光暗条件下拟南芥CESA2和CESA5对CESA6功能冗余的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拟南芥是重要模式植物,已发现10个纤维素合酶基因(AtCesA1~AtCesA10)。AtCESA1、AtCESA3、AtCESA6是初生壁纤维素合酶基因,AtCESA4、AtCESA7、AtCESA8是次生壁纤维素合酶基因,分别参与拟南芥不同生育期的纤维素合成;根据突变体的表型变化推测AtCESA2、AtCESA5、AtCESA9对AtCESA6可能存在部分功能冗余。但AtCESA2、AtCESA5对AtCESA6的冗余过程,AtCESA2、AtCESA5在纤维素合成中的作用等问题还不清楚。
     本实验根据拟南芥8个纤维素合酶基因(AtCesA1~AtCesA8)序列,在高变区Ⅰ处设计引物,合成了GST-AtCESAs融合蛋白,制备了抗体。以AtCesA6突变体为材料(prc1-1、cesa6),从基因水平、蛋白水平和细胞壁成分三方面研究了在光暗条件下AtCESA2和AtCESA5对AtCESA6的冗余功能,探讨AtCESA2、AtCES-A5在纤维素合成中的作用。
     主要结果如下:
     1.纤维素合酶抗体的制备和检测
     制备了AtCESA1~AtCESA8的多克隆抗体。Western-blotting检测发现:AtCESA4和AtCESA7有严重的交叉反应,所以这两个抗体不能使用;其它抗体都能在拟南芥原生质膜上免疫出相应的特异条带。
     2.光暗处理下拟南芥下胚轴AtCesAs的表达分析
     GUS染色结果和Real-time PCR结果表明:AtCesA1、AtCesA3、AtCesA6暗处理下表达明显增加;AtCesA2暗处理下表达量较低,而暗转光后表达量明显增加;AtCesA5光暗处理下表达变化趋势不显著。
     3.光暗处理下拟南芥突变体纤维素合酶基因水平分析
     与野生型相比,突变体prc1-1、cesa6光暗处理下的AtCesAs的表达都显著降低;光暗比较发现:暗处理下prc1-1、cesa6的AtCesA1、AtCesA3、AtCesA5的表达明显高于光处理。
     4.光暗处理下拟南芥突变体纤维素合酶蛋白水平分析
     与野生型相比,光暗处理下prc1-1、cesa6原生质膜总蛋白中的AtCESA6显著降低,AtCESA5显著增加。光下AtCESA2在AtCESAs中所占的比例并没有明显的变化,而暗处理下AtCESA2在AtCESAs中所占比例显著降低。因此推测,AtCESA5在光暗9天的prc1-1、cesa6中都能替补AtCESA6的部分功能,维持突变体存活;AtCESA2只在光下9天的prc1-1、cesa6中弥补AtCESA6的部分功能,使植株能够正常生长。但是在突变体纤维素合酶复合体中AtCESA1、AtCESA3、AtCESA6、AtCESA2、AtCESA5的含量都降低了。
     与野生型相比,光下突变体prc1-1、cesa6的纤维素合成量显著增加,胼胝质合成量没有明显变化,cesa6的更为显著;而暗处理下纤维素、胼胝质合成量显著降低,prc1-1的更为明显。
     5.拟南芥突变体成分分析
     与野生型相比,光下9天,prc1-1的晶体纤维素显著下降,非晶体纤维素显著增加;cesa6的晶体纤维素含量降低了,非晶体纤维素、半纤维素、果胶质、可溶性糖都显著增加。暗处理9天,prc1-1的晶体纤维素显著下降,非晶体纤维素、半纤维素、果胶质、可溶性糖都显著增加;cesa6的晶体纤维素显著下降,非晶体纤维素没有明显变化,而半纤维素、果胶质、可溶性糖都显著增加。
     6. AtCesA6突变后对次生壁的影响
     与野生型相比,prc1-1、cesa6秸秆的果胶质显著增加,半纤维素、非晶体纤维素和晶体纤维素都显著降低,木质素变化不显著。prc1-1、cesa6秸秆纤维素的聚合度、结晶度没有明显的变化;半纤维素的支链有明显的增多;木质素单体的H显著增加,G、S显著降低。与野生型相比,cesa6的纤维素酶酶解产糖率最高增加(8.83±0.87)%,prcl-1增加(5.68±0.49)%;而IRX-3的增加了(36.63±2.67)%。
At least 10 CESA sequences (AtCesA1~AtCesA10) have been identified in Arabid-opsis to involve in cellulose synthesis. AtCESA1, AtCESA3 and AtCESA6 are characterized for primary cell wall synthesis, whereas AtCESA4, AtCESA7 and AtCESA8 are for secondary cell wall. It has been reported that AtCESA2, AtCESA5 and AtCESA9 might be partial functional redundancy with AtCESA6. However, it is not clear about the redundancy mechanism for cellulose biosynthesis in plant.
