铁道道岔控制大功率双稳态电磁阀及驱动器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过研究和总结当前国内外铁道道岔控制大功率双稳态电磁阀的现状,分析当前工程应用中常见电磁阀的优点与不足,创造性的设计了一款大功率双稳态电磁阀及其外围控制驱动电路。
     目前铁道道岔控制中常见的国产电磁阀开启力最大一般在400N左右,响应时间为10ms级,与国外先进水平有一定的差别,有待提高。本文从电磁原理和电动力学着手,设计了一款新型电磁阀,包括永磁部分和电磁部分。在设计中,永磁和电磁两部分根据磁场计算、仿真进行最优化组合。当阀体线圈不通电时,在永磁铁作用下,电磁阀能保持需要的状态;当阀体线圈通电工作并运行于开启状态时,驱动器接收到正向触发信号,正向电流通过阀体线圈,产生正向电磁力,此时永磁磁力与电磁力方向一致,两磁力合力作用阀芯输出,实现电磁阀开启工作;当控制系统发出换向指令时,驱动器接收到反向触发信号,驱动电流快速换向,阀体线圈工作状态正好与开启过程相反,从而永磁体和阀体线圈产生与开启状态相反的合力,实现电磁阀的换向工作。通过磁场理论计算,并严格按照磁路分布曲线、整体应力布局曲线实物建模,辅以Ansoft软件仿真,本设计最终将电磁阀设计结构合理化、各项设计参数最优化。同时由于大功率的需要,本设计采用高速通断器的控制方式。辅以增加电流综合保护及其它保护功能。系统的储能性和可靠性得到了很大提升。经过试验,结果表明:大功率双稳态电磁阀永磁和电磁两部分结构取得最优化组合方式,磁力线布局合理、有效磁场整体应力作用趋于最大化;电磁阀响应时间有了很大的突破,接近ms级;在开启时间理想状态下,初步开启力达到换向工作力为580N。较好的完成了预期设计目标,在前人的基础上有所创新。
     另外,对通入大电流时,设计上充分考虑了电磁干扰、电路可靠性等因素,尽量做到兼顾阀体大功率特性的同时,控制系统响应状态良好,能达到预期目标,从而使双稳态电磁阀具有良好的动态性能和理想的输出力。
Based on the previous studies and researches on the status of large-power bistable electromagnetic valve in and out of China, this study analyzes the advantages and disadvantages of large-power electromagnetic valve in current project applications, and creatively designed a new electromagnetic valve and its outer drives circuit.
     The starting power of a common electromagnetic valve can reach 400N, which is much lower than those used abroad. In addition, the response time is much longer. The authors of this paper have successfully designed a new type of electromagnetic valve including a permanent magnet part and a electromagnet part, based on electromagnetic and electro-dynamic theories.
     Based on a large amount of magnetic theoretical calculations, the initial model has been set up, which is supplemented by Ansoft magnetic field simulation. The designers have been in strict accordance with the distribution of the magnetic circuit simulation curve and the overall stress distribution curves. The structure of solenoid valve has been greatly rationalized and optimized. At the same time, further tests have been carried out in order to restructure and improve magnetic Road, and thus to ensure that all design parameters are accurate. At the same time, because of a need for high-power, this design employed high-voltage circuit breakers as a control method to enforce the current breaker protection and other related protections. Based on a large amount of magnetic theoretical calculations, the initial model has been set up, which is supplemented by Ansoft magnetic field simulation.
     The designers have been in strict accordance with the distribution of the magnetic circuit simulation curve and the overall stress distribution curves. The structure of solenoid valve has been greatly rationalized and optimized. At the same time, further tests have been carried out in order to restructure and improve magnetic Road, and thus to ensure that all design parameters are accurate. At the same time, because of a need for high-power, this design employed high-voltage circuit breakers as a control method to enforce the current breaker protection and other related protections.
     In this way, system storage ability and reliability have been greatly improved. What’s more, response time of bitable electromagnetic valve has been shortened, which is close to ms grade. With regard to the opening force, under an ideal condition, the initial pressure is around 580N. So this better design is very innovative comparing to the previous studies and applications.
