阿尔金断裂带的形成时代及其走滑作用对青藏高原北部隆升的贡献
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对阿尔金断裂带中段出露的糜棱岩进行了详细的变形构造、变质岩石学、地球化学、同位素年代学及矿物包裹体的研究,提出了阿尔金断裂带的形成时代,并探讨了阿尔金断裂带最大累计走滑位移量,同时对走滑过程中伴随隆升作用进行了定量研究,以及活动走滑作用与逆冲作用的耦合关系及其与伸展作用的调节关系的研究,初步认识了走滑作用对高原北部隆升的贡献。
     阿尔金断裂带中段出露一套花岗质和角闪质糜棱岩及糜棱岩化岩石,经研究表明这套岩石是左行走滑剪切过程中同构造深熔作用的产物,是韧性转换挤压作用的结果。并在糜棱岩中首次发现剪切作用下形成的定向排列的长柱状深熔型锆石,这种锆石的晶体长轴方向与拉伸线理方向一致,代表走滑剪切过程中的构造应力方向。这一发现不仅说明能够利用定向锆石U-Pb同位素测年来确定构造年龄,而且为确定阿尔金断裂的形成时代奠定了基础。利用单颗粒锆石离子探针(SHRIMP)定年测得这种定向排列锆石的年龄为239—244Ma,另外,测得同样糜棱岩样品中定向生长的角闪石的~(40)Ar-~(39)Ar年龄为223—226Ma,表明了同构造深熔作用发生在印支期,说明阿尔金断裂带至少在印支期发生了强烈的走滑运动。
     在阿尔金断裂带东段北大窑-红柳峡地区出露一套来自于上地幔的橄榄玄武岩,在红柳峡地区其火山岩的K-Ar年龄为106—112Ma,而切割其火山岩的火山岩脉的~(40)Ar-~(39)Ar年龄为83Ma,在北大窑地区,发育在断裂带内的橄榄玄武岩的K-Ar年龄为99-105Ma,这套火山岩以熔岩层的形式被夹在白垩纪地层中,故时代为白垩纪,并且这套层状的火山岩已发生了同斜褶皱,同时,在阿尔金断裂带东侧、祁连山北缘,所伴随走滑过程形成的逆冲叠置岩片(J)中发现了大量的无根同逆冲构造的花岗岩浆活动,表明了阿尔金断裂带在走滑过程中,地壳加厚并产生了地壳熔融,由此可见,其83—112Ma火山岩的存在,是阿尔金断裂带再活动的证据。
     利用TM和SPOT卫星影像资料以及野外和室内的地貌学、构造地质学、岩石学及沉积学、年代学研究发现,在阿尔金断裂带中段发育一种特殊的长条状谷地地貌,其长宽比约大于50,谷地两侧的长边界由直线型具走滑分量的正断裂控制,谷地内分布新生代地层,阿尔金主断裂通过谷地,并在谷地内形成一系列走滑地貌。以谷地为中心两侧为反向的逆冲构造,使谷地两侧的由古老变质岩组成的地质体垂向挤出,构成长条形山体,这种特殊地貌我们称之为走滑断陷谷地(盆地)。这种巨型长条状走滑断陷谷地于上新世开始形成,全新世时期其地貌特征基本形成,它是阿尔金断裂带走滑变形过程中形成的特殊类型的地貌,是转换挤压作用和隆升作用的共同结果。这一认识的提出对认识谷地(盆地)、山脉之间的成因关系,以及早期古老地质体快速抬升的成因及山脉的形成具有重要意义。
     阿尔金断裂带走滑变形过程中伴随有强烈的隆升作用,其方式、规模各不相同。断裂带走滑过程中的隆升作用是以古老块体的抬升形式而表现。抬升形式总体以“逆冲构造+走滑构造”为主,根据构造组合特征划分为四种类型。党河南山是阿尔金断裂带走滑过程中形成的。
     阿尔金断裂带的肃北,阿克塞地区全新世以来的左行走滑速率为20-22mm/yr,伴随的隆升速率为5-11mm/yr。阿尔金断裂带走滑、逆冲、伸展之间可相互调节,肃北党河南山地区走滑速率从22.5mm/yr变为17mm/yr,部分能量转化为5mm/yr隆升速率造成山脉(党河南山)的形成和4mm/yr的伸展速率形成肃北盆地。
     在前人研究的基础上,通过变形构造几何学、岩石学以及区域构造对比研究,提出了在早古生代时期西昆仑和阿尔金南缘、柴北缘处于相同的构造背景之中,阿尔金榴辉岩带向西可能延至西昆仑,以及柴北缘蛇绿岩带向西与阿尔金南缘蛇绿岩带相连,再向西与西昆仑库地北蛇绿岩带相连,后被阿尔金断裂所切割。因此,得出了阿尔金断裂最大累计左行走滑位移量大约为900公里。
     阿尔金断裂带走滑过程中一部分能量转化为分支的逆冲断裂,逆冲作用使得前新生代地质体抬升成山。因此其走滑作用形成和控制了祁漫塔格山、党河南山、祁连山的崛起和分布,并控制了青藏高原北部生长、扩展的方向和调整、制约了盆—山耦合关系。
     对阿尔金断裂带形成时代研究的同时对活动走滑作用与逆冲作用的耦合关系研究及走滑作用对高原北部隆升的贡献研究,不仅对重塑阿尔金断裂带的演化历史具有重要意义,而且也为建立青藏高原的形成尤其是高原北部的隆升和扩展模型提供直接的基础资料。
Through the detailed studies of deformed structure, metamorphic petrology, geochemistry, isotopicchronology and mineral inclusion on mylonites outcropped in the middle part of Altyn Tagh fault zone, theauthor gives the formation age of Altyn Tagh fault zone. The author also discusses its maximalaccumulated strike-slip displacement and carries out the quantitative research on the subsequent upliftingin the course of strike-slipping and that on the coupling relationship between the active strike-slipping andthe obduction as well as the coordinate relationship between the active strike-slipping and extending. Thusthe contribution of strike-slipping to the uplifting of North Qinghai-Tibet plateau is preliminarily pointedout in this paper.
