兰州东部地区1,240ka以来的河流阶地研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变化和地面上升在河流阶地形成过程中所起的作用一直是河流地貌学界争论的焦点。究竟河流是以哪一种模式发育阶地需要更多的地貌实地资料来检验。兰州地区是国内地貌学界公认的研究河流阶地的理想地区之一,很早以来,就陆续有不少地貌学家对兰州地区河流阶地进行考察研究,并取得了一定成果。然而,由于当时技术条件的限制,以往的研究不仅对黄河支流的阶地涉及甚少,而且连黄河干流阶地的划分、对比和年代测定方面也存在一定疏漏,尤其在黄河阶地发育模式的研究方面至今还没有统一意见。为此我们以兰州东部地区(包括黄河流经的兰州东盆地和宛川河流经的榆中盆地)的黄河阶地和黄河的一级支流宛川河阶地为对象,进行深入研究,以期获得兰州东部地区河流阶地的最新资料,并以此为基础,在河流阶地发育模式、阶地变形等方面的研究中提出新的见解。
     通过古地磁、~(14)C、光释光测年及古土壤断代法年龄推算,确定了1,240ka以来黄河在兰州东盆地主要有两个阶地发育时期。第一个时期是1240—860kaBP,黄河至少发育了4级阶地,其形成时代分别为:1,240(T7)、1,050(T6)、960(T5)和860ka BP(T4);后一个时期是最近130ka,黄河发育3级阶地,时代分别为130(T3)、60(T2)和10ka BP(T1)。其中形成时代为1,050ka(T6)和960ka(T5)的阶地在以往的文献中没有报道属于本次研究新发现的阶地,黄河的T4(五一山阶地)形成时代为860ka BP,而不是以往报道的590ka BP,在兰州东盆地迄今没有发现时代为590ka的阶地。黄河的一级支流宛川河在330ka以来发育了至少4级阶地,各级阶地形成年代由高到低分别为:330、130、60和10kaBP。
     黄河各阶地河漫滩顶部都有一层古土壤发育表明黄河下切形成阶地发生在古土壤开始发育的冰期向间冰期的过度阶段,但是并非1,240ka以来的每次冰期—间冰期的气候交替都能引起黄河下切形成阶地。气候变化只是阶地形成的必要条件之一,不是充分条件。对比黄河下切速率和阶地年代序列发现,地面上升仍然是影响黄河下切的重要因素。只有在地面上升速率达到一定程度的时候(例如:1240—860ka BP.和最近130ka),气候变化才能导致黄河堆积—下切交替形成阶地;而在地面上升缓慢时期(例如:860—130ka BP),即使发生了大幅度的气候变化,黄河也没有阶地记录。由此看来,兰州东盆地黄河阶地序列的发育是冰期—间冰期的气候旋回与地面抬升耦合的结果,我们称这种阶地发育模式为:气候变化与地面抬升耦合发育阶地模式。这一模式不仅在兰州东部地区适用,而且也适用于黄河流域的其它地段甚至西欧的河流阶地发育。
     兰州东盆地黄河阶地的变形是九州台褶皱隆起所产生的地面差异性抬升的结果,而造成九州台褶皱隆起的直接原因是伴随青藏高原块体侧向挤出的马衔山北缘断裂的左旋走滑。因此兰州东盆地的黄河阶地不仅记录了青藏高原的整体抬升而且还在一定程度反映了高原块体的侧向挤出。
The competing role of surface uplift and climatic change on terrace formation remains controversy in geomorphic community. It needs more geomorphic evidences to solve the problem. Lanzhou area is an acknowledged perfect site for studies of fluvial terraces. In the last century, a lot of people in succession have investigated the terraces in Lanzhou area and many of their work are successful. However, previous researches on terrace mapping, correlation and dating are not very exact, and especially, few people investigated the terraces of the tributaries of Yellow River. Therefore, we chose the Eastern Lanzhou basin and Yuzhong Basin as a field lab for study of terrace in order to provide new information about the total number, distribution and ages of the terraces, and then, on this basis, put new ideas about the model of terrace formation and the role of the Qinghai-Tibet plateau tectonic on development and deformation of Yellow River terrace.
     Based on field investigations, loess-paleosol sequences, paleomagnetic ~(14)C and optically stimulated luminescence (OSL) dating, the terrace sequence of the Yellow River over the past 1,200 ka in Lanzhou basin has been revealed. The ages of Yellow River terraces focus only in two relative short time periods. One is 1,240—860ka BP when 4 terraces were formed, their ages are respectively 1,240 (T7), 1,050 (T6), 960 (T5) and 860ka BP (T4). The other is 130ka BP-the present when 3 terraces were formed, their ages are respectively 130 (T3), 60 (T2) and 10 (Tl)ka.BP. The 1,050 ka terrace (T6) and 960 ka terrace (T5) were not reported in previous research The age of the fourth Yellow River terrace is 860ka BP rather than 590ka BP which were the previously believed. Up to now 590ka Terrace was not found in East Lanzhou basin. This result answers a long-term question in the geomorphology community of whether there exists a ~800ka terrace in Lanzhou area. The research results of Wangchuang river terrace shows that 4 terraces have developed in Yuzhong basin, whose ages are 330, 130, 60 and 10ka BP, respectively.
     All the Yellow River terraces are strikingly similar. They have several meters of paleosol developed on the top of overbank silt, suggesting that the abandonment of each terrace due to river incision occurs during the transition from glacial to interglacial climates and there may be a link between the production of terraces and glacial-interglacial climatic cycles. However, it is not every glacial-interglacial transition during the last 1,240ka that terrace can form and preserve. That implies climate change is not sufficient condition of terrace development but necessary condition. Comparison of the terrace sequence of Yellow River with its average incision rates that is used as the proxy of surface uplift reveals that the formation and preservation of Yellow River terrace was strongly related to surface uplift and the realization of effect of climatic changes on the formation of terraces depends on the rate of rock uplift. It is when the uplift reaches a certain rate (e.g. 1,240-860ka BP and 130-0ka BP), the climatic changes can result in river incision and the terraces are preserved. If the uplift is very slow, no terrace can be preserved. In conclusion, the formation of Lanzhou Yellow River terrace is attributed to coupling effect of climatic changes and uplift. We named this model of terrace formation as "climate-uplift coupling model" This model not only can explain the formation of Lanzhou Yellow River terraces but also can explain the terrace formation of other area in the reach of the Yellow River.
     The differential uplift due to the sinistral strike-slip movement of the northern marginal fault of Maxianshan Mountains is responsibility for the deformation of Yellow River terraces. The strike-slip movement of the fault is associated with the lateral extrusion of plateau terranes therefore, both the uplift of Qindhai-Tibet Plateau and the lateral extrusion of plateau terranes are recorded by Yellow River terraces in Lanzhou east basin.