     In this study, we amplified cDNA fragments of AtCesAs variable region by RT-PCR, isolated GST-AtCESAs fusion proteins, and prepared their antibodies. We observed gene expression, detected proteins and analyze CESA activities in vitro using AtCesA6 mutant (prc1-1, cesa6).
     Major results were described below:
     1. Preparation and detection of AtCesAs Antibodies
     We prepared their (AtCesA1~AtCesA8) antibodies. Western-blotting analysis indicat-ed that the antibodies (Anti-AtCESA1, Anti-AtCESA3, Anti-AtCESA6, Anti-AtCESA2, Anti-AtCESA5, Anti-AtCESA8) showed specific bands against proteins extracted from the plasma membrane fraction in Arabidopsis. But, I found cross-reaction bands in Anti-AtCESA4 and Anti-AtCESA7.
     2. Expression observation of AtCesAs in hypocotyls under light/dark treatments
     GUS staining and the Real-time PCR showed that AtCesA1, AtCesA3 and AtCesA6 expression levels were significantly increased under dark treatment. AtCesA2 showed a decreased expression under dark and was remarkable increased under ligh. AtCesA5 was little changed under both treatments.
     3. Expression analysis of AtCesAs in mutants
     Compared with wild type, AtCesAs in mutants were decreased remarkably under 9-day-old light/dark conditions. Under dark treatment, AtCesA1, AtCesA3 and AtCesA5 in mutants were expressed much higher than ones under light.
     4. Test of AtCESA proteins and analysis of AtCESA activity in vitro
     AtCESA6 protein was reduced whereas AtCESA5 was raised in the plasma membrane fractions of mutants (prc1-1, cesa6) under light/dark treatments, compared with wild type. AtCESA2 showed no difference under light, but was reduced under dark. It suggested that AtCESA5 may partially replace AtCESA6 for the survival of mutants under both light and dark treatments, while AtCESA2 can only play a partial substite role under light condition. However, amounts of the complex composed of AtCESAl, AtCESA3, and AtCESA6/AtCESA2/AtCESA5 in mutants were much less than ones in wild type.
     Cellulose synthesis in vitro indicated thatβ-1,4-glucan product was much higher thanβ-1,3-glucan in mutants and wild type under light condition, but bothβ-1,4-glucan andβ-1,3-glucan were remarably decreased under dark condition, especially for prc1-1 mutant.
     5. Determination of cell wall composition
     Under light treatment, mutants(prc1-1 & cesa6) were determined with much less crystalline cellulose and more non-crystalline cellulose than wild type, and mutant (cesa6) showed additionally increased hemicellulose, pectin and soluble sugar. As a contrast, mutant prc1-1 under dark was decreased in crystalline cellulose, but increased in non-crystalline cellulose, hemicelluloses, pectins and soluble sugar. Mutant cesa6 showed a decrease in crystalline cellulose and an increase in hemicellulose, pectins and soluble sugars.
     6. The effect of secondary cell wall caused by the mutation of AtCesA6
     Compared with wild type, prc1-1 and cesa6 were determined with much less hemi-cellulose, non-crystalline cellulose, crystalline cellulose and more pectin, but showed no difference in lignin. The mutants(prc1-1 & cesa6) were increased in side chains of hemi-cellulose, H unit of lignin, but decreased in G and S units of lignin. However, DP and CrI of cellulose were much unchanged in mutants' straw. Under the treatment of cellulase, the relased sugars in cesa6 and prc1-1 can be increased by 8.83±0.87% and 5.68±0.49%, respectively, and IRX-3 can be increased by 36.63±2.67%.
引文
1.蒋应梯,许炯.竹纤维素分子聚合度的粘度测定法及其应用.林产化工通讯2005:39,24-27.
    2.李驰峻,梁厚果,杜林方,等.用合成多肽制备抗体研究绿豆抗氰呼吸与交替氧化酶表达关系,中国科学(C辑),2001,31(1):66-70.
    3.刘松岩,林世和,刘淑玲.人类PrP合成肽抗原构建及应用.中国人兽共患病杂志,2000,16(4):15-17.
    4.宋东亮,沈君辉,李来庚.高等植物细胞壁中纤维素的合成.植物生理学通讯.2008,44:791-796.
