冻土未冻水含量测试新方法的试验和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出了一种冻土未冻水含量测试新方法。通过分析冻土冻融过程中时间-温度变化曲线,推求了冻融过程中各自的未冻水含量特征曲线。以粘土为例,比较粘土冻融过程中的未冻水含量曲线,观察和分析了未冻水变化的滞后现象。讨论和修改了未冻水含量特征曲线经验拟合公式成立的前提条件,提出了正融过程中未冻水含量特征曲线的经验公式。利用该方法研究了粉土、粘土和粉质粘土在融化过程中的相变特点。探索了冻土正融过程中CT图像灰度值的变化特征,试验结果表明:在冻土温度上升和融化过程中灰度均值随时间呈明显上升趋势;在冻土融化完成时刻,时间-灰度关系图像上有一个明显的折点,是冻土融化完成的标志。结合随机介质理论方法和前苏联一维融土层沉降公式,建立了反映土压力对地表沉降量影响的计算模型。不仅考虑了融化系数的作用,同时也考虑了土体压力的压密作用。结合某地铁联络通道冻结工程,预测分析了正融过程中的地表沉降量。
A new test method is proposed to measure the unfrozen water content in frozen soil. Each characteristic graph of unfrozen water is obtained by analyzing temperature-time history during freezing and thawing. The hysteresis of clay was be observed and analyzed by comparing its characteristic graphs of unfrozen water for freezing hand thawing. The assumptions of fitting unfrozen water content curve were discussed and revised, and then a semi-empirical characteristic curve of unfrozen water content during thawing is presented. The characteristic of silt, clay and silty-clay during phase transition are researched by analyzing their test results with this method. The feature of CT images grayscale of frozen soil during thawing is explored. The result discovers that the average grayscale increase obviously as temperature of frozen soil rise and during its thawing. However, after sample thaw complete, the average grayscale is not practically changing even temperature still rising. There is a break point is obviously observed at graph of grayscale-time at the moment of phase-transition finished, which is considered as a symbol of frozen soil melting complete. A mathematical model of ground settlement which include earth pressure and thaw-settlement coefficient is built by combining stochastic media theory with one dimension settlement formulas of thaw soils (former Soviet Union). The model is applied to a lateral artificial freezing engineering of connect aisle for predicting the ground settlement.
引文
1. H.A.崔托维奇.冻土力学[M].张长庆等,译.北京:科学出版社,1985
    2. C.C.维亚洛夫.冻土流变学[M].刘建坤,刘尧军,徐艳,译.北京:中国铁道出版社,2005
    3. 陈肖柏,刘建坤,刘鸿旭,王雅卿.土的冻结作用与地基[M].北京:科学出版社,2006
    4. 张咸恭.工程地质[M].北京:地质出版社,1983
    5. Arvind Phukan. Frozen Ground Engineering [M]. Published by PRENTICE-HALL. INC.1985
    6. Anderson,D.M.and Hoekstra,P.,1965,Migration of interlamellar water during freezing of Wyoming bentonite,Soil Sci.Soc.Amer.Proc., Vol.29,pp498-504
    7. Turov, V.V., Leboda, R.,1999. Application of'H NMR spectroscopy method for determination of characteristics of thin layers of water adsorbed on the surface of dispersed and porous adsorbents. Advances in Colloid and Interface Science 79,173-211
    8. Watanabe, K., Mizoguchi, M.,2002. Amount of unfrozen water in frozen porous media saturated with solution. Cold Regions Science and Technology 34,103-110.
    9. Swenson, J., Bergman, R., Longeville, S.,2002. Experimental support for dynamic transition of confined water. Journal of Non-Crystalline Solids 307-310,573-578
    10. Bronfenbrener, L., Korin, E.,2002. Experimental studies of water crystallization in porous media. Chemical Engineering and Processing 41,357-363
    11. Kozlowski, T.,2003a. A comprehensive method of determining the soil unfrozen water curves:1. Application of the term of convolution. Cold Regions Science and Technology 36,71-79
    12. Kozlowski, T.,2003b. A comprehensive method of determining the soil unfrozen water curves:2. Stages of the phase change process in frozen soil-water system. Cold Regions Science and Technology 36,81-92
    13. Yoshikawa, K., Overduin, P.P.,2005. Comparing unfrozen water content measurements of frozen soil using recently developed commercial sensors. Cold Regions Science and Technology 42,250-256
    14. Fen-Chong, T., Fabbri, A.,2005. Freezing and thawing porous media:experimental study with a dielectric capacitive method. Comptes Rendus Mecanique 333,425-430