引文
1 A.Veldkamp, J.J.,Van Dijke. Simulating internal and external controls on fluvial terrace stratigraphy: a qualitative comparison with the Mass record. Gemorphology, 2000, 33: 225-236 .
    2 Bridgland, D.R. Quaternary of the Thames: Geological Conservation review series, 7, Chapman & Hall: London, 441. 1994
    3 Burbank D. W., Li Jijun. Age and paleaoclimatic significance of the loess of Lanzhou, china. Nature, 1985,316(4): 429-431
    4 Bryant, L.D. The utilization of arctic river analogue studies in the interpretation of periglacial river sediments from south Britain. In: Gregory, K.J. eds. Background to Paleohydrology. Wiley, Chichester,413-431, 1983
    5 Budel J. The relief types of the sheet wash zone of Southern India on the Eastern slope of the Deccan Highland toward Madras. Colloqium Geographicum, 1965, 8: 93-95
    6 Budel J. Double Surfaces of Leveling in the humid tropics. Adams G. Planation Surfaces. Halsted Press, 1975,361-366
    7 Budel J. Climatic geomorphology. Princton: Princton University Press, 1977
    8 Burbank, D.W., Leland, J., Fielding, E. et al Bedrock incision, rock uplift, and threshold hillslopes in the northwestern Himalaya: Nature, 1996, 379: 505-510
    9 B.T. Pan, D. Burbank, Y.X. Wang, et al. A 900 K y record of strath terrace formation during glacial interglacial transition in northwest China. Geology, 2003, 31: 597-960
    10 Chambers, R. Ancient sea margins as Memorials of changes in the relative level of sea and land. London: W.S. Orrltd, 1848
    11 Dana, J.D. Manual of Geology. Philadelphia: Theodore Bliss, 1863
    12 Davis W.M.. The Geographical Cycle. Geogr. J., 1899 , 14 (A): 481 - 503
    13 Darwin, Geological observationson South America London: Simith, Elder & Co. 1846
    14 Diana Necea, W. Fielitz, L. Matenco. Late Pliocene-Quaternary tectonics in the frontal part of the SE Carpathians: Insights from tectonic geomorphology. Tectonophycics, 2005, 410: 137-156
    15 D. Bridgland, D. Maddy, Martin Bates. River terrace sequences: templates for Quaternary geochronology and marine-terrestrial correlation. Journal of Quaternary Science, 2004, 19(2): 203-218
    16 D. Maddy, Rapid Communication Uplift-driven valley incision and river terrace formation in southern England. Journal of Quaternary, 1997,12: 539-545.
    17 D. Maddy, D.R. Bridgland. Accelerated uplift resulting from Anglian glacioisostatic rebound in the Middle Thames Valley, UK?: evidence from the river terrace record: Quaternary Science Reviews, 2000, 19: 1581-1588.
    18 D. Maddy, D. Bridgland, R. Westaway. Uplift-driven valley incision and climate -controlled river terrace development in the Thames Valley, UK. Quaternary International 2001.79: 23-26
    19 D. Maddy, Tuncer Demir, D.R. Rridgland, An obliquity-controlled Early Pleistocene river terrace record from western turkey? Quaternary Research, 2005, 63: 339-346
    20 Drew, F. Alluvial and lacustrine deposits and glacial records of the upper Indus basin: Pt. I. Alluvial deposits, Quarter. J. Geol. Soc. Lond., 1873, XXIX,441-471
    21 Einsele G, Ratschbacher L, Wetzel A. The Himalays—Bengal Fan denudation accumulation systerm during the past 20Ma. The Journal of Geology, 1996, 104(2): 163 — 184
    
    22 Fairbanks, R.G.. A 17000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 1989, 352: 637-642
    23 Fisk,H.N. Geological Investigation of the Alluvial Valley of the Lower Mississippi River: Vicksburg, MS, Mississippi River Commission, 1944
    24 French H. M.. The Periglacial Environment. London: Longman, 1976
    25 Gibbard, P.L. Pleistocene history of Middle Times Valley. Cambridge: Cambridge University Press, 1985
    26 Gibbard, P.L., Aalto, M.M., Coope, G.R. et al. Early Middle Pleistocene fossiliferous sediments in the Kesgrave Formation at Broomsfield, Essex, England. In: Turner, C. eds. The Early Middle Pleistocene in Europe. Balkema, Rotterdam, 1996
    27 Hack T. J. Interpretation of erosional topography in humid temperate region. American Journal of Science, 1960, 285 (A): 80-97
    28 Haynes, jun., C.V., Geochronology of late-Quaternary alluvium. In R.B. Morrison, and H. E. Wright, Jr., eds. Means of Correlation of Quaternary Succession, 7th INQUA Congress, 591, 1965
    29 Harrison C G A. Rates of continental and mountain building. Geol. Rundch, 1994, 83(2):431 —447
    30 Hack J.T. Interpretation of Erosinal Topography in Humid Temperate Regions. Amer. J. Sci., 1960, 258-A, 80-97
    31 Hantke R,1984, Zur Tertiaren Relief-und Talgeschichte des bergeller Hochgebirges,der zentralen Sudalpen und der angrenzenden Gebiete.Eclogae Geol Helv.77: 327-361.
    32 Home, D.M. notice of some high-water marks on the banks of the river Tweed some of its tributaries, and also of drift deposits in the valley of the Tweed, Trans. Roy. Soc. Edinburgh, XXVII, 513-562
    33 Hsu K.J. Time and place in Alpine orogenesis. Geol. Soc. London Spec. Pub., 1989, 45: 421 -443
    34 Hugh Miller. Methods and results of river terracing. Proc. Roy. Phys. Soc. Edinburgh, 1883 VII
    35 Hull, E. Physical geology and geography of Ireland. London: Edward Stamford, 1878
    36 Jordan TE,Reynolds JH III,Erikson JP. Variability in age of initial shortening and uplift in the central Andes, 1997: 16-33
    37 J.S. Noller, J.M. Sowers, W.R. Lettis. Quaternary geochronology methods and applications. Washington D.C.: American Geophysical Union, 2000
    38 King L. C.,Fair T J D. Hillslopes and dongas [J] . Trans.Proc. Geol. Soc. S. Africa, 1944,47: 1-4
    39 Kuenen Ph H, Migliorini C I. Turbidity currents as a cause of graded bedding. J. Geology, 1950,58:41-127
    40 Knox, i.C. Valley alluviation on southwestern Wisconsim. Annals of the Association of American Geographers, 1972, 62: 401-410
    41 Lane, E. W. The importance of fluvial morphology in hydraulic engineering: Am. Soc. Civil Engs. Proc, 1955, 81: 745-1-745-17
    42 Leopold, L.B., Bull, W.B. Base level, aggradation, and grade. Am. Philos. Soc. Proc. 1979,123: 168-202
    43 Li Jijun. The environmental effects of the uplift of QingHai— XiZang plateau. Quaternary Science Reviews, 1991,10:479-483
    44 Lyell, C. Student's elements of geology. London: John Murray, 1871
    45 MacGinitie HD,1953, Fossil plants of the Florissant beds,Colorado.Carnegie Inst Washington Publ.599:1-198
    46 Momohara A, 1994, Floral and paleoenvironmental history from the late Pliocene to middle Pleistocene in and around central Japan.Palaeogeogr Palaeoclimatol Palaeoecol 108:281-293.