     In the middle part of Altyn Tagh fault zone, there outcrops a set of granitic and hornblende mylonites,and mylonited rocks, which is shown to be products of syntectonic anatexis during the left-handed strike-slip shearing and to be results of ductile transformed compression. The author for the first time discoversthe anateetic orientated long columnar zircon formed during shearing in mylonites, whose crystal long axisis accordant with the direction of stretching lineation, representing the orientation of structural stressduring strike-slip shearing. This discovery not only enables us to determine the structural age by U-Pbisotopic dating on orientated zircon, but also provides clue to determine the formation age of Altyn Taghfault zone. According to dating by single grained zircon ion microprobe (SHRIMP), the age of theorientated zircon is 239 to 244Ma while the age of orientated hornblende by ~(40)Ar-~(39)Ar is 233 to 226Ma onthe same sample of mylonite. It indicates that the syntectonic anatex happened in Indo-Chinese epoch andthat a strong strike-slip movement ever took place in Altyn Tagh fault zone in the same epoch.
     In the area of Beidayao-Hongliuxia, the east part of Altyn Tagh fault zone, there outcrops a set ofdorgalite from upper mantle. In Hongliuxia, the age of volcanic rock by K-Ar is 106 to 112Ma while theage of the volcanic vein cutting the volcanic rock by ~(40)Ar-~(39)Ar is 83Ma. In Beidayao, the age of dorgalitegrown in the fault zone by K-Ar is 99 to 105Ma. This set of volcanic rocks in form of lava layer isintercalated in cretaceous strata, so the age is cretaceous. In this set of banded volcanic rocks, there existhomoclinal folds. In the eastern side of Altyn Tagh fault zone and the north of Qilian mountain, a largeamount of rootless syntectonic obducted magma is found within the obducted superimposed microlithonformed during the subsequent Strike-slipping. All indicate the crust increases in thickness and happens tomelt during the strike-slipping of Altyn Tagh fault zone, and then the existence of 83 to 112Ma volcanicrocks is the evidence for re-action of Altyn Tagh fault zone.
     According to TM & SPOT satellite data and outdoor & indoor studies on geomorphology, structuralgeology, petrology, sedimentology, chronology, it is found that there exists a special extended valley in themiddle part of Altyn Tagh fault zone. Its ratio of length and width is about more than 50 and the two sides'boundaries are controlled by the straightened normal fault with strike-slipping. Within the valley, the
     Cenozoic strata are distributed. And Altyn Tagh fault zone passes through it and forms a series ofstrike-slip geomorphological terrace. Centered on the valley, the two sides are antithetic obducted faults,making the two sides' geological blocks composed of old metamorphic rocks being squeezed vertically, constituting extended hills. We call this special geomorphological terrace strike-slip fault valley (basin).This kind of macroscopic extended strike-slip fault valley began to form in Pliocene epoch and basicallycame into being in Holocene epoch, which is a special typed geomorphological terrace formed during thedeformation of strike-slipping in Altyn Tagh fault zone and joint result of transpression and uplifting. Thisis of great importance to understand the genetic relations of the valley (basin) and mountain range, and theorigin of early old geological blocks' quick uplifting and the formation of the mountain range.
     Altyn Tagh fault zone ever happened to strongly uplift subsequently during its strike-slip deformation,but its way and scale are different. The uplifting during the fault zone's strike-slipping is taken on as theuplifting of the old geological blocks. The uplifting pattern generally focuses on "obducted fault + strike-slip fault". According to the characteristics of structure pattern, the uplifting pattern can be divided intofour types. Mount Danghenan is formed during the strike-slipping of Altyn Tagh fault zone.
     In Subei and Akesai in Altyn Tagh fault zone, the rate of the left-handed strike-slipping is 20 to22mm/yr since Holocene epoch and the subsequent uplifting rate is 5 to 11mm/yr. In Altyn Tagh fault zone,the strike-slipping, obduction and stretching can be coordinated. In Mount Danghenan of Subei, the rate ofstrike-slipping changes from 22.5mm/yr to 17mm/yr, part of which is transformed to be uplifting rate5mm/yr forming the range (Mount Danghenan) and to be stretching rate 3mm/yr forming Subei basin.