     ANSOFT simulation experiments and theoretical calculations show that this design is more reasonable, and the structure of permanent magnet part and electromagnetic part is optimized to a greatest extent. The layout of magnetic line is also reasonable, and effective role of the magnetic field tends to maximize the overall stress; In addition, the design fully taken into account the impact of electromagnetic, circuit reliability and other factors, when the current is large. The power system meets the requirements of the project and the control system works in good conditions. This design has achieved the expected goal to make bitable electromagnetic valve in good dynamic performance.
引文
[1] 王兴培等.欧洲电磁阀技术新动向[J].石油化工自动化,2004.4:87-88
    [2] 加藤勉.电磁阀和电动阀[J].国外技术,1993:34-37
    [3] [美]R.C.奥汉德利.现代磁性材料原理和应用.北京:化学工业出版社,2002 P21
    [4] 龙毅,张正义,李守卫.新功能磁性材料及其应用.北京:机械工业出版社, 1997 P11
    [5] 周志刚.铁氧体磁性材料,北京:科学出版社,1981, P13
    [6] [德]R.波尔.软磁材料.北京:冶金工业出版社,1985 P67
    [7] Seilly A H. Helenoid actuators-a new concept in extremely fast acting solenoids. SAE paper 790119
    [8] 李文彬.磁力应用工程.兵器工业出版社.1991
    [9] 周增寿,董清飞.超强永磁体一一稀土铁系永磁材料.冶金工业出版社.1991
    [10] 胡光之.电机电磁场的分析与计算.机械工业出版社.1982
    [11] Ansoft company user manual. Ansoft help of magnetostatic,1998
    [12] Ansoft company user manual. Ansoft help of transient,1998
    [13] M.V K.查利,P.P 席尔凡斯特.电磁场问题的有限元解法.北京:科学出版社.1985
    [14] Wang Ailong etc. Analysis of magnetic field in an air gap due to permanentmagnets. 2002 linear motor conference
    [15] 卓忠疆,机电能量转换.北京:水利电力出版社.1987.9
    [16] 雷天觉主编.液压工程手册.机械工业出版社.1989.5
    [17] 苗建中等.螺纹插装式高速电磁阀.液压与气动.1993.6
    [18] 王熙.电控直线泵-管-阀-嘴燃油喷射系统的模拟计算与应用.清华大学硕士学位论文.1998.5
    [19] [苏]N.C 塔耶夫著.电器学.机械工业出版社.1981
    [20] 张敬国,陈兵,汪志刚,崔可润.电控柴油机用大流量高速电磁阀测试装置研制.武汉理工大学学报.2003.2
    [21] QH8500 系列电涡流传感器系统用户手册,清华大学精密仪器与机械学系传感器研究室.
    [22] 周生国,李世义等.机械工程测试技术.北京理工大学出版社.1993
    [23] 交通部.道路货物运输及站场管理规定.交通部令 2005 年第 6 号.2005
    [24] 唐兴伦,范群波,张朝晖,李春阳等.ANSYS 工程应用教程(热与电磁学篇).中国铁道出版社.2003
    [25] 冯康.有限元方法.数学的实践与认识.1974
    [26] 林渭勋等电力电子技术基础.北京.机械工业出版社.1990 年 10 月 7
    [27] 林谓勋现代电力电子电路.杭州.浙江大学出版社.2002年7月
    [28] 王 小 传 . 电 磁 铁 的 结 构 、 参 数 和 常 见 的 故 障 现 象 [[J]. 机 电 工 程 ,2003.20(3):52-54
    [29] Lucien Siffroi(法).电磁铁[J].低压电器,1991(3):54-59
    [30] 杨祈新.电磁铁应用设计计算方法[[J].机床电器,1996(1):4446
    [31] 李泉凤编著,电磁场数值计算与电磁铁设计.清华大学出版社.2002
    [32] 秦 世 耀 等 .永 磁 电 机 气 隙 磁 场 的 解 析 分 析 [J].太 原 理 工 大 学 学 报 ,2002.3:121-124
    [33] Guerrassi N etc. A Common Rail Injection System for High-speed, Direc-injection Engine. SAE Special 980803
    [34] Miyaki M etc. Development of New Electronically Controlled Fuel Injection System ECD-U2 for Diesel Engine. SAE paper 910252
    [35] Komiyma K. Electronically Controlled High Pressure Injection System for Heavy Duty Engine-KOMPICS. SAE paper810997
    [36] 刘星平.功率场效应管的驱动电路的研究.电气开关.2002.2:1-3
    [37] 汤东胜,昊光强,周凡华.基于有限元法的 ABS 高速开关电磁阀性能分析.同济大学学报.2003.31(6):724-727
    [38] 安琳,刘志珍,赵琳.电磁阀的有限元法磁场分析及吸力计算.山东大学学报(工学版).2004.34(6):27-31
    [39] Weston A Anderson. Electrical current shims for correcting magnetic fields. Review of Scientific instruments.
