等离子体弧变厚度切割工艺参数控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体弧切割因具备切割速度快、切割面光滑、容易设定切割条件、适合自动化、无人化作业等优点,正逐步在板材切割中占据主导地位。在实际生产中存在大量变厚度工件的切割,如果在此类工件的等离子体弧切割仍然沿用切割等厚度板的方式设定工艺参数,将造成切割质量的不稳定,增加了后续处理工作的难度。
     等离子体弧切割是通过高温等离子体弧将工件弧柱部分的材料熔化并利用高速离子流将切渣吹除的物理过程,弧柱的功率和作用力将直接影响到切口质量。当工件的几何尺寸发生改变时,弧柱的功率和作用力应该随之而改变。弧柱功率的大小和作用力又与等离子体弧的切割电压、切割电流、压缩空气的压力和流量、电极与喷嘴的同心度、电极与喷嘴的距离、喷嘴直径的大小以及等离子体弧切割速度有关。分析和掌握上述工艺参数对等离子体弧切割质量的影响规律是合理调整等离子体弧切割工艺参数的前提和基础。
     本文将从两方面来讨论对等离子体弧切割工艺参数的切割质量影响规律以及调整方法。一是根据工件厚度的变化来调整等离子体弧切割速度,即改变单位体积上工件所吸收的功率。二是调整等离子体弧的切割电压或者切割电流,即改变等离子体弧的输入功率。重点研究对切割速度的调整以及实现方法。
     基于弧柱双区域理论,本文通过建立数学模型对等离子体弧柱特性进行了研究,讨论了在一定条件下喷嘴出口处压力、弧半径、切割电压、弧柱功率、作用力与切割电流之间的关系,为合理的调整等离子体弧工艺参数从而调整等离子体弧柱的功率提供理论依据。
     根据热传导的平衡方程,本文建立了等离子体弧切割热传导损失的数学模型,推导了等离子体弧切割过程中温度场分布的数学公式。将温度场公式进行变换,就可以根据工件材料的熔点求得将工件切透所需输入的功率。根据切割材料的相变,结合热传导平衡方程可以用来估算等离子体弧的最佳切割速度。
     现代制造系统应该能在指定的时间内满足消费者对新产品的不同要求,同时也要适应迅速发展的计算机技术。在本文中,我们研究了一种针对基于个人计算机的开放式等离子体弧切割控制系统的模块化实现方法。针对等离子体弧切割的特殊性,讨论了等离子体弧切割系统的抗干扰措施。
     本文的最后部分对等离子体弧切割变厚度板材进行实验研究。根据前面讨论的数控等离子体弧切割系统的技术方案组装了一套开环控制的简易切割装置。选择了几种不同厚度试件进行了大量的切割实验,分析了切割速度对各种厚度板材的切口宽度、挂渣情况、切割面割纹深度等切割质量的影响规律。实验验证,通过改变切割速度提高变厚度工件的切割质量是可行的。
     上述研究工作为发展变厚度板材等离子体弧切割技术,扩展等离子体弧切割技术的应用范围,为最终形成三维零件的等离子体弧加工技术提供了参考依据。
Plasma arc cutting plays a significant role for its traits such as the faster cutting velocity, the smooth cutting surface, the easily setting condition, the application fitting for automatic operation. In actual production there are lot of variable thickness panels cutting, the cutting quality will be unstable if process parameters are set according to the way cutting ordinary plates, which will increase difficulty of follow-up procedure.
    Plasma arc cutting is a physical process which utilize high temperature to heat materials and high speed flow to blow melted metal, cutting quality is directly influenced by arc power and arc force. When the change takes pace in the size of geometry of work piece, the arc power and arc force should change with it. There are a lot of factors that influence the arc power and arc force. These factors include cutting voltage, cutting current, pressure and runoff of air, tungsten setback, nozzle diameter and cutting speed. To analyze and know the rules above-mentioned process parameters influence the quality of plasma arc cutting is the foundation and premise to adjust the optimum process parameters of plasma arc cutting.
    This article will proceed discuss the influence of mechanical properties on cutting quality from two aspects. The first step is to change cutting speed according to the thickness of work piece, which means to change the absorbed heat of unit. The second step is to change the arc current or the arc voltage, which means to change inputting power. It will be the focus of this article to discuss the adjustment of cutting speed and its implementation method.
    In accordance with a two-zone approximation of the arc column, a model has been developed to study the properties of plasma arc cutting process. The results of the pressure at the nozzle, arc radius, arc voltage, arc power, arc force exit as a function of arc current have been obtained for a range of operating conditions. It provides the theoretical foundation to adjust the arc process parameters of plasma arc cutting rationally in order to adjust the arc power.
    According to the equation of the heat conduction a plasma arc cutting mathematics model is founded, this article deduces a temperature distribution by solving the model. By switching temperature field formula arc power absorbed for cutting can be obtained with melting point of material. Contacting the phase transformation enthalpy of material with heat-conduction equation, an appropriate cutting speed can be then predicted in plasma arc cutting.