    47 M.W. Van den Berg, Ton Van Hoof. The Mass terrace sequence at Masstricht, SE Netgerlands: evidence for 200 m of late Neogene and Quaternary surface uplift In: D. Maddy et al eds River Basin Sediment Systems: Archives of Environmental Change. A.A. Balkema Publishers, Lisse, 2001, 45-86
    48 Penck, A., and Bruckner, E., 1909, Die Alpen im Eiszeitalter: Leipzig, Tauchnitz, 1199
    49 Pinet P, Sourian M. Continental erosion and large—scale relief. Tectonics, 1988, 7(3): 563 — 582
    50 Potter P.E. The petrology and origin of the Lafayette gravel. Part 1. Mineralogy and petrology. Part 2. Geomorphic history. J Geol 63: 1-38
    51 Prestwich, J. On the loess of the valley of the south of England of the Somme and the Seine. Phil. Trans. Roy. Soc. Cliv. 1864, 247-309
    52 Peter Molnar, Erik Yhorson Brown, B. Clak Burchiel et al. Quaternary climate change and the formation of river terraces across growing anticlines on the North Flank of the Tien Shan, China. The Journal of Geology, 1994, 102: 583-602
    53 Sahagian DL, Maus JE,1994,Basalt vesicularity as a measure of atmospheric pressure and paleoelevation.Nature,v.372,p.449-451
    54 S.A. Schumm, R.S. Parker. Implications of complex response of drainage systems for Quaternary alluvial stratigraphy. Nature, 1973, 243 (11): 99-100
    55 S.A. Schumm. The fluvial systerm. New York: John Wiley & Sons, 1977
    56 S.A.Schumm. River Response to Baselevel Change: Implications for Sequence Stratigraphy. Journal of Geology, 1993, 101: 279-294
    57 S.L. Forman, J. Pierson, K. Lepper. Luminescence geochronology. In: J.S. Noller, et al eds.. Quaternary geochronology methods and applications. Washington D.C.: American Geophysical Union, 157-176,2000
    58 S.G. Lewis, D. Maddy, R.G Scaife. The fluvial system response to abrupt climate change during the last cold stage: the Upper Pleistocene River Thames fluvial succession at Ashton Keynes, UK. Global and Planetary Change, 2001,28: 341-359
    59 Seddon, M.B., Holyoak, D.T.. Evidence of sustained regional permafrost during deposition of fossiliferous Late Pleistocene river sediments at Stanton Harcourt(Oxfordshire, England). Proceedings of the Geological Accosiation, 1985, 96: 53-71
    60 Starkel, L.. Reflection of the glacial-interglacial cycle in the evolution of the Vistula river basin, Poland. Terra. Nova, 1994, 6: 486-494
    61 Stille, H.. Einffihrung in den Bah Amerikas. Berlin 1940
    62 S. Bes de Berc, J.C. Soula, P.Baby, M. Souris et al. Geomorphic evidence of active deformation and uplift in a modern continental wedge-top-foredeep transition: example of the eastern Ecuadorian Andes. Tectonophysics, 2005, 399: 351-380
    63 S.A. Schumm. River Response to Baselevel Change: Implications for Sequence Stratigraphy. Journal of Geology, 1993,101: 279-294
    64 Sengor A M C. Tectonic Subdivisions and Evolution of Asia. lstanbul: Bull. TechUniv, 1987, 40:355-435
    65 Sengor AMC, Natal' in BA. Paleotectonics of Asia: Fragments of a Synthesis. In: An Yin et al. eds. The Tectonic Evolution of Asia. Cambridge: Cambridge University Press, 1996, 486~640
    66 Thomas, M. S., Anderson, J. B. Eustatic controls on the facies architecture of the Trinity /Sabine incised valley system, Texas continental shelf. Soc. Econ. paleont Mineral Spec.1992, 52
    67 Tylor, A.. On Quaternary gravels. Quart. J. Geol. Soc. Lond., 1869, ⅩⅩⅤ 57-100
    68 Wagner G., Gleadow AJW, Fitzgerald PJ. The significance of the partial annealing zone in apatite fission-track analysis Chemical Geology, 1989, 79: 295—305
    69 Wagner G., Peter Van den Haute. Fission-track dating. Dordrecht/Boston/London: Kluewer Academic Publishers, 1992
    70 Xu R. Vegetational changes in the past and uplift of the Qinghai-Xizang plateau. In: Liu D. eds. Geological and ecological studies of Qinghai-Xizang Plateau, vol 1. Science Press, Beijing.1981
    71 Van Huissteden, J., Gibbard, P. L., Briant, R. M.. Periglacial fluvial system in northwest Europe during marine isotope stages 4 and 3. Quaternary International, 2001, 79:75-88
    72 Westaway R. Flow in the lower continental crust as a mechanism for the Quaternary uplift of the Rhenish Massif, north-west Europe. In: D. Maddy et al eds River Basin Sediment Systems: Archives of Environmental Change. A. A. Balkema Publishers, Lisse, 2001, 87-167
    73 Whitaker, W. Guide to the geology of London and the neigh-bourhood. Mem. Geol. Surey of England and Wales. London: H. M. S., 1875
    74 Witold Zuchiewicz. Quaternary tectonics of the Oter West Carpathians, Poland. Tectonophysics, 1998, 297:121-132
    75 安特生.甘肃考古记.地质专报,1925,甲种,第五号
    76 陈云,童国榜,曹家栋 等.渭河宝鸡段河谷地貌的构造气候响应.地质力学学报,1999,5(4):49—56
    77 陈铁梅.第四纪测年的进展与问题.第四纪研究,1995,(2):182—191
    78 崔之久,高全洲,刘耕年,等.夷平面、古岩溶与青藏高原隆起.中国科学(D辑),1996,26(4):378-385
    79 崔之久,高全洲,刘耕年,等.青藏高原夷平面与岩溶时代及其起始高度.科学通报,1996,41(15):1402—1406
    80 方小敏,陈富斌,施雅风.甘孜黄土与青藏高原冰冻圈演化.冰川冻土,1996,18(3):193—200
    81 方小敏,史正涛,杨胜利 等.天山黄土及古尔班通古特沙漠发育及北疆干旱化.科学通报,2002,47(7):540—545
    82 黄汲清.中国新构造运动的几个类型,见:中国科学院第一次新构造运动座谈会发言记录.北京:科学出版社,8—44,1957
    83 李吉均,文世宣,张青松,等.青藏高原隆起的时代、幅度与形式探讨.中国科学,1979,(6):608-616
    84 李吉均,方小敏,马海洲,等.晚新生代黄河上游地貌演化与青藏高原隆起.中国科学(D辑),1996,26(4):316-322
    85 李吉均,方小敏.青藏高原隆起与环境变化研究.科学通报,1998,43(15):1569—1574
    86 李吉均.青藏高原的地貌演化与亚洲季风.海洋地质与第四纪地质,1999,19(1):1—11
    87 刘百篪,刘小凤,袁道阳等.黄河中上游阶地对青藏高原东北部第四纪构造活动的反映.地震地质,2003,25(1):133—145
    88 潘保田,李吉均,朱俊杰 等.兰州地区黄河阶地发育与地貌演化.见:中国第四纪冰川与环境研究中心、中国第四纪研究委员会编.中国西部第四纪冰川与环境.北京:科学出版社,1991,271—277
    89 潘保田,李吉均,李炳元.青藏高原地面抬升证据讨论.兰州大学学报(自然科学版),2000,36(3):100-111
    90 潘保田,李吉均,曹继秀.黄河中游的地貌与地文期问题.兰州大学学报(自),1994,30(1):115—123
    91 潘保田,邬光剑,王义祥 等.祁连山东段沙沟河阶地的年代与成因.科学通报,2000,45(24):2669-2675
    92 任美锷.台维斯地貌学文集.北京:科学出版社.1958
    93 沈玉昌,龚国元.河流地貌学概论,北京:科学出版社 1986.
