limitation of transformation2toughened Zirconia alloys[J]. J.Am.Ceram.Soc.,1986;69:511.
    [63]张金升,王美婷,许凤秀编著.先进陶瓷导论[P].北京:化学工业出版社,2007
    [64]闫洪,窦明民,李和平.ZrO_2陶瓷相变增韧机理和应用[J].陶瓷学报,2000,21(1):46-50
    [65]靳喜海,董向红.四方ZrO_2相变增韧及影响因素[J].陶瓷学报,1999,20(3):164-166
    [66]张浠,叶裕恭.陶瓷材料相变增韧尺寸效应力学分析[J].固体力学学报1997,18(3):264-267
    [67]杨辉,吴义兵,葛曼珍.相变增韧和层状复合协同强韧化Al_2O_3陶瓷[J].陶瓷学报,1998,19(4):200-203
    [68]倪新华,刘协权,路晓波.Ⅰ-Ⅱ混合型裂纹相变增韧分析[J].西南交通大学学报,2001,36(1):37-40
    [69]倪新华,刘协权,王俊英,路晓波.Ⅰ-Ⅱ混合型裂纹相变增韧分析[J].力学季刊,2002,23(4):563-567
    [70]倪新华,刘协权,马英怔.Ⅰ-Ⅱ混合型裂纹相变增韧分析[J].内蒙古工业大学学报,199716(3):67-71
    [71]倪新华,路晓波,王俊英.氧化锆陶瓷Ⅱ-Ⅲ复合型裂纹的综合相变增韧作用[J].军械工程学院学报,2003,15(1):67-70
    [72]陈蓓.程川,王里奥,黄川.氧化锆层状复合陶瓷表面压应力与相变增韧的关系[J].材料科学与工程学报,2005,23(6):806-809
    [73]李纯成.注凝成型氧化锫增韧氧化铝陶瓷的研究[D].南京工业大学硕士学位论文,2005
    [74]郭英奎,左洪波,王海波,吕利泰.陶瓷基复合材料纤维增韧[J].陶瓷工程,1998,2(2):41-43
    [75]宋桂明,周玉,孙毅.纤维增强陶瓷基复合材料中纤维增韧分析模型[J].固体火箭技术,1999,22(1):59-63
    [76]尹洪峰,徐永东等.纤维增韧陶瓷材料界面作用及设计[J].硅酸盐通报,1999,3:23-28
    [77]陈照峰,韩桂芳,张福平,张立同.界面类型对三维Nextel720纤维增韧莫来石陶瓷基复合材料力学性能的影响[J].硅酸盐学报,2004.32(1):5-9
    [78]王涛平,沈湘黔,刘涛.氧化物陶瓷纤维的制备及应用[J].矿冶工程,2004,24(1):72-76
    [79]郝春成,崔作林,尹衍升等.颗粒增韧陶瓷研究进展[J].材料导报,2002,16(2):28-30
    [80]隋万美.陶瓷基复相材料非相变增韧机制[J].中国陶瓷,2000,36(1):4-8
    [81]刘玲,殷宁等.晶须增韧复合材料机理研究[J].材料科学与工程,2000,18(2):116-120
    [82]陈尔凡,郝春功,李素莲等.晶须增韧陶瓷复合材料[J].化工新型材料,2006,34(5):1-4
    [83]赵军,邓建新,艾兴.晶须增韧陶瓷刀具材料R曲线与增韧机理关系[J].无机材料学报, 1997,12(3):341-345
    [84]宋桂明,周玉,孙毅,雷廷权.晶须增韧陶瓷基复合材料裂纹扩展行为模型[J].材料研究学报,1998,12(1):31-36
    [85]汪长安,黄勇,陈健,李建保.晶须增韧补强陶瓷基复合材料的若干关键技术研究(Ⅰ):晶界和界面的调控[J].高技术通讯,1997,5
    [86]汪长安,黄勇,郭海,李建保.晶须增韧补强陶瓷基复合材料的若干关键技术研究(Ⅱ):晶须定向排布工艺及其复合材料力学性能[J].高技术通讯,1997,7
    [87]郭海,汪长安,黄勇,李建保.晶须增韧补强陶瓷基复合材料的若干关键技术研究(Ⅲ):纤维独石结构和层状结构的设计[J].高技术通讯,1997,7
    [88]周玉.陶瓷材料学[P].哈尔滨:哈尔滨工业大学出版社,1995
    [89]刘艳改,周玉等.LiTaO_3颗粒增韧Al_2O_3陶瓷材料制备与性能[J].材料工程,2002,6:40-42
    [90]丁燕鸿,杨杨.SiC晶须/颗粒增韧金属陶瓷刀具研究[J].株洲工学院学报,2006,20(4):60-62
    [91]孙岚,潘金生.TiC颗粒增韧MoSi_2基复合材料的力学性能[J].材料工程,2001,9:31-34
    [92]邹红,邹从沛,易勇,沈保罗.TiN颗粒增韧Si3N4复合材料磨损行为研究[J].核动力工程,2003,24(1):42-46
    [93]邹红,邹从沛.TiN颗粒增韧Si_3N_4材料磨损行为研究[J].核动力工程,2002,23(4):1-5
    [94]高峰,矫桂琼,宁荣昌,卢智先.层间颗粒增韧复合材料层压板的Ⅱ型层间断裂韧性[J].西北工业大学学报,2005,23(2):184-188