     On the basis of predecessors' research, through the comparative studies on deformed structuralgeometry, petrology and regional structure, the author thinks that West Kunlun, South Altyn and NorthQaidam are situated in the same structural background in Early Paleozoic era. Altyn eclogitic zonepossibly extends west to West Kunlun. And North Qaidam ophiolitic zone in the west is connected withSouth Altyn ophiolitic zone and towards west continually being attached to Kudlibei ophiolitic zone ofWest Kunlun which is cut by Altyn Tagh fault afterwards. Therefore, it comes that the maximalaccumulated left-handed strike-slip displacement of Altyn Tagh fault is about 900km.
     During the strike-slipping of Altyn Tagh fault zone, part of energy is transformed to that of obductedfault which made the pre-Cenozoic geological bodies uplift to form hills. Hence the strike-slipping formsand controls the distribution of Mounts Qimantage, Danghenan, Qilian, and also controls the growth andextension direction of North Qinghai-Tibet plateau, coordinating and constraining the coupling relations ofbasin and hill.
     Research on the formation age of Altyn Tagh fault zone together with the coupling relations of activestrike-slipping and obduction as well as the contribution of the strike-slipping to the uplifting of NorthQinghai-Tibet plateau is not only of great importance to reconstruct the evolutionary history of Altyn Taghfault zone, but also provides first-hand basic data on establishing the formation pattern of Qinghai-Tibetplateau, especially establishing the uplifting & extension model for North Qinghai-Tibet plateau.
引文
Arnaud N., Delville N., Montel J.M., et al. Paleozoic to Cenozoic deformation along the Altyn Tagh fault in the Altun Shan massif area, Eastern Qilian Shan, NE Tibet, China: American Geophysical Union Annual Meeting Abstracts. 1999, F1018
    Avouac J P, Peltzer G. Kinematic model of active deformation in central Asia, from these de Doctorat de L Universite Paris,VII.,1 995.
    Aydin A. and Nur A., Evolution of pull-apart basins and their scale independence. Tectonics, 1982, 1(1): 91-105.
    Brown M., Averkin Y. A., McLellan E. L, Sawyer E. W., Melt segregation in migmatites. Journal of Geophysical Research, 1995, 100 : 15,655-15,679
    Brown T H, Berman R G, Perkins E H. GeO Calc:Software packege for c al culation and display of pressure temperature compositoin phase diagrams using an IBM or compatiable personal computer. Computer Geosci.,1988, 14:279—289.
    Caswell D A, O'Brien P J, Wilson R N, Zhai M. Thermobarometry of the p he ngite bearing eclogites in the Dabie Mountains of the central China. Journal of Metamorphic Geology,1997, 15(2): 239—252.
    Chen, W., Xu, Z. Q., Li, H. B., 1995, Isotopic geochronology of the magmatism, metamorphism and deformation in the northern part of the Tibet plateau (from Golmud to Kunlun Shankou). Symposium on Uplift, Deformatio and Deep Structure of Northern Tibet. September 21-22, 1995, La Grande Motte-France. P.7.
    Druguet E., Hutton D. H. W., Syntectonic anatexis and magmatism in a mid-crustal transpressional shear zone: an example from the Hercynian rocks of the eastern Pyrenees. Journal of Structural Geology, 1998, 20 (7): 905-916
    Edward R.Sobel and Nicolas Arnaud. A possible middle Paleozoic suture in the Altyn Tagh, NW China. Tectonics, 1999: 18 (1): 64-74
    Ernst W G, Liou J G, Hacker B R. Petrotectonic significance of high and ultrahigh pressure metamorphic belts:inferences for subduction zone histori es. International Geology Review,1994, 36:213—237.
    Gehrels G, Yin A, Chen X, et al. 1999. Preliminary U-Pb geochronologic studies along the Altyn Tagh Fault, western China. Eos Trans. AGU, 80 (17), Fall Meet. Suppl., F1018.
    Harding T. P., Vierbuchen R. C, and Christie-Blick N., Structural style, plate tectonic setting and hydrocarbon traps of divergent wrench faults, in Biddle K. T., Christie-Clicks N., eds., Strike-slip deformation, basin formation, and sedimentation, Society of Economic Paleontologist and Mineralogists Special Publication, 1985, 37:51-57.
    Hokada T., Suzuki S., Motoyoshi Y., et al., On the partial melting during UHT metamorphism: Implications from mineral texture, feldspar thermometry and zircon chemistry of the Archaean Napier complex, East Antarctica, AGU: 2000 Western Pacific Geophysics Meeting , Abstracts, V31A-03
    Hollister L.S., Grissom G. C, Peters E. K., et al., Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons, Am. Mineral., 1987, 72: 231-239.
    Jamtveit B. Metamophic evolution of the Eiksunddal eclogite complex, West er n Norway, and some tectonic implications. Contrib. Mineral. Petrol., 1987, 95: 82—99.