    94 王竹泉.1925.山陕地文发育史略.科学,1925 10(8):929-938
    95 吴忱,马永红,张秀清 等.华北山地地形面地文期与地貌发育史.石家庄:河北科学技术出版社.1999
    96 邢成起,丁国瑜,卢演俦 等.黄河中游河流阶地的对比及阶地系列形成中构造作用的多层次性分析.中国地震,2001,17(2):187—201
    97 徐叔鹰.陇中西部黄土区黄河及其支流阶地反映的若干问题.兰州大学学报(自),1965,17(1):116—143
    98 叶良辅.北京西山地质志.地质专报,1920,甲种11号,51-63
    99 杨坤光,马昌前.大陆剥蚀速率与造山隆升速率研究的某些进展.地质科技情报.1996,15(4):89-96\
    100 岳乐平,雷祥义,屈红军.黄河中游水系的阶地发育时代.地质论平,1997,43(2):186—192
    101 赵志军,方小敏,李吉均 等.酒泉砾石层的古地磁年代与青藏高原隆升.科学通报,2001,46(14):1208—1212
    102 郑公望,朱忠礼,任秀生,等.释光方法在地学研究中的应用.福建地理,2000,15(3):33—52
    103 朱照宇.黄河中游阶地的形成与水系演化.地理学报,1989,44(4):429-440
    104 朱俊杰,曹继秀,钟巍 等.兰州地区黄河最高级阶地与最老黄土沉积的发现及其古地磁年代学研究.见:青藏项目专家委员会编.青藏高原形成演化、环境变迁与生态系统研究(学术论文年刊).北京:科学出版社,1994,77—90
    1 Arnold, J. R. and Libby, W. F. Age determinations by radiocarbon content: Checks of samples with known age. Science. 1949, 110: 678-68
    2 Bassinot, F. C, L. D. Labeyrie, E. Vincent, X. Quidelleur, N. J. Shackleton, and Y. Lancelot, The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal, Earth Planet. Sci. Lett., 1994, 126: 91-108
    3 Baksi, A. K., V. Hsu, M. O. McWilliams, and E. Farrar, 40Ar/39Ar dating of the Brunhes-Matuyama geomagnetic field reversal, Science, 1992,256: 356-357
    4 Baksi, A. K., K. A. Hoffman, and M. McWilliams, Testing the accuracy of the geomagnetic polarity time-scale (GPTS) at 2-5 Ma, utilizing 40Ar/39Ar incremental heating data on whole-rock basalts, Earth Planet.Sci. Lett., 1993, 118: 135-144
    5 Baksi, A. K. and K. A. Hoffman, On the age and morphology of the R'eunion event, Geophys. Res. Lett., 2000, 27: 2997-3000
    6 Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. Journal of Geophysical Research, 1995, 100: 603-609
    7 Channell, J. E. T. and H. F. Kleiven, Geomagnetic palaeointensities and astrochronological ages for the Matuyama-Brunhes boundary and the boundaries of the Jaramillo subchron: Palaeomagnetic and oxygen isotope records from ODP Site 983, Phil. Trans. R. Soc. Lond., 2000, A358: 1027-1047
    8 Cox A V.. Geomagnetic reversals. Science.1969, 163: 237—241
    9 Fang, X.M., Pan, B.T., Guan, D.H. et al. A 60,000-year loess-paleosol record of millennial-scale summer monsoon instability from Lanzhou, China. Chinese Scince Bulletin 1999, 44 (24) : 2264-2267
    10 Fang, X.M., Li, J.J., Van der Voo, R.. Rock magnetic and grain size evidence for intensified Asian atomospheric circulation since 800,000 yers B.P. related to Tibetan Uplift, Earth and Planetary Science Letters, 1999,165: 129-144
    11 Hilgen, F. J., Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the geomagnetic polarity time scale, Earth Planet. Sci. Lett., 1991 104: 226-244
    12 Imbrie, J., J.D.Hays, D.G. Martinson et al. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ~(18)O record. In: A. Berger et al eds. Milankovitch and climate, D.Reidel, Norwell, Mass, 269-305
    13 Kidane, T., J. Carlut, V. Courtillot, Y. Gallet, X. Quidelleur, P. Y. Gillot, and T. Haile, Paleomagnetic and geochronological identification of the R'eunion subchron in Ethiopian Afar, J. Geophys. Res., 1999, 104: 10405-10419
    14 Kukla, G, Heller, F., Liu, T.S., et al. Pleistocene climate in China date by magnetic susceptibility. Geology, 1988,16: 811-814
    15 Langereis, C.G., M.J. Dekkers, G.J. de Lange, et al. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes, Geophys. J. Int., 1997, 129: 75-94
    16 Li J.J., Xie, S.Y., Kuang, M.S.. Geomorphic evolution of the Yantze Gorges and the time of their formation. Geomorphology, 2001,41:125 — 135
    17 Li J.J.. The environmental effects of the uplift of QingHai— XiZang plateau. Quaternary Science Reviews, 1991,10: 479-483
    18 Lourens, L. J., A. Antonarakou, F. J. Hilgen, A. A. M. van Hoof, C. Vergnaud-Grazzini, and W. J. Zachariasse, Evaluation of the Plio-Pleistocene astronomical timescale, Paleoceanography, 1996. 11,391-413