    5.余舜武,李鸿艳,罗立军.利用不同实时定量PCR方法分析相对基因表达差异.作物学报,2007,33(7):121-1218.
    6. Arioli T, Peng L, Betzner A S, Burn J, et al. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science,1998,279:717-720.
    7. Appenzeller L, Doblin M, Barreiro R, et al. Cellulose synthesis in maize:isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose,2004,11:287-299.
    8. Baskin T I, Betzner A S, Hoggart R, et al. Root morphology mutants in Arabidopsis thaliana. Plant Physiol,1992,19:427-437.
    9. Boddy M N, Furnari B, Mondesert O, Russell P. Replication checkpoint enforced by kinases Cds1 and Chk1. Science,1998,280:909-912.
    10. Bouche N, Bouchez D. Arabidopsis gene knockout:phenotypes wanted. Current Opinion Biotechnology,2001,4:111-117.
    11. Burton R A, Shirley N J, King B J, Harvey A J, Fincher G B. The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiology, 2004,134:224-236.
    12. Bowling A J, Brown R M. The cytoplasmic domain of the cellulose-synthesizing complex in vascular plants. Protoplasma,2008,233:115-127.
    13. Bekir U, Edgar P, David P D, et al. Getting the most out of publicly available T-DNA insertion lines. Plant Journal,2008,56:665-677.
    14. Delmer D P. Cellulose synthesis:exciting times for a difficult field. Annual Review of Plant Physiology and Plant Molecular Biology,1999a,50:245-276.
    15. Delmer D P. Cellulose biosynthesis in developing cotton fibers. New York Food Products Press, 1999b:85-111.
    16. Desprez T, Vernhettes S, Fagard M, et al. Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiology,2002,128:482-490.
    17. Das P M, Ramachandran K, Vanwert J, et al. Chromatin immuno-precipitation assay. Biotechniques,2004,37 (6):961-969.
    18. Djerbi S, Lindskog M, Arvestad L, Sterky F, Teeri T T. The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genes. Planta, 2005,221:739-746.
    19. DeBolt S, Gutierrez R, Ehrhardt D W, Melo C V, et al. Morlin, an inhibitor of cortical microtubule dynamics and cellulose synthase movement. PNAS,2007a,104:5854-5859.
    20. DeBolt S, Gutierrez R, Ehrhardt D W, Somerville C. Non motile cellulose synthase subunits repeatedly accumulate within localized regions at the plasma membrane in Arabidopsis hypocotyls cells following 2,6-dichlorobenzonitrile treatment. Plant Physiology,2007b,145: 334-338.
    21. Desprez T, Juraniec M, Crowell E F, et al. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. PNAS,2007,104:15572-15577.
    22. Ellis C, Turner J G. The Arabidopsis mutant cevl has constitutively active jasmonate and ethylene signal pathways. Plant Cell,2001,13:1025-1033.
    23. Ellis C, Karafyllidis I, Wasternack C, Turner J G The Arabidopsis mutant cevl links cell wall signaling to jasmonate and ethylene responses. Plant Cell,2002,14:1557-1566.
    24. Elizabeth F C, Volker B, Thierry D, et al. Pausing of Golgi Bodies on Microtubules Regulates Secretion of Cellulose Synthase Complexes in Arabidopsis. Plant Cell,2009,21:1141-1154.
    25. Fagard M, Desnos T, Desprez T, Goubet F, et al. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell,2000,12:2409-2423.
    26. Grobe A. Properties of cellulose materials. Polymer Handbook,1989,117:144-149.
    27. Gillmor C S, Poindexter P, Loriaeu J, Palcic M M, Somerville C. a-Glucosidase I is required for cellulose biosynthesis and morphogenesis in Arabidopsis. Cell Biology,2002,156:100-1013.
    28. Xie G S, Peng L. Genetic Engineering of Energy Crops:A Strategy for Biofuel Production in China. Journal of Integrative Plant Biology,2011,53 (2):143-150.
    29. Han N S, Robyt J F. The mechanism of Acetobacter Xylinum cellulose biosynthesis:direction of chain elongation and the role of lipid pyrophosphate interm ediates in the cell membrane. Carbohydrate Research,1998,313:125-133.
    30. Holland N, Holland D, Helentjaris T, et al. A comparative analysis of the plant cellulose synthase (CESA) gene family. Plant Physiology,2000,123:1313-1323.
    31. Hamann T, Osborne E, Youngs H L, Misson J, et al. Global expression analysis of CesA and CSL genes in Arabidopsis. Cellulose,2004,11:279-286.