    Krantz R. W., The transpressional strain model applied to strike-slip, oblique-convergent and oblique-divergent deformation, Journal of Structural Geology, 1995, 17(8): 1125-1137
    Krantz R. W., The transpressional strain model applied to strike-slip, oblique-convergent and oblique-divergent deformation, Journal of Structural Geology, 1995, 17(8): 1125-1137.
    Kretz R. Symbols for rock forming minerals.Am. Mineral., 1983, 68:277—279.
    Le Bas, M. J., Le Maitre, R. W., Strckeisen, A., and Zanettin, B., 1986, A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol., 27: 745-750.
    Leloup P. H., and Kienast J. R., High temperature metamorphism in a major strike-slip shear zone: the Ailao Shan-Red River (P.R.C.). Earth Plancet Sci. Lett., 1993, 118: 213-234.
    Leloup P. H., Lacassin P., Tapponnier P., et al., The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophyics, 1995, 251: 3-84.
    Li H.B., Xu Z.Q., Chen W., Deformational features and tectonic evolution of the south Kunlun strike-slip shear zone, East Kunlun mountains. Acta Geoscientia Sinica, Special Issue, 1996, 16-21
    Li Haibing Yang Jingsui Xu Zhiqin Wu Cailai et al., New Ages related to the Altyn Tagh strike-slip fault. Eos, Transactions, AGU, 2000: vol. 81, No. 22, T41A-02.
    Li Haibing, Xu Zhiqin, Chen Wen, Southern margin strike-slip fault zone of East Kunlun mountains: an important consequence of intracontinental deformation. Continental Dynamics, 1996: 1(2) 146-155.
    Li Haibing, Yang Jingsui, Xu Zhiqin, et al., New Ages related to the Altyn Tagh strike-slip fault, AGU: 2000 Western Pacific Geophysics Meeting, Abstracts, 2000, T41A-02.
    Liu L, Che Z, Luo J, et al. 1997. Recognition and implication of eclogite in the western Altun Moutain, Xinjiang. Chinese Science Bulletin, 42(11): 931-934.
    Liu L, Che Z, Wang Y, et al. 1998. The evidences of Sm-Nd isochron age for the early Paleozoic ophiolite in Mangya area, Altun Mountain. Chinese Science Bulletin, 43(9): 754-756.
    Liu Yongjiang, Ye Huiwen, Ge Xiaohong, et al., Laser probe 40Ar/39Ar dating of micas on the deformed rocks from Altyn Tagh fault and its tectonic implications, Western China. Earth Sciences Frontiers (Chinese Geosciences, Beijing), 2000, vol. 7 Suppl., 233-234.
    Mann P., Hempton M. R., Brandley D. C, And Burke K., Development of pull-apart basin, Journal of Geology, 1983,91:529-554.
    Molnar, P.. and Tapponnier, P., 1975, Cenozoic tectonic of Asia: Effects of a continental collision, Science, V.189, p.419-426.
    Brien P J. Garnet zoning and reaction textures in overprinted eclogites , Bo nemian Massif,Eruopean Variscides: A record of their thermal history during exhu mation. Lithos,1997,41:119—133.
    Pan Yusheng (Edited), 1996, Geological evolution of the Karakorum and Kunlun Mountains. Beijing, Seismological Press Beijing, China.
    
    Peltzer G, Tapponnier P. Formation and evolution of strike slip faults,ri fts,and basins during the India-Asia collision: An experimental approach. Journa 1 of Geophysical Research, 1988, 93(12): 1508—15117.
    Peltzer, G., and Tapponnier, P., 1988, Formation and evolution of strika-slip faults, rifts, and basins during the India-Asia collision:An experimental approach, Journal of Geophysical Research, v.93, P. 15085-15117.
    Peltzer, G., Tapponnier, P., and Armijo, R., 1989, Magnitude of late Quaternary left-lateral displacements, along the north edge of Tibet, Science, v.246, p.1285-1289.
    Plyusnina L. P., Geothermometry and Geobarometry of plagioclase-hornblende bearing assemblages. Contrib. Mineral. Petrol., 1982, 80: 140-146.
    Preisig, J.R., and Gillespie, A., 1984, Synoptic tectonics along the Altyn Tagh fault zone, Eos (Transactions, American Geophysical Union),v.65, p. 190.
    Preisig, J.R., and Gillespie, A., 1984, Synoptic tectonics along the Altyn Tagh fault zone, Eos (Transactions, American Geophysical Union),v.65, p. 190.
    
    Pupin J. P., Zircon and granite petrology. Contribution to Mineralogy and Petrology, 1980, 73: 207-220
    Ritts B. D., and Biffi U., Magnitude of post-Middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, northwest China. Geological Society of American Bulletin, 2000, 112(1): 61-74.
    Ritts, B.D., and Biffi, U., 2000, Magnitude of post-middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, northwest China, Geological Society of America Bulletin, v.112, No. 1, p. 61-74.