    [95]高峰,矫桂琼,宁荣昌,卢智先.层间颗粒增韧复合材料层压板的损伤阻抗特性[J].复合材料学报,2005,22(2):116-120
    [96]吕珺,郑治祥,金志浩,王永兰.晶须及颗粒增韧氧化铝基陶瓷复合材料的抗热震性能[J].材料工程,2000,12:15-18
    [97]吕珺,金志浩,郑治祥,丁厚福.晶须及颗粒增韧氧化铝基陶瓷复合材料的阻力行为[J].兵器材料科学与工程,2001,24(3):16-20
    [98]于爱泳,黄传真,许崇海,艾兴.碳化硅晶须增韧陶瓷复合材料断裂韧性的理论计算[J].陶瓷学报,1998,19(3):165-167
    [99]杜柳柳.袋式除尘器用PTFE复合滤料性能试验研究[D].东华大学硕士论文,2008:34-38
    [100]沈恒根.燃煤锅炉袋式除尘器用新型滤料研发及其应用[J].建筑热能通风空调,2006,25(5):30-34
    [101]严长勇,沈恒根.常规滤料与覆膜滤料性能测试与对比[J].中国环保产业,2005,10:15-17
    [102]王德英,沈自求.深层过滤理论与技术研究进展[J].环境污染治理技术与设备,2002,3(1):38-46
    [103]付海明,沈恒根.气溶胶过滤捕集效率理论研究[J].安全与环境学报,2003,3(5):54-58
    [104]向晓东,刘君侠,彭伟功.纤维层表面非稳态过滤研究[J].环境工程,2002,20(6):31-24
    [105]张建锋,王晓昌.均质滤料过滤阻力数学模型[J].环境科学学报,2003,23(2):246-251
    [106]刘君侠,彭伟功,向晓东.纤维面层表面非稳态过滤效率研究[J].建筑热能通风空调,2002,3:10-20
    [107]黄继红,茅清希等.微孔薄膜滤料阻力实验研究[J].建筑热能通风空调,2001,1:1-4
    [108]周铁祥,李阳桐,蒋林等.袋式除尘器滤料的发展现状[J].四川建材,2005,4:41-43
    [109]李淮颖.新型多管式高效空气过滤器的应用研究[D].东华大学硕士论文,2004:12-14
    [110]Russell Ford.Prediction of Filtration Performance the Removal of Particles and Pathogens using variable Polynomial Regression Techniques[D].Docter of Philosophy,2003,18-32
    [111]Soo,Jae Chae.Experimental Study of Air Filtration By Fibrous Fiiters[D].The degree of master of science,university of Louisville,2000
    [112]张鹏峰.袋式除尘器过滤性能的研究[D].东华大学硕士学位论文,2004,4-15
    [113]陈强,沈恒根,李华.覆膜滤料性能测试研究[J].建筑热能通风调,2004,23(4):71-74
    [114]徐启明.滤料的应用及其发展[J].工业安全与环保,2006,32(5):39-40
    [115]赵文焕,原永涛,赵利,董舟.聚四氟乙烯覆膜滤料发展及其应用特点[J].建筑热能通风空调,2006,25(4):35-37
    [116]郑春玲.聚四氟乙烯覆膜滤料的特性与应用[J].工业安全与环保,2006,32(5):29-31
    [117]王庚,石冰洁,张卫东,苏海佳,郝新敏.膨化聚四氟乙烯膜滤料在袋式除尘器中除尘效率的研究[J].工程与技术,2004,9:23-24
    [118]高铁瑜,张建英,徐廷相.刚性陶瓷过滤元件的过滤机理研究[J].西安交通大学学报,2002,36(3):233-236
    [119]蔡桂英.高温陶瓷过滤器微通道内气固两相流数值模拟[M].东南大学硕士论文,2003
    [120]王耀明,蔡伟庆.多孔陶瓷过滤材料[J].江苏陶瓷,2003,36(1):19-24
    [121]刘斌,朱能,杨昭,徐政.烧结金属高温除尘实验研究[J].环境工程,2003,21(1):41-44
    [122]罗钊明,王慧,刘平安,曾令可.多孔陶瓷材料制备及性能研究[J].陶瓷,2006,3:14-17
    [123]lnnocentini M D M,Pandolfelli V C.Permeability of porous ceramics considering the klinkenberg and inertial effects.J Am CeramSoc,2001,84(5):941-944

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700