    32. Jarvis M C. Interconversion of the Ialpha and Ibeta crystalline forms of cellulose by bending. Carbohydrate Research,2000,325:150-154.
    33. Joshi C P, Bhandari S, Ranjan P, Kalluri U C, et al. Genomics of cellulose biosynthesis in poplars. New Phytologist,2004,164:53-61.
    34. Jian Z, Dong G, Yuxiao C, et al. Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant Journal,2007,49:947-959.
    35. Jaap T, Samantha V, Thierry D, et al. Interactions between membrane-bound cellulose synthases involved in thesynthesis of the secondary cell wall. FEBS letters,2009,583:978-982.
    36. Lerouxel O, Cavalier D M, Liepman A H, et al. Biosynthesis of plant cell wall polysaccharides:a complex process. Plant Biology,2006,9:621-630.
    37. Wang L Q, Guo K, Li Y, et al. Expression profiling and integrative analysis reveal CESA/CSL predominant roles in cell wall biosynthesis in rice. BMC Plant Biology,2010,10:282.
    38. Matthysse A G, Thomas D L, White A R. Mechanism of cellulose synthesis in Agrobacterium tumefaciens. Journal of Bacteriology,1995,1076-1081.
    39. Meyer S, Melzer M, Tmemit E, et al. Besenbeck R, Stadler R, Sauer N AtSUC3, a gene encoding a new Arabidopsis sucrose transporter, is expressed in cells adjacent to the vascular tissue and in a carpel cell layer. Plant J,2000,24(6):869-882.
    40. Molhoj M, Ulvskov P, Dal D F. Characterization of a functional soluble form of a Brassica naus membrane-anchored endo-1,4-(3-glucanase heterologously expressed in Pichiapastoris. Plant Physiology,2001,127:674-84.
    41. Molhoj M, Pagant S, Hofte H. Towards understanding the role of membrane -bound endo-β-1,4-gucanases in cellulose biosynthesis. Plant Cell Physiology,2002,43:1399-406.
    42. Meyer S, Lauterhach C, Niedermeier M, et al. Wounding enhanced expression of AtSUC3 a sucrose transporter from Arabidopsis sieve elements and sink tissues. Plant Physiology,2004,134: 684-693.
    43. Marek M, Seth D, Staffan P. Cellulose synthesis:a complex complex. Plant Biology,2008,11: 252-257.
    44. Minoru M, Etsuko Y, Fukashi S, et al. Functional analysis of the Arabidopsis centromere by T-DNA insertion-induced centromere breakage. PNAS,2008,21(105):7511-7516.
    45. Nuhse T S, Stensballe A, Jensen O N, Peck S C. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database, plant cell,2004,16:2394-2405.
    46. Nairn C J, Haselkorn T. Three loblolly pine CesA genes expressed in developing xylem are orthologous to secondary cell wall CesA genes of angiosperms. New Phytologist,2005,166: 907-915.
    47. Pear J R, Kawagoe Y, Delmer D P, et al. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Plant Biology,1996, pp.12637-12642.
    48. Peng L, Hocart C H, Redmond J W, Williamson R E. Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta,2000,211:406-414.
    49. Parinov S, Sundaresan V. Functional genomics in Arabidopsis:Large-scale insertional mutagenesis complements the genome sequencing project. Current Opinion Biotechnology,2000, 11:157-161.
    50. Peng L, Xiang F, Roberts E, Kawagoe Y, et al. The experimental herbicide CGA 325'615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline β-1,4-glucan associated with CesA protein. Plant Physiology,2001,126:981-92.
    51. Peng L, Kawagoe Y, Hogan P, Delmer D. Sitosterol-β-glucoside as primer for cellulose synthesis in plants. Science,2002,295:147-150.
    52. Paredez A R, Somerville C R, Ehrhardt D W. Visualization of cellulose synthase demonstrates functional association with microtubules. Science,2006,312:1491-1495.
    53. Persson S, Paredez A, Carroll A, Palsdottir H, et al. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. PNAS,2007, 104:15566-15571.
    54. Pauly M, Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant Journal,2008,54:559-568.
    55. Paredez A R, Persson S, Ehrhardt D W, Somerville C R. Genetic evidence that cellulose synthase activity influences microtubule cortical array organization. Plant Physiology,2008, 147:1723-1734.
    56. Prabuddha B, Melanie H, Matthew J, et al. Bommarius Andreas S. Multivariate statistical analysis of X-ray data from cellulose:A new method to determine degree of crystallinity and predict hydrolysis rates. Bioresource Technology,2010,101:4461-4471.