    A modern manufacturing system should have the capability to meet consumer's various demands to new products within a certain designated time. Also, it should be able to accommodate the rapid development of computer technologies. In this paper, a modular and object-oriented approach for the PC-based open plasma arc cutting control system is investigated. In addition, the corresponding methods of anti-interference are described according to property of plasma arc cutting.
    In the finality of this article an experiment study about plasma arc cutting variable-thickness plate is introduced. According to the above-mentioned technique project
    
    
    about simple NC system for plasma arc cutting, an experimental equipment based on open-loop control is made. In the experiment different samples were cut using plasma, and the rules of cutting dap, cutting residue and height of chamfer affected by cutting speed is analyzed. The result demonstrated that the way of adjusting cutting speed is obtained.
    Acted as a reference, the research above- involved will promote the development of the technology of plasma arc cutting variable-thickness plate, extend the applications of plasma arc cutting, and development three-dimensional plasma arc cutting finally.
引文
[1] 梁桂芳.造船中型钢切割加工自动化和机器人化.造船技术,1995(11):41
    [2] 刘传锚.造船数控切割技术的新发展.焊接与切割,造船技术,1996(12)27~29
    [3] 戴俊平.管接头切口相贯线加工装置设计.陕西工学院学报,1996,12(2):77
    [4] 薛振奎,隋永莉.国内外油气管道焊接施工现状与展望.焊接技术,2001(30):16
    [5] 梁桂芳.切割技术手册[M].北京:机械工业出版社,1997
    [6] 胡传炘.特种加工手册.北京:北京工业大学出版社,2001.4:257~258
    [7] 陈集,赵红,等.纵向磁场约束等离子弧的实验研究.齐齐哈尔轻工学院学报,1997.3(13):41~43
    [8] 徐文骥,方建成,等.工程陶瓷的等离子弧加工技术.中国机械工程,2003.5(10):
    [9] 徐文骥,方建成.水磁综合约束等离子弧加工陶瓷方法研究.大连理工大学学报.2003.1(1):57~61
    [10] Zhijian Peng, Hezhuo Miao, etc. Hard and wear-resistant titanium nitride films for ceramic cutting tools by pulsed high energy density. Surface and Coatings Technology.2003, (166): 183~188
    [11] Gottlieb S.Oehrlein. Surface processes in low pressure plasma. Surface Science. 1997 (386): 222~230
    [12] 张光明,金庆辉.等离子弧工作气体的选择.安装,1995:4~5
    [13] A.P.Hoult, I.R.Pashby, K.Chan. Fine plasma cutting of advanced aerospace materials, Journal of Materials Processing Technology 1995 (48):825~831
    [14] 山口义博,加端哲也,藏冈一浩.用旋转气流控制切割端面的钢板高速高精度等离子切割.制造技术与机床,2001.10:51~54
    [15] J.Szulc. Improving the durability of the electrodes for an air-plasma cutting system using the diffusion-bonding process,journal of Advanced Manufacturing Teehnology. 1995 (54): 166~170
    [16] 梁桂芳.等离子弧切割技术的新发展.焊接与切割,1995(2):29
    [17] 王连仲,崔永元.国内外数控等离子切割技术的发展趋势.机械工人,2002
    [18] 杨皖苏.我国经济型机床数控系统发展现状与对策的研究.组合机床与自动化加工技术,1996(11):40~44
    [19] 廖德岗.开放式数控系统的研究及其发展现状.机械,1996(3):13~15
    [20] Keum-Shik Honga, Kyung-Hyun Choib, Jeom-Goo Kimc, Suk Leea. A PC-based open robot control system: PC-ORC, Robotics and Computer Integrated Manufacturing ,2001 (17) :355 - 365
    [21] Stephen J.Bober, Yung C.Shin. Modeling and Control of CNC Machines Using A PC-based Open Architecture controller. Modeling and control of CNC Machines, 1995, 5 (4) : 401~420
    [22] 赵家瑞.等离子弧切割技术的发展动向.石油工程建设,1998(5):9
    [23] 黄大华.大电流脉冲电源的研究.四川轻化工学院学报,1998.12(11):42~45
    [24] 史重光.微机控制大功率脉冲电源.青岛海洋大学学报,1999.10(4):680~684