    19 Lu Huayu, Liu Xiaodong, Zhang Fuqing, et al Astronomical calibration of loess-paleosol deposits at Louchuan, central Chinese Loess Plateau. Earth and Planetary Sciences Letters, 1999, 154:237-246
    20 Mankinen E A, Dalrymple G B. Revised geomagnetic polarity time scale for the interval 0~~ 5MaB.P.. Journal of Geophysical Research, 1979, 84(B2): 615-626
    21 Milankovitch, M.M., Canon of insolation and the Ice Age problem, translated from German, Isr. Program for Sci. Transl., Jerusalem, 1941
    22 Porter, S.C., An Z.S..Correlation between climate events in north Atlatic and China during the last glaciation. Nature, 1995, 375: 305-308
    23 Raymo, M.E., W.F. Ruddiman, J. Backman et al. Late Pliocene variation in Northern Hemisphere ice sheets and North Atlantic Deep water circulation. Paleoceanography, 1989,4: 413-446
    24 Roger, S., C. Coulon, N. Thouveny, G. Feraud, A. van Velzen, S. Fauquette, J. J. Cocheme, M. . Prevot, and K. L. Verosub, 40Ar/39Ar dating of a tephra layer in the Pliocene Seneze maar lacustrine sequence (French Massif Central): constraint on the age of the R'eunion-Matuyama transition andimplications on paleoenvironmental archives, Earth Planet. Sci. Lett., 2000, 183: 431-440
    25 Ruddiman, W.F., M.E. Raymo, D.G. Martinson et al. Pleistocene evolution: Northern Hemisphere ice sheets and North Atlantic Ocean. Paleoceanography, 1989,4: 353-412
    26 Shackleton, N. J., A. Berger, and W. R. Peltier, An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677,Trans. R. Soc. Edinburgh: Earth Sciences, 1990,81:251-261
    27 Singer, B. S. and M. S. Pringle, Age and duration of the Matuyama-Brunhes geomagnetic polarity reversal from 40Ar/39Ar incremental heating analyses of lavas, Earth Planet. Sci. Lett., 1996, 139: 47-61
    28 Singer, B.S. and L.L. Brown, The Santa Rosa event: 40Ar/39Ar and paleomagnetic results from the Valles rhyolite near Jaramillo Creek, Jemez Mountains, New Mexico, Earth Planet. Sci. Lett., 2002, 197:51-64
    29 Tauxe, L., T. Herbert, N. J. Shackleton, and Y. S. Kok, Astronomical calibration of the Matuyama-Brunhes boundary: Consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences, Earth Planet. Sci. Lett., 1996, 140: 133-146
    30 The editors. The stage 3 project. Quaternary Research, 2002, 57: 1
    31 Tiedemann, R., M. Sarnthein, and N. J. Shackleton, Astronomic timescale for the Pliocene Atlantic δ~(18)O and dust flux records of Ocean Drilling Program site 659, Paleoceanography, 1994,9:619-638
    32 Tiedemann, R. and G. H. Haug, Astronomical calibration of cycle stratigraphy for site 882 in the Northwest Pacific, Proc. ODP Sci. Res., 1995, 145: 283-292
    33 Turrin, B. D., J. M. Donnelly-Nolan, and B. C. Hearn, 40Ar/39Ar ages from the rhyolite of Alder Creek, California: Age of the Cobb Mountain normal-polarity subchron revisited, Geology, 1994, 22: 251-254
    34 Vandenberghe, J., An, Z. S. New absolute time scale for Quaternary climate in the Chinese loess region by grain size analysis, Geology, 25(1): 35-38
    35 Xiao, J. L., Porter, S. C., An, Z. S., et al. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130,000yr. Quaternary Research, 1995, 43:22-29
    36 Z. L. Ding, E. Derbyshire, S. L. Yang et al. Stacked 2.6-Ma grain size record from Chinese Loess based on fiver sections and correlation with the deep-sea δ 180 record. Paleoceanography, 2002, 17:5-1—5-21
    37 陈淑娥,李虎侯,庞奖励.释光测年的研究简史及研究现状.西北大学学报(自然科学版),2003,33(2):209—212
    38 陈发虎,张维信.甘青地区的黄土地层学与第四纪冰川问题.北京:科学出版社 1993.
    39 陈文寄,计凤桔,王非.年轻地质体系的年代测定(续).北京:地震出版社,1999
    40 丁仲礼,孙继敏,余志伟 等.黄土高原过去130ka来古气候事件年表.科学通报,1998,43(6):567-574
    41 地质部甘肃省地质局第一区域地质测量队.1965.中华人民共和国地质图说明书兰州幅
    42 黄汲清.中国新构造运动的几个类型,见:中国科学院第一次新构造运动座谈会发言记录.北京:科学出版社,8—44,1957
    43 李虎侯.热释光断代.香港:Scientist Press International Inc.1999.