    Robb L. J., Armstrong R. A. and Waters D. J., The history of granulite-facies metamorphism and crustal growth from single zircon U-Pb geochronology: Namaqualand, South Africa, Journal of Petrology, 1999, 40 (12): 1747-1770
    Scharer, U., Arnaud, N., Brunei, M., et al., Upper Triassic and Cretaceous age signatures of the northern Tibetan plateau: Rb-Sr mineral ages. Symposium on Uplift, Deformatio and Deep Structure of Northern Tibet. September 21-22, 1995, La Grande Motte-France. P.33.
    Sobel E R, Arnaud N. A possible middle Paleozoic suture in the Altyn Tagh, NW China. Tectonics, 1999, 18(1): 64—74
    
    Tapponier P., and Molnar P., Active faulting and Cenozoic tectonics of China. JGR, 1977,82: 20.
    Tapponnier P, Molnar P. Slip line field theory and large scale continental tectonics. Nature, 1976,264: 319 —324.
    Tapponnier P., Peltzer G., Armijo R., On the mechanics of the collision between India and Asia: in: CowardM.P. and Ries A.C. (Eds), Collision Tectonics, Geological Society of London Special Publish. 1986, 115-157
    Tapponnier, P., Mattauer, M., Proust, F., and Cassaigneau, C, 1981, Mesozoic ophiolites, sutures, and large-scale tectonic movements in Afghanistan, Earth and Planetary Science Letters, v.52,p. 355-371.
    Tapponnier, P., Peltzer, G., Le Dain, A.Y., and Armijo, R., 1982, Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine, Geology, v.10, p. 611-617.
    Thomas R. J., Cornell D. H., Armstrong R. A., Provenance age and metamorphic history of the Quha Formation, Natal Metamorphic Province: a U-Th-Pb zircon SHRIMP study. South Africa Journal of Geology,1999, 102 (1): 83-88
    Wang E Q. Displacement and timing along the northern strand of the Altyn Tagh fault zone,northern Tibet. Earth Planet. Sci. Lett.,1997, 150:55—64.
    Wang X, Liou J G. The large displacement of the Tanlu fault: eviden ce from the distribution of coesite bearing eclogite belt in eastern China:EOS,Tr ans. Am. Geophs. Union,1989, 70:1312—1313.
    Wang, E., 1997, Displacement and timing along the northern strand of the Altyn Tagh fault zone, northern Tibet, Earth and Planetary Science Letters, v. 150, p.55-64.
    Witllinger G., Tapponnier P., Poupinet G., Mei J., et al., Tomographic evidence for localized lithospheric shear along the Altyn Tagh fault, Science, 1998, 282: 74-76.
    Wittlinger, G., Tapponnier, P., Poupiner, G., et al., 1988, Tomographic evidence for localized lithospheric shear along the Altyn Tagh fault, Science, 282: 74-76.
    Wu H Q, Feng Y M, Song S G. Metamorphism and deformation of blueschist b elt and their tectonic implications, North Qilian Mountains. J. Metamorphic Geo 1 .,1993, 11: 523—526.
    Xu J, Zhu G, Tong W, Cui K, Liu Q. Formation and evolution of the Tan c heng—Lujiang wrench fault system: a major shear system to the northwest of the Pacific Ocean: Tectonophysics,1987, 134: 273— 310.
    Xu Z Z, Jiang M, Yang J S. et al. Mantle diapir inward intracontinental su bduction: A discuss on the mechanism of uplift of the Qinghai—Tibet plateau. G eological Society of America, Special Paper328,1999, 19—31.
    Xu Z.Q., Yang J.S., Zhang J.X., et al. Tectonic significance of early Paleozoic high-pressure rocks in the Qilian-Qaidam-Altun Mountains, NW China: American Geophysical Union Annual Meeting Abstracts. 1999, F1018
    Yang J.S., Robinson PT., Jiang C.F. and Xu Z.Q., 1996, Ophiolites of the Kunlun Mountains, China and their tectonic implications, Tectonophysics, 258: 215-231.
    Yang Jingsui, Xu Zhiqin, Li Haibing Wu Cailai et al., 2000, A Caledonian convergent border along the southern margin of the Qilian terrane, NW China: Evidence from eclogite, garnet-peridotite, ophiolite, and S-type granite. Journal of the Geological Society of China. 43(1): 142-160.
    Yang Jingsui, Xu Zhiqin, Li Haibing Wu Cailai et al., 2000, A Caledonian convergent border along the southern margin of the Qilian terrane, NW China: Evidence from eclogite, garnet-peridotite, ophiolite, and S-type granite. Journal of the Geological Society of China. 43(1): 142-160.
    Yang, J.-S., Robinson, P. T., Jiang, C.-F., and Xu, Z.-Q., Ophiolites of the Kunlun Mountains, China and their tectonic implications. Tectonophysics. 1996: 258, 215-231.
    Yin A, Gehrels G, Chen X, et al. 2000. Normal slip along the northern Altyn Tagh fault, North Tibet. Earth Science Frontiers (China University of Geosciences, Beijing), 7 (Suppl.): 237-238.