    [25] 朱国宝.IGBT逆变式等离子弧切割电源.新技术新工艺,1997(2):4~5
    [26] 柳刚,胡绳荪,杨立军.新型逆变切割电源的研制.天津大学学院报,1995,28(24):558
    [27] M.Φ.茹科夫,A.C.科罗捷耶夫,B.A.乌柳科夫.热等离子体实用动力学——电弧等离子体发生器的物理过程[M].北京:科学出版社,1981:140~166
    
    
    [28] 过增元,赵文华.电弧和热等离子体.北京:科学出版社,1986:22~35
    [29] 雷玉成,郑惠锦.工艺参数对焊接等离子弧的影响.焊接学报,2001,22(6):73~76
    [30] Ramakrishnan, S, Rogozinski M W. Properties of electric arc plasma for metal cutting[J]. Journal of Physics, 1997, 30(4):636~644
    [31] 许波,刘征.Matlab工程数学应用[M].北京:清华大学出版社,2001,4:283~342
    [32] Carl E.Leshock, Jin-Nam Kim, Yung C. Shin. Plasma enhanced machining of Inconel 718: modeling of workpieee temperature with plasma heating and experimental results. International Journal of Machine Tools & Manufacture. 2001(41) :877~897
    [33] I.Black, K.L.Chua. Laser cutting of thick ceramic tile. Optics & Laser Technology,1997,29(4):193~205
    [34] J.Uhlenbusch, U.bielesh, S.Klein, M.Napp,J.H.Sehafer. Recent developments in metal processing with pulsed laser technology. Applied Surface Science. 1996 (I06):228~234
    [35] Valerian A.Nemchinsky. The role themo capillary instability in heat transfer in a liquid metal pool. int.J.Heat Mass Transfer. 1997,40(4): 881~891
    [36] B.S.Yilbas & A.Kar. Thermal and Efficiency Analysis of CO_2 Laser Cutting Process. Optics and Laser in Engineering. 1998(29):17~32
    [37] Ramakrishnan, S.Gershenzon, etc. Plasma generation for the plasma cutting process. IEEE Transactions on Plasma Science. 1997. 25(5)
    [38] 周锦进等.等离子体加工热过程计算与分析.大连理工大学学报,1992(3)P292~296
    [39] Valerian A Nemchinsky, Dross formation and heat transfer during plasma arc cutting, 1997
    [40] I Lira C K.Numerical modeling of reactive gas assisted laser cutting of metals:[Ph.D.Dissertation].Iowa State University, 1995:126~131
    [42] 王补宣.工程传热传质学[M].北京:科学出版社,1982:98~108
    [43] 清华大学数学教研组编.特殊函数讲义[M].北京:清华大学出版社,1978,6
    [44] 许波,刘征.Matlab工程数学应用[M].北京:清华大学出版社,2001,4:283~342
    [45] 刘井利.利用matlab实现温度场数据可视化。现代计算机,2001.4:30~31
    [46] 李东辉,辛启斌,等.利用matlab软件可视化铸件三维温度场.沈阳工业学院报,2001,20(3):5~10
    [47] 《机械工程材料性能数据手册》编委会.编机械工程材料性能数据手册.北京:机械工业出版社,1995
    [48] 邹进,黄素逸.相变热传导的计算.能源技术,2003.3(1):11~14
    [49] Giovanni Tani, Luca Tomesani, Giampaolo Campana. Prediction of melt geometry in laser cutting. Applied Surface Science. 2003:208~209
    [50] 杜汉斌,刘建华,胡席远,胡伦骥.激光切割热传导损失数值计算方法.机械工程学报.2001.5(5):72
    [51] 刘全秀,朱志红,唐晓琦,田文超.数控系统中DSP运动控制卡的设计与实现.机械工程师,2000,10:29~31
    [52] 北京东方嘉志机电技术有限公司.嘉志6020系列全数字伺服/步进电机控制卡使用说明书,2000
    [53] 戴向国,傅水根,等.基于ISA总线的步进电机控制卡设计.机械与电子,2001(5):31~32
    
    
    [54] 闫如忠,陈云.基于ISA总线伺服控制卡的研制.设计与研究,2001(12):10
    [55] 徐志明,陈金成,等.Windows平台上三轴联动数控雕刻机的开发.设计与研究,2002(4):16~18
    [56] 徐志明,等.Windows平台上三轴联动数控雕刻机的开发.设计与研究,2002(4):16~18
    [57] 李旗号,王建滨.基于Windows95的步进电机控制卡实时驱动.组合机床与自动化加工技术,1999(10):22~23
    [58] 刘宝延,程树康.步进电动机及其驱动控制系统,哈尔滨:哈尔滨工业大学出版社,1997.11:11~18,257
    [59] DavidJ.kruglinsky,等.visual c++6.0技术内幕.北京:北京希望电子出版社,1999
    [60] Jeff Prosise.MFC Windows程序设计.北京:清华大学出版社,2001.9:721~755
    [61] 朱忠尼,李建平,亓迎川.一种高频引弧器的设计.电力电子技术,1998(4):55
    [62] 陈明君,李旦,李家宝,葛鸿翰.激光—CCD厚度检测系统的研究.机械工程师,1996,5:3~4
    [63] 石,樊丁,姚洪杰.弧焊机器人用数控焊接变位机控制中的零漂和干扰问题.甘肃工业大学报,2001.9(3):2
    [64] 颜拥军,黎民英,肖新跃.数控等离子切割系统的抗干扰措施.电焊机,2003,3(3):38~39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700