    44 刘和甫,夏义平,殷进垠 等.走滑造山带与盆地耦合机制,地学前缘,1999,6(3):121—132
    45 刘东生.黄土与环境.北京:科学出版社,1985
    46 鹿化煜,安芷生,J.Vandenberghe等.洛川黄土定年的一个模式及其初步应用.沉积学报,1997,15(3):150-152
    47 罗四维.冬季我国高原东侧切变线形成的分析.气象学报,1963,33:305—318
    48 潘保田.1991.黄河发育与青藏高原隆起问题.兰州大学博士毕业论文.兰州:兰州大学
    49 潘保田,李吉均,曹继秀.黄河中游的地貌与地文期问题.兰州大学学报(自),1994,30(1):115—123
    50 潘保田,李吉均,曹继秀 等.化隆盆地地貌演化与黄河发育研究.山地研究,1996,14(3):153—158
    51 吴锡浩,安芷生.黄土高原黄土—古土壤序列与青藏高原隆升.中国科学(D辑),1996,26(2):103—110
    52 邢成起,尹功明,丁国瑜 等.黄河黑山峡阶地的砾石钙膜厚度与粗碎屑沉积地貌面形成年代的测定.科学通报,2002,47(3):167—172
    53 熊尚发,丁仲礼,刘东生.北京地区河流阶地的发育时代,见:中国第四纪地质与环境,北京:海洋出版社,221-227,1997
    54 岳乐平,薛祥煦.中国黄土古地磁学.北京:地质出版社,1996
    55 岳乐平,雷祥义,屈红军.黄河中游水系的阶地发育时代.地质论平,1997,43(2):186—192
    56 岳乐平,Heller F,邱占祥等.兰州盆地第三系磁性地层年代与古环境记录.科学通报,2000,45(18):1998—2002
    57 岳乐平,邱占祥,颉光普 等.兰州盆地永登剖面记录的第三纪沉积环境.沉积学报,2003,21(4):683—694
    58 袁道阳,刘百篪,才树华 等.兰州马衔山北缘断裂带的新活动特征.地震地质,2002,24(3):315-323
    59 袁道阳,刘小凤,郑文俊 等.兰州马衔山—兴隆山活动断裂系的构造变形特征和机制.中国地震,2003,19(2):125—131
    60 袁道阳,刘小凤,郑文俊 等.兰州地区活动构造格架与变形特征.地质学报,2004,78(5):626—632
    61 叶笃正,高由禧.青藏高原气象学.北京:科学出版社,1979
    62 张林源.兰州河谷盆地第四纪地质的初步研究.兰州大学学报,1962,(2),89—103
    63 朱照宇.黄河中游河流阶地的形成与水系演化.地理学报,1989,44(4):429—439
    64 朱照宇,周厚云,欧阳婷萍 等.华南红土阶地与中更新世地貌事件.第四纪研究,2002,22(6):59
    65 朱照宇,丁仲礼 著.中国黄土高原第四纪古气候与新构造演化.北京:地质出版社,1994
    66 朱俊杰,曹继秀,钟巍 等.兰州地区黄河最高级阶地与最老黄土沉积的发现及其古地磁年代学研究.见:青藏项目专家委员会编.青藏高原形成演化、环境变迁与生态系统研究(学术论文年刊).北京:科学出版社,1994,77—90
    67 郑公望,朱忠礼,任秀生,等.释光方法在地学研究中的应用.福建地理,2000,15(3):33—52
    1 戴聚昌,袁道阳.兰州地区活动构造的基本特征.高原地震,2002,14(3):35—40
    2 高京印.兰州市榆中盆地地球水化学特征与地温场分析.甘肃地质学报,2000,9(2):43—49
    3 胡双熙.祁连山东段山地土壤性质及垂直分布规律.地理科学,1994,14(1):38—49
    4 李百祥,滕汉仁,郝林凤.区域重力在兰州断陷盆地地热勘查中的应用与热储分析.西北地质,2004,37(1):83—89
    5 甘肃地矿局水文地质工程地质队.榆中县农田供水及区域水文地质普查.1978
    1 An Z.S., Kukla, G.J., Porter, S.C.. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,00 years. Quaternary Research, 1991, 36: 29-36
    2 B.T., Pan, D. Burbank, Y.X. Wang, G.J. Wu. A 900 K y record of strath terrace formation during glacial interglacial transition in northwest China. Geology. 2003, 31: 597-960
    3 Bull W B.Stream-terrace genesis: implications for soil development. Geomorpholog, 1990, 3: 351-367
    4 Burbank, D.W., Leland, J., Fielding, E. et al. Bedrock incision, rock uplift and threshold hillslopes in the Northwestern Himalayas. Nature, 1996,379: 505-510
    5 Chappell J . A revised sea level record for the last 300 000 years from Papua New Guinea. Search, 1983 ,14(3-4): 99—101
    6 Chen Jun, An Zhisheng, Liu Lianwen. Variations in chemical compositions of the eolian dust in Chinese Loess Plateau over the past 2.5 Ma and chemical weathering in the Asian inland. Science in China Series (D Sciences), 2001, 44(5): 403-413
    7 Davis W. M.. The Geographical Cycle. Geogr. J., 1899 , 14(A): 481-503
    8 D. Maddy, Rapid Communication Uplift-driven valley incision and river terrace formation in southern England. Journal of Quaternary, 1997,12: 539-545
    9 D.Maddy. Reply: Can river terrace flights be used to quantify Quaternary tectonic uplift rates?:Joumal.of Quarternary Science. 1998 13: 573-575
    10 D. Maddy, D.R. Bridgland. Accelerated uplift resulting from Anglian glacioisostatic rebound in the Middle Thames Valley, UK?: evidence from the river terrace record. Quaternary Science Reviews, 2000. 19: 1581-1588
    11 D. Maddy, D. Bridgland, R. Westaway. Uplift-driven valley incision and climate -controlled river terrace development in the Thames Valley, UK. Quaternary International 2001.79: 23-26
    12 D. Maddy, Tuncer Demir, D. R. Bridgland. An obliquity-controlled Early Pleistocene river terrace record from western turkey? Quaternary Research. 2005,63: 339-346
    13 Gilbert, G.K., Geology of the Henry Mountains:Washington, D.C., Government Printing Office, 1877
    14 Gregory S. Hancock, Robert S. Anderson. Numerical modeling of fluvial strath-terrace formation in response to oscillating climate. Geological Society of America Bulletin, 2002, 114(9): 1131-1142
    15 Hovius, N. Macro-scale process systems of mountain belt erosion. In: Summerfield, M.A. eds. Geomorphology and Global tectonics. New York: John Wiley, 1999: 77-105
    16 J. Tricartet, R. Schaeffer. L'acquisition de l'indice d'emousse des galets sous l'effet de l'action de l'erosion. Revue de geomorphologie dynamique, 1950,4
    17 J. Mol, J. Vandenberghe, C. Kasse. River response to variations of periglacial climate in mid-latitude Europe. Geomorphology, 2000,33: 131-148
    18 J. Vandenberghe. Climate forcing of fluvial system development: an evolution of ideas. Quaternary Science Review, 2003, 22: 2053-2060
    19 Knox, J.. Valley alluviation in southwestern Wisconsin. Annals of the Association of American Geographers, 1972, 62: 401 -410
    20 Kuhle M. The problems of Pleistocene inland glaciation of the northeastern Qinghai-Xizang Plateau. In : Hovefmann J , Wang Wenying eds. Reports on the Northeastern Part of Qinghai-Xizang Plateau. Beijing : Science Press ,250-315, 1987