    Yin A., Harrison T.M., Cowgill E., et al. Partitioning of translation along the left-slip Altyn Tagh fault system, northern Tibet: Geological Society of America Abstracts with Programs. 1997, 29 (6): A-143
    Yin, A., Gehrels, G., Chen, X., and Wang, X., 1999, Evidence for 280km of Cenozoic left slip motion along the Eastern segment of the Altyn tagh fault system, Western China, Eos (Transactions, American Geophysical Union), v.108, P.F-1018.
    Yin, A., Harvison, T.M., Cowgill, E., and Rumolhart, P., 1997, Partitioning of translation along the left-slip Altyn Tagh fault system, northern Tibet, Geological Society of America Abstracts with Programs, v.29, m.6 p.Ao143.
    Yuan Chao, 1999, Magmatism and tectonic evolution of the Kunlun Mountains (Ph.D. Thesis). The University of Hong Kong.
    Yue, Yongjun and Liou, fuhnG., 1999,Two-stage evolution model for the Altya Tagh fault, China, Geology, v.27, p. 227-230.
    Zheng, J., 1991, Significance of the Altun fault of China, Episodes, v.14, p.307-312.
    Zhou D, Graham S A. Extrusion of the Altyn Tagh wedge: A kinematic model for the Altyn Tagh and palinspastic reconstruction of north China. Geology,1996,2 4 (5): 427—430.
    白文吉、杨经绥,青藏高原隆升的主因—大陆板内盆—山碰撞作用。长春地质学院学报,1987:17,131-142.
    白文吉、杨经绥,亚洲盆—山系及地质构造应力场分析。吉林地质,1995:第4期,33-40.
    柏美祥等,1987,阿尔金断层地震活动特征,中国地震,3(1).
    蔡学林、魏显贵、刘援朝,1992,阿尔金山走滑断裂构造样式,成都地质学院学报,19(1),8-17。
    车自成,孙勇.1996,阿尔金麻粒岩相杂岩的时代及塔里木盆地的基底.中国区域地质,15(1):51-57.
    车自成,良,刘洪福,罗金海.阿尔金断裂系的组成及相关中生代含油气盆地的成因特征.中国区域地质,1998,17(4):377—384.
    车自成,刘良,刘洪福.阿尔金地区高压变质泥质岩石的发现及其产出环境.科学通报,1995,40(14):1298—1300.
    车自成,刘良,孙勇.1995.阿尔金铅、钕、锶、氩、氧、同位素研究及其早期演化.地球学报,16(3):334-337.
    车自成,孙勇.阿尔金麻粒岩相杂岩的时代及塔里木盆地的基底.中国区域地质,1996,15(1):51—57.
    陈宣华,王小凤,张青,等.2000.郯庐断裂带形成演化的年代学研究.长春科技大学学报,30(3):215~220.
    崔军文,邓晋福,唐哲民.青藏高原北缘变形构造动力学的一些新认识.中国地质科学院院报,1994,29:145—146.
    崔军文,唐哲民,邓晋福,岳永军,孟令顺,余钦范等.阿尔金断褶系.北京:地质出版社,1999.
    邓晋福、赵海玲、莫宣学等。中国大陆根—柱构造—大陆动力学的钥匙。地质出版社,北京,1996.1—110。
    邓万明,1995,喀喇昆仑一西昆仑地区蛇绿岩地质特征及其大地构造意义,岩石学报,11(增刊):98-111.
    地矿部甘肃省地质局,玉门市幅,1:200000区域地质测量报告,1969,1—79。
    丁国瑜.阿尔金断裂的古地震与分段.第四纪研究,1995,2:97—106.
    方爱明、李继亮、侯泉林、李红生、郝杰,2000,新疆西昆仑“依沙克群”中的放射虫组合及其形成时代探讨,地质科学,35(2):212-218.
    葛肖虹,段吉业,李才等.阿尔金断裂与西北大地构造格局的新认识.见:肖庆辉等主编.地球科学进展.武汉:中国地质大学出版社,1996,9—18.
    葛肖虹,刘俊来.北祁连造山带的形成与背景.地学前缘,1999,6(4):223—230.
    葛肖虹,张梅生,刘永江.阿尔金断裂研究的科学问题与研究思路.现代地质,1998,12(3):295—301.
    葛肖虹、段吉业、李才等,1992,阿尔金断裂与西北大地构造格局的新认识,地球科学进展,北京:中国地质大学出版社。
    葛肖虹、刘俊来,1999,北祁连造山带的形成与背景,地学前缘,6(4),223-229。
    葛肖虹、刘俊来,北祁连造山带的形成与背景。地学前缘(中国地质大学,北京),1999:6(4)223—230。
    葛肖虹、张梅生、刘永红、叶慧文等,1998,阿尔金断裂研究的科学问题与研究思路,现代地质,12(3),295-301。
    郭召杰,张志诚,阿尔金盆地群构造类型与演化,地质论评,1998,44(4):357-364。
    郭召杰,张志诚,王建军.阿尔金北缘蛇绿岩的Sm—Nd等时线年龄及其大地构造意义.科学通报,1998,43(18):1981—1984.