    [40] 雷银照.轴对称线圈磁场计算.中国计量出版社,1991
    [41] 任耀先.电磁铁优化设计[M].北京:机械工业出版社,1990
    [42] Chen C W. Magnetism and Metallurgy of soft Magnetic Materials[M]. New York: North-Holland Publishing Company,l977
    [43] Shchuchinskii SK.Mathematical Simulation and Automation of the Design of Electromagnetic Valve Drives.Chemical and Petroleum Engineering, Vol32, Iss 5, 1996, p466
    [44] 葛伟亮,贺力勤.电磁控制元件.北京:北京理工大学出版社,2001, P11
    [45] Hesham Rakha, Bryan Katz, and Ahmed AI-Kaii. Field evaluation of weigh-in-motion screening on truck weigh station operations. In: Intelligent Vehicles Symposium, 2003. Proceedings.2003,74-79
    [46] 国家技术监督局.GB/T 1239.6-1992 圆柱螺旋弹簧设计计算.1992-11-11
    [47] 国家工业机械局.JB/T 10078-1999 弹性敏感元件用合金带材.中华人民共和国机械行业标准.1999-5-14
    [48] 张三慧.力学.第二版.北京:清华大学出版社,1999,130-138
    [49] 松井邦彦[日].传感器实用电路设计与制作.梁瑞林译.北京:科学出版社,2005,164-175
    [50] 郁 有 文 ,常 健 .传 感 器 原 理 及 工 程 应 用 .西 安 :西 安 电 子 科 技 大 学 出 版社,2000,1-46
    [51] 吴道悌.非电量电测技术.第二版.西安:西安交通大学出版社,2001,5-42
    [52] 孙立民,王晓波等. 组合碟簧的刚度研究.郑州:郑州大学学报,2007,28卷 3 期
    [53] Palmer P R, Githiari A N . The Series Connection of IGBT’s with Optimized Voltage Sharing in the Switching Transient[J].Proc IEEE PESC. 1995 (1)
    [54] 孙张.大功率 IGBT 模块并联使用中动静态均流特性研究[f].电工技术杂志.2004(9)
    [55] 段 善 旭 .IGBT 开 关 过 程 仿 真 分 析 中 的 Pspice 应 用 研 究 [J]. 电 气 传动.1999(7)
    [56] 查中森,郑建勇.IGBT 动态均压研究[J].电力自动化设备.2005 (3)
    [57] 王雪茹.大功率 IGBT 模块并联特性及缓冲电路研究.硕士学位论文.西安:西安理工大学.2004
    [58] 隋鲁波,呼志杰,王学礼.大功率整流模块中的开关管并联工作分析.半导体技术.2005. 30 (1) : fig69-71
    [59] Sasagawa K, Abe Y, Matsuse K. Voltage-balancing method for IGBT’s connectec in series.2005.200-268
    [60] 唐欣,罗安,李刚.大功率绝缘栅双极晶体管模块缓冲电路的多目标优化设计.中国电机工程学报.2004. 24(11):144-147
    [61] 杨 岳 峰 , 张 奕 黄 .IGBT 的 瞬 态 保 护 和 缓 冲 电 路 .电 机 电 器 技 术 .2003 (3) :10-11
    [62] 童诗白.模拟电子技术基础.第二版.北京:高等教育出版社.1998,401-428
    [63] 吴京秋. IGBT 应用于固态断路器中的关键技术研究:[南京理工大学硕士学位论文].南京:南京理工大学图书馆,2007,1-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700