    21 Kukla, G, An, Z.S.. Loess stratigraphy in central Chian. Palaeogeography, Palaeoclimatology, Palaeocology, 1989,72: 203-223
    22 Mackin, J.H.. Erosional history of the Big Horn Basin, Wyoming: Geological Society of America Bulletin, 1937,48: 813-893
    23 Merritts, D., Vincent, K.R. Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, Mendocino triple junction region, northern California. Geological Society of America Bulletin, 1989, 101: 1373-1388
    24 Mudelsee M. Statteger K. 1997. Exploring the structure of the mid-Pleistocene revolution with advanced time-series analysis. Geologische Rundschau 86,499-511
    25 M. W. Van den Berg, Ton Van Hoof. The Mass terrace sequence at Masstricht, SE Netgerlands: evidence for 200 m of late Neogene and Quaternary surface uplift In: D. Maddy et al eds River Basin Sediment Systems: Archives of Environmental Change. A.A. Balkema Publishers, Lisse, 2001, 45-86
    26 Patrick Kiden, Torbjorn E. Tornqvist. Can river terrace flights be used to quantify Quaternary tectonic uplift rates? Journal of Quaternary Science, 1998, 13(6): 573-575
    27 Peltier, W. R., 1987 Glacial isostasy, mantle viscosity, and Pleistocene climate change, in Ruddiman, W. F., and Wright, H. E. Jr., eds., North American and adjacent oceans during the last deglaciation: Geol. Soc. America, The geology of North America, V. K-3: 82-155
    28 Porter, S.C., An, Z.S., Zheng, H.B.. Cyclic Quaternary alluviation and terracing in a nonglaciated drainage basin on the north flank of the Qinling Shan, central China. Quaternary Research, 1992, 38: 157-169
    29 Reneau SL. Stream incision and terrace development in Frijoles Canyon, Bandelier National Monument, New Mexico, and the influence lithology and climate. Geomorphology, 2000, 32 (1-2): 171-193
    30 Richardson-Bunbury, J.M. The Kula volcanic field, Western Turkey the development of Holocene alkali basalt province and the adjacent normal-faulting graben Geological Magazine. 1996, 133:275-283
    31 Ruddiman W.F., Raymo M.E., Martinson D.G, Clement B.M., Backman,J., 1989. Pleistocene evolution: Northern Hemisphere ice sheets and North Atlantic Ocean. Paleoceanography 4, 353-412
    32 S.A. Schumm. The fluvial systerm. New York: John Wiley & Sons, 1977
    33 S.A.Schumm. River Response to Baselevel Change: Implications for Sequence Stratigraphy. Journal of Geology, 1993, 101: 279-294
    34 Shozo Yokoyama. Rapid formation of River terraces in non-welded ignimbrite along the Hishida River, Kyushu, Japan. Geomorphology, 1999,30: 291-304
    35 Toshihiko Sugai. River terrace development by concurrent fluvial process and climatic changes. Geomorphology, 1993, 6: 243—252
    36 Veldkamp, A.. A 3-D model of Quanternary terrace development, simulations of terrace stratigraphy and valley asymmetry: a case study for the Allier terraces (Limagne.France). Earth Surface Processes and Landforms, 1992, 17: 487-500
    37 Veldkamp A, Van Dijke JJ. Simulating internal and external controls on fluvial terrace stratigraphy: aqualitative comparison with the Maas record. Geomophology, 2000, 33: 225-236
    38 Wu Full, Fang Xiaomin, Ma Yuzhen et al. A 1.5Ma sporopollen record of paleoeclogic environment evolution in the central Chinese Loess Plateau. Chinese Science Bulletin, 2004,49(3): 295-302
    39 陈发虎,张维信.甘青地区的黄土地层学与第四纪冰川问题.北京:科学出版社 1993
    40 耿秀山.中国东部晚更新世以来的海水进退.海洋学报(中文版),1981,3(1):114—130
    41 黄长生,顾延生,唐小明 等.兰州地区新生代构造应力场演化特征.江西地质,2000,14(2):88-92
    42 黄汲清.中国新构造运动的几个类型,见:中国科学院第一次新构造运动座谈会发言记录.北京:科学出版社,8—44,1957
    43 黄汲清,任纪舜,姜春发 等.中国大地构造及其演化.北京:科学出版社,1980
    44 李吉均.纪念台维斯侵蚀循环、准平原学说诞生一百周年.兰州大学学报,1999,35(3):157—163
    45 李炳元,李吉均等.青藏高原第四纪冰川遗迹分布图(1:3000000)及说明.北京:科学出版社,1991
    46 李建林,赵昌瑞.黄河兰州段河工模型及洪水预测.甘肃农业大学学报,2004,(6):713-717
    47 李森,王跃,陈惠忠 等.黄河兰州谷地新构造运动的初步研究.地质论评,1993,39(3):259-267
    48 刘小凤,刘百篪.应用“构造2气候旋回”年代学方法确定河流阶地形成时代的初步研究.西北地震学报,2001,23(4):395-403
    49 刘小凤,袁道阳,刘百篪 等.兰州及邻近地区河流阶地变形特征.西北地震学报,2003,25(2):119-120
    50 刘东生.黄土与环境.北京:科学出版社,1985
    51 潘安定.兰州烟洞沟黄土剖面古环境演变研究.干旱区资源与环境.1999,13(3):44-53
    52 潘保田,李吉均,曹继秀.黄河中游的地貌与地文期问题.兰州大学学报(自然科学版),1994,30(1):115—123
    53 潘保田,李吉均,朱俊杰 等.兰州地区黄河阶地发育与地貌演化.见:中国第四纪冰川与环境研究中心、中国第四纪研究委员会编.中国西部第四纪冰川与环境.北京:科学出版社,1991,271—277
    54 潘保田,王均平,高红山 等.从三门峡黄河阶地的年代看黄河何时东流入海.自然科学进展,2005,15:700-705
    55 钱宁,张仁,周志德.河床演变学.北京:科学出版社,1987
    56 沈玉昌,龚国元.河流地貌学概论,北京:科学出版社 1986
    57 施雅风,孔昭宸,王苏民,等.中国全新世大暖期鼎盛阶段的气候与环境.中国科学(B),1993,23(8):865—872.
    58 王斌,李有林,刘宗平.榆中县宛川河流域水环境质量调查评价.甘肃水利水电技术,1996,(4):33-36
    59 王勇.最近1.2Ma青藏高原的隆升与东亚地表各圈层的相互作用.博士研究生学位论文.兰州:兰州大学,2005
    60 王均平.黄河中游新生代地貌演化与黄河发育.博士研究生学位论文.兰州:兰州大学,2006
    61 吴福莉.黄土高原中部晚新生代孢粉记录的生态环境演变.博士研究生学位论文.兰州:兰州大学,2004
    62 徐叔鹰.陇中西部黄土区黄河及其支流阶地反映的若干问题.兰州大学学报(自),1965,17(1):116—143
    63 邢成起,丁国瑜,卢演俦 等.黄河中游河流阶地的对比及阶地系列形成中构造作用的多层次性分析.中国地震,2001,17:187—201
    64 邢成起,尹功明,丁国瑜 等.黄河黑山峡阶地的砾石Ca膜厚度与粗碎屑沉积地貌面形成年代的测定,科学通报,2002,47:167—172
    65 叶青超,陆中臣等.黄河下游河流地貌.北京:科学出版社.1990
    66 朱照宇,丁仲礼著.中国黄土高原第四纪古气候与新构造演化.北京:地质出版社,1994.