    国家地震局《阿尔金活动断裂带》课题组,1992,阿尔金活动断裂带,北京:地震出版社。
    黄汉纯 王长利,1987,阿尔金构造带特征及其对塔里木和柴达木盆地的影响,中国地质科学院院报,17
    黄汉纯、黄庆华、马寅生,1996,柴达木盆地地质与油气预测,北京:地质出版社。
    姜春发、杨经绥、冯乘贵等,1992,昆仑开合构造,北京:地质出版社
    姜枚,许志琴,薛光琦,史大年.青海茫崖—新疆若羌地震探测削面及其深部构造的研究.地质学报,1999,73(2):153—161.
    解广轰、刘丛强、增田彰正、清水洋,青藏高原周边地区新生代火山岩的地球化学特征—古老富集地幔存在的证据。刘若新主编:中国新生代火山岩:年代学与地球化学,地震出版社,1992:400—427。
    金小赤、王军、任留东、陈炳蔚,1999,西昆仑地质构造的几个问题,见:马宗晋、杨主恩、吴正文编,构造地质学-岩石圈动力学研究发展,北京:地震出版社,105-113
    康玉柱,1995,塔里木盆地东南断块区构造演化及油气远景,西北油气勘查与开发,1,1-17。
    赖绍聪、邓晋福、赵海玲,等,1996,青藏高原北缘火山作用与构造演化,西安:陕西科学技术出版社,74-96
    李春昱,1980,中国板块构造轮廓,中国地质科学院院报,2(1):11-22.
    李海兵,东昆仑造山带南缘走滑断裂体系及伴随的花岗岩浆活动,中国地质大学硕士学位论文,1996.
    李海兵,杨经绥,许志琴,吴才来等,阿尔金走滑断裂带的形成时代,地质论评,2000(出版中).
    李海兵、杨经绥、许志琴、吴才来等,2001,阿尔金断裂带的形成时代,地质论评,5.
    李海兵、杨经绥、许志琴、吴才来等,2001,阿尔金断裂带印支期走滑活动的地质及年代学证据,科学通报,出版中.
    李怀坤,陆松年,赵风清,于海峰.柴达木盆地北缘鱼卡河柯石英榴辉岩的确定及其意义.现代地质,1999,13(1):43—50.
    刘良、车自成、罗金海、王焰等,1996,阿尔金山西段榴辉岩的确定及其地质意义,科学通报,41(16)
    刘良、车自成、王焰、罗金海等,1998,阿尔金茫崖地区早古生代蛇绿岩的Sm-Nd等时线年龄证据,科学通报,43(8):880-882
    刘良,车自成,罗金海等.阿尔金山西段榴辉岩的确定及地质意义.科学通报,1996,41(14):1485— 1488.
    刘良,车自成,王焰,罗金海,陈丹玲.阿尔金高压变质带的特征及其构造意义.岩石学报,1999,15(1):57—64.
    刘良,车自成,王焰等.阿尔金茫崖地区早古生代蛇绿岩的Sm—Nd等时线年龄证据.科学通报,1998,43(8):880—883.
    刘雪亚,王荃.龙首山古裂谷带及河西走廊的大地构造.中国地质科学院院报.1998,27—28:1—14.
    刘永江,叶慧文,葛肖虹,等,阿尔金断裂变形岩激光微区~(40)Ar/~(39)Ar年龄,科学通报,2000,45(19):2101-2104
    梅华林,于海峰等,甘肃北山地区首次发现榴辉岩和古元古花岗质岩石.科学通报,1988,43(19):2103—2111.
    穆志国,刘玉琳,黄宝玲.细粒橄榄石晶粒对中国晚新生代橄榄玄武岩K-Ar定年的影响.科学通报,1998,43(7):764-766。
    潘桂棠,焦淑沛,徐耀荣,王培生,向天秀.阿尔金山新生代构造及造山性质.见:青藏高原地质文集(15).北京:地质出版社,1984.113—119.
    潘桂棠,王培生,徐耀荣等.青藏高原新生代构造演化.北京:地质出版社,1990,32-68
    潘桂棠、焦淑沛、徐耀荣、王培生等,1984,阿尔金山新生代构造及造山性质,青藏高原地质论文集(15),北京:地质出版社。
    潘裕生,1989,昆仑山区构造区划初探。自然资源学报,4(3):196-203
    潘裕生,1994,青藏高原第五缝合带的发现与论证,地球物理学报,37(2):184-192
    青海省地质矿产局.青海省区域地质志.北京:地质出版社,1991.
    孙勇,车自成,刘池阳,等.1992.阿尔金隆起区下地壳断块的组成和构造意义.西北大学学报,22(增刊):101~113.
    王焰、刘良、车自成、等,1999,阿尔金茫崖地区早古生代蛇绿岩的地球化学特征,地质论评,45(增刊):1010-1014.