    57. Peng L. Energy Crop and Biotechnology for Biofuel Production. IPB Meeting Report,2011,10: 1744-7909.
    58. Richmond T A. Higher plant cellulose synthases. Genome Biology:reviews,2000,3001:1-6.
    59. Richmond T A, Somerville C R. The cellulose synthase super-family. Plant Physiology,2000, 124:495-498.
    60. Robert S, Mouille G, Hofte H. The mechanism and regulation of cellulose synthesis in primary walls:lessons from cellulose deficient Arabidopsis mutants. Cellulose,2004,11:351-364.
    61. Segal L, Creely J J, Martin A E, Conrad C M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal,1959,29: 786-794.
    62. Saxena I M, Iin F C, Brown R M. Identification of a new gene in an operon for cellulose biosynthesis in Acetobacter xylinum. Plant Molecular Biology,1991,1694:7-954.
    63. Saxena I M, Brown R M, Fevre M, Geremia R A, Henrissat B. Multidomain architecture of β-glycosyl transferases:implications for mechanism of action. Bacteriology,1995, 177:1419-1424.
    64. Scheible W R, Eshed R, Richmond T, et al. Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in the Arabidopsis ixrl mutants. PNAS,2001, 98:10079-10084.
    65. Schulze W X, Reinders A, Ward J, et al. Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system. BMC Biochemistry,2003,4:3-12.
    66. Shah J, Brown R M. Towards electronic paper displays made from microbial cellulose. Applied Microbiology and Biotechnology,2005,66:352-355.
    67. Somerville C R. Cellulose synthesis in higher plants. Cell and Developmental Biology,2006, 22:53-78.
    68. Staffan P, Alexander P, Andrew C, et al., Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. PNAS,2007,39(104): 15566-15571.
    69. Sunil K S, Urs F, Manoj S, et al., Insight into the early steps of root hair formation revealed by the procuste1 cellulose synthase mutant of Arabidopsis thaliana. BMC Plant Biology,2008,8(57): 1471-2229.
    70. Turner S R, Somerville C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell,1997,9:689-701.
    71. Taylor N G, Scheible W R, Cutler S, Somerville C R, Turner S R. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase gene required for secondary cell wall synthesis. Plant Cell,1999,11:769-780.
    72. Tanaka K, Murata K, Yamazaki M, Onosato K, et al. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiology, 2003,133:73-83.
    73. Taylor N G, Howells R M, Huttly A K, Vickers K, Turner S R. Interactions among three distinct CESA proteins essential for cellulose synthesis. PNAS,2003,100:1450-1455.
    74. Taylor N G, Gardiner J C, Whiteman R, Turner S R. Cellulose synthesis in the Arabidopsis secondary cell wall. Cellulose,2004,11:329-338.
    75. Taylor N G. Identification of cellulose synthase AtCesA7 (IRX3) in vivo phosphorylation sitesa potential role in regulating protein degradation. Plant Molecular Biology.2007,64:161-171.
    76. Thierry D, Michal J, Elizabeth F C, et al. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. PNAS,2007,39(104):15572-15577.
    77. Wong H, Fear A, Calhoon R, Eichinger G, et al. Genetic organization of the cellulose synthase operon in Acetobacter xylinum. PNAS,1990,87:8130-8134.
    78. Williamson R E, Birch J E, Baskin T I, et al. Morphology of rswl, a cellulose-deficient mutant of Arabidopsis thaliana. Protoplasma,2001,215:116-127.
    79. Wightman R, Turner S. The roles of the cytoskeleton during cellulose deposition at the secondary wall. Plant Journal,2008,54:794-805.
    80. Wightman R, Marshal R, Turner S R. A cellulose synthase containing compartment moves rapidly beneath sites of secondary wall synthesis. Plant Cell Physiology,2009,50:584-594.
    81. Yong L, Mario G R, Bekir U, et al. Analysis of T-DNA insertion site distribution patterns in Arabidopsis thaliana reveals special features of genes without insertions, Genomics,2006,87: 645-652.
    82. Youngs H L, Hamann T, Osborne E, Somerville C R. The Cellulose Synthase Superfamily. In: Cellulose:Molecular and Structural Biology. Springer Netherlands,2007, p:35-48.
    83. Zhaoqing Chu, Hao Chen et al. Knockout of the AtCESA2 Gene Affects Microtubule Orientation and Causes Abnormal Cell Expansion in Arabidopsis. Plant Physiology,2007,143, pp:213-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700