    67 赵芳芳,徐宗学.黄河兰州以上气候要素长期变化趋势和突变特征分析.气象学报,2006,64(2):246—255
    68 张珂,蔡剑波.黄河黑山峡口最高阶地宇宙核素的初步年龄及所反映的新构造运动.第四纪研究,2006,26(1):85-91
    69 郑本兴,牟昀智,李吉均.青藏高原第四纪冰川演化与高原隆升问题.见:青藏高原隆起的时代、幅度和形式问题.北京:科学出版社,52-63,1981
    1 Argand E. La tectonigue de I'Asie. Proc 13 th Int geol Congr, Brussels: 1924,7: 171 —372
    2 Armijo, R. et al. Quaternary extension in southern Tibet: field observations and tectonic implications. J. G. R., 1986, 91:13803-13872
    3 Aouac J P, Tapponnier P, Bai M, et al. Active thrusting and folding along the northern Tienshan, and Late Cenozoic rotation of Tarim relative to Dzhungaria and Kazakhstan. J. Geophys. Res. 1993, 98: 6755-6804
    4 Briais, A., et al. Updated interpretation of magnetic anomalies and sea floor spreading stages in the South China Sea: implication for the Tertiary tectonics of southeast Aisa. J Geophys Res, 1993, 98(6): 299-328
    5 Deway J. F., Stephen Cande, Walter C. Pitman. Tectonic evolution of the India/Eurasia Collision zone. Eclogae geol Helv, 1989,82 (3): 717-734
    6 England P C, Houseman G A. Extension during continental convergence, with application to the Tibetan Plateau. J Gepphys Res, 1989, 94: 17561-17579
    7 England, P.C., Molnar, P.. Right-lateral shear and rotation of the explanation for strike-slip in eastern Tibet, Nature, 1990,344: 140-142
    8 Harrison T M, Copeland P, Kidd W S F. et al. Raising Tibet Science, 1992, 255: 1663-1670
    9 Huchen, P. et al. Indochina Penisula and the collision of India and Eurasia. Geology, 1994, 22: 27-30
    10 Kosarev G, Kind R, Sobolev S V, et al. Seismic Evidence for a Detached Indian Lithospheric Mantle Beneath Tibet. Scuence. 199, 283: 1306-1309
    11 Li Jijun The environmental effects of the uplift of the Qinghai-Xizang Plateau. Quaternary Science Review, 1991, 10: 479-483
    12 Molnar P, P England, and J Martinod, Mantle dynamics, the uplift of the Tibetan Plateau, and the Indiaan monsoon, Reviews of Geophysics, 1993, 31: 357-396
    13 Nelson K D, Zhao W, Brown L, et al.. Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH Results. Scence, 1993, 274: 1684-1688
    14 Peltzer, G. et al. Neogene and quaternary faulting in and along the Qinling Shan. Nature, 1985,317(6307): 500-505
    15 Peltszer, G., Tapponnier P.. Formation and evolution of striake-slip faults, rifts, and basins during the India-Aisa collision: an experimental approach. J.G.R., 1988, 93(B12): 15085-15117
    16 Taylor M, Yin An, Ryerson F J, et al. Conjugate strike-slip faulting along Bangong-Nujiang suture zone accommodates coeval east-west extention and north-south shortening in the interior of the Tibetan Plateau. Tectonics, 2003,22(4): 18-21
    17 Tapponier P, Molnar P. Slip-line fields theory and large-scale continental tectonics. Nature, 1976,264:319-324
    18 Tapponnier P., et al. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet. Earth and Plantary Science Letters. 1990A, 97: 382-403
    19 Tapponier P, Xu Zhiqin, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001, 294: 1671-1676
    20 Yin, A., and Harrison, T. M.. Geologic evolution of the Himalayan-Tibetan orogen. Ann Rev. Earth Planet. Sci. 2000, 28:211-280
    21 Yue Y. J., Ritts, B. D., Graham S. A.. Initiation and Long-Term Slip History of the Altyn Tagh Fault International Geology Review, 2001, 43: 1087-1093
    22 Zhao W, Nelson K, Project INDEPTH Team. Deep seismic reflection evidence for contiental underthrusting benrath S. Tibet. Nature, 1993, 366: 557-559
    23 陈云,童国榜,曹家栋 等.渭河宝鸡段河谷地貌的构造气候响应.地质力学学报,1999,5(4):49-56
    24 国家地震局地质研究所,西藏中都活动断层,北京:地震出版社,1992
    25 胡小猛,杨景春.临汾盆地中更新世中晚期以来的演化历史及成因分析.上海师范大学学报(自然科学版),2001,30(3):72—76
    26 李传友.西秦岭北缘断裂带晚第四纪活动及其意义.北京:中国地震局地质研究所,2006
    27 刘和甫,夏义平,殷进垠 等.走滑造山带与盆地耦合机制.地学前缘,1999,6(3):121-132
    28 王民新,吕图鸿.兰州地区主要构造形迹与新构造应力场特征探讨.兰州大学学报(自然科学版),1985,21(2):91-96
    29 王志才,张培震,张广良 等.西秦岭北缘构造带的新生代构造活动——兼论对青藏高原东北缘形成过程的指示意义.地学前缘,2006,13(4):119-135
    30 王均平.黄河中游新生代地貌演化与黄河发育.博士研究生学位论文.兰州:兰州大学,2006
    31 吴珍汉,吴中海,江万 等.中国大陆及邻区新生代构造-地貌演化过程与机理.北京:地质出版社,2001
    32 许志琴,杨经绥,李海兵 等.青藏高原与大陆动力学—地体拼合、碰撞造山及高原隆升的深部驱动力.中国地质,2006,33(2):221—238
    33 邢成起,丁国瑜,卢演俦 等.黄河中游河流阶地的对比及阶地系列形成中构造作用的多层次性分析.中国地震,2001,17:187—201
    34 袁道阳,张培震,刘百篪 等.青藏高原东北缘晚第四纪活动构造的几何图像与构造转换.地质学报,2004,78(2):270-278
    35 袁道阳,刘百篪,才树华 等.兰州马衔山北缘断裂带的新活动特征.地震地质,2002,24(3):315-323
    36 赵桐,李麒麟,张有龙.兰州-民和盆地第三纪反“S”形压扭构造初探.西北地质,1999,32(4):5-9
    37 朱日祥,杨振宇,吴汉宁,等.中国主要地块显生宙古地磁视极移曲线与地块运动.中国科学,D辑,1998,28(增刊):1~16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700