    王希斌、鲍佩声、邓万明等。喜马拉雅岩石圈构造演化—西藏蛇绿岩。地质出版社,1987:1—336。
    王云山,陈基娘.青海省及毗邻地区变质地带与变质作用.北京:地质出版社,1987.9~11.
    王志洪、李继亮、侯泉林、陈海泓,2000,西昆仑库地蛇绿岩地质、地球化学及其成因研究,地质科学,35(2):151-160.
    复林圻,夏祖春,徐学义.北祁连山的构造—火山—岩浆演化动力学.西北地质,1995,16:1—28.
    新疆地质局,中华人民共和国区域地质调查报告,索尔库里幅(1:200000),1981.
    新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志.北京:地质出版社,
    新疆维吾尔自治区地质矿产局.1993.中华人民共和国地质矿产部地质专报,一区域地质第32号 新疆维吾尔自治区区域地质志.北京:地质出版社.841.
    许志琴,杨经绥,姜枚,李海兵,等,阿尔金断裂两侧构造单元的对比及岩石圈剪切机制,地质学报,1999,73(3):193-205.
    许志琴,崔军文,张建新.大陆山链的变形构造动力学.北京:冶金工业出版社,1996.
    许志琴,徐惠芬,张建新等.北祁连走廊南山加里东俯冲杂岩地体及动力学.地质学报,1994,(1):1—14.
    许志琴,杨经绥,姜枚,李海兵.大陆俯冲作用及青藏高原周缘造山带的崛起.地学前缘,1999(3):139—151.
    许志琴、杨经绥、姜枚、李海兵,1999,大陆俯冲作用及青藏高原周缘造山带的崛起,地学前缘,6(3):139-151.
    许志琴、杨经绥、张建新、姜枚等,1999,阿尔金断裂两侧构造单元的对比及岩石圈剪切机制,地质学报,73(3),193-205。
    杨建军,朱红,邓晋福,周天祯,赖绍聪.柴达木北缘石榴石橄榄岩的发现及其意义.岩石矿物学杂志,1994,13(2):97—105.
    杨经绥,许志琴,李海兵,等,柴北缘大柴旦榴辉岩的发现及区域构造意义,科学通报,1998,43(14):1544-1549
    杨经绥、宋述光、许志琴、吴才来等,2001,柴达木盆地北缘早古生代高压-超高压变质带中发现典型超高压矿物-柯石英,地质学报,75(2):
    杨经绥、许志琴、李海兵、吴才来等,1998,柴北缘大柴旦榴辉岩的发现及区域构造意义,科学通报,43(14):1544-1549
    杨经绥、许志琴、宋述光、吴才来等,2000,青海都兰榴辉岩的发现及对中国中央造山带内高压-超高压变质带研究的意义,地质学报,74(2):157-168.
    杨树锋、陈汉林、董传万、沈晓华、齐德文、赵冬冬等,1999,西昆仑山库地蛇绿岩的特征及其构造意义,地质科学,34(3):281-288.
    张湖,1990,昆仑山的构造和组构:关于中古生代(晚泥盆世之前)变形的证据,见:青藏高原地质演化,科学出版社,344-347.
    张建新,许志琴,陈文等.北祁连中段俯冲增生杂岩/火山弧的时代探讨.岩石矿物学杂志,1997,(2):112—119.
    张建新,许志琴,崔军文.一个韧性转换挤压带的变形分解作用——以阿尔金断裂带东段为例.地质论评,1998,44(4):348—356.
    张建新,张泽明,许志琴,等.1999.阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄—阿尔金构造带中加里东期山根存在的证据.科学通报,44(10):1109~1112.
    张建新,张泽明,许志琴,杨经绥,崔军文.阿尔金西段孔兹岩系的发现及岩石学、同位素年代学初步研究.中国科学D辑,1999,29(3):245—251.
    张建新、张泽明、许志琴等,1999,阿尔金构造带撕段榴辉岩的Sm-Nd及U-Pb年龄,科学通报,,44(10)
    张治洮,1985,阿尔金断裂的地质特征,中国地质科学院西安地质矿产研究所所刊,7.20-32。
    张治洮,阿尔金断裂的地质特祉,见:中国地质科学院西安地质矿产研究所所刊,北京:地质出版社,1985,9:20-32
    郑剑东,阿尔金山大地构造及其演化,现代地质,1991,5(4):347-354.
    郑剑东,1994,中国阿尔金断裂研究进展,现今地球动力学研究及其应用,北京:地震出版社,254-259。
    郑剑东,阿尔金山大地构造及其演化,现代地质,1991,5(4):347-354.
    郑剑东.阿尔金断裂带的几何学研究.中国区域地质,1991,36:54—59.
    中法合作“阿尔金-祁连”项目组.1999.柴达木盆地北缘大柴旦榴辉岩同位素年代学测定结果.中国区域地质,18(2):224.
    中国科学院地质研究所等,祁连山地质志,第二卷第二分册,科学出版社,1962:116—140。
    周勇,潘裕生.阿尔金断裂早期走滑运动方向及其活动时间探讨.地质论评,1999,45(1):1—9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700