    15. Fabbri, A., Fen-Chong, T., Coussy, O.,2006. Dielectric apacity, liquid water content, and pore structure of thawing-freezing materials. Cold Regions Science and Technology 44,52-66
    16. Ivanov, N. S.1962. Heat Exchange in Permafrost. Nauka, Moscow
    17. Anderson, D.M., Tice, A.R.,1973. The unfrozen interfacial phase in frozen soil water systems. Ecological Studies 4,107-125
    18. Akagawa, S.1998. Experimental study of frozen fringe characteristics. Cold Reg. Sci. Technol.15(3):209-23
    19. Anderson, D.M., and A. R. Tice.1972. Predicting unfrozen water contents in frozen soils from surface area measurements. In Frost Action in Soils. Washington, D.C.:National Academy of Science, pp. 12-18(Highway Res. Rec.393)
    20. Anderson, D. M., A. R. Tice, and H. L. McKin.1973. The frozen water and the apparent specific heat capacity of frozen soils. In North Am. Contrib.,2nd Int. Conf. on Permafrost, Yakutsk, USSR. Washington, D.C.:National Academy of Science, pp.289-95
    21. Kay, B., M. Fukuda, H. Izuta, and M. Sheppard.1981. The importance of water migration in the measurement of the thermal conductivity of unsaturated frozen soils. Cold Reg. Sci. Technol.5:95-106
    22. Oliphant, J. L., A. R. Tice, and Y. Nakano.1983. Water migration due to a temperature gradient in frozen soil. In Proc.4th Int. Conf. on Permafrost, Fairbanks, Alaska. Washington, D.C.:National Academy Press, vol.1, pp.951-956
    23. Patterson, D.E., and M. W. Smith.1981. The measurement of unfrozen water content by time-domain reflectometry:Results from laboratory tests. Can. Geotech. J.18(1)131-44
    24. Smith, M.1984. Soil freezing and frost heaving at the Caen experiment. In Proc. Seminar on Pipelines and Frost Heave, Caen, France. Ottawa:Carleton University, pp.19-22
    25. Smith, M. W.1985. Observation of soil freezing and frost heave at Inuvik, Northwest Territories, Canada. Can. J. Earth Sci.22(2):283-90
    26. 徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2010
    27. Tice, A. R., D. M. Anderson, and A. Banin.1976. The Prediction of Unfrozen Water Contents in Frozen Soils from Liquid Limit Determination. U.S. Army Cold Regions Research and Engineering Laboratory Report CRREL 76-81
    28. 南京水利科学研究院土工研究所.土工试验技术手册[M].北京:人民交通出版社,2003:30-31
    29. Radoslaw L. Michalowskia.1993. A constitutive model of saturated soils for frost heave simulations. Cold Regions Science and Technology Vol 22, NO.1, pp.47-63
    30. Kozlowski.,2007. A semi-empirical model for phase composition of water in clay-water systems. Cold Regions Science and Technology 49 226-236
    31. Kozlowski, T.,2004. Soil freezing point as obtained on melting. Cold Regions Science and Technology 38, 93-101
    32. 陈友昌,张显风,义宗贞.冻土未冻水含量测试装置(测试盒)[J].油气田地面工程,1995,14(4):49-51
    33. 张立新,徐学祖,张招祥,等.冻土未冻水含量与压力关系的实验研究[J].冰川冻土,1998,20(2):12
    34. 尚松浩,毛晓敏.基于BP神经网络的土壤冻结温度及未冻水含量预测模型[J].冰川冻土,2001,23(4):414-418
    35.王丽霞,胡庆立,凌贤长,等.青藏铁路冻土未冻水含量与热参数试验[J].哈尔滨工业大学学报,2007,39(10):1660-1663
    36. 林文生,罗佩芳.未冻水在冻土热状况数值模拟中作用的分析[J].肇庆学院学报,2007,28(2):18-22
    37.宋高举,王亚琴.冻融过程中未冻水含量滞后现象的非线性分析[J].给水排水,2008,34(增刊):118-121
    38. 覃英宏,张建明,郑波,等.基于连续介质热力学的冻土中未冻水含量与温度的关系[J].青岛大学学报(工程技术版),2008,23(1):77-82
    39. 冷毅飞,张喜发,杨凤学等.冻土未冻水含量的量热法试验研究[J].岩土力学,2010,31(12):3758-3764
    40. 刘波,吉海军,李东阳,等.郭屯立井深部人工冻土的CT力学试验研究[C].//煤炭科学与技术研究论文集.北京:煤炭工业出版社,2010:211-217
    41. 依艳丽.土壤物理研究方法[M].北京:北京大学出版社,2009,94-95
    42. 杨更社,谢定义,张长庆,等.岩石损伤特性的CT识别.岩石力学与工程学报[[J].1996,15(1):48-54
    43. 党发宁,尹小涛,丁卫华,杨红喜,秦广平.基于CT试验的岩体分区破损本构模型[J].岩石力学与工程学报,2005,24(22):4003-4009
    44. 党发宁,刘彦文,丁卫华,陈厚群.基于破损演化理论的混凝土CT图像定量分析[J].岩石力学与工程学报,2007,26(8):1588-1593
    45. 尹小涛,王水林,党发宁,丁卫华,陈厚群.CT实验条件下砂岩破裂分形特性研究[J].岩石力学与工程学报,2008,27(1):2721-2726
    46. 胡勇,朱华银,万玉金等.大庆火山岩孔隙结构及气水渗流特征[J].西南石油大学学报,2007,29(5):63-67
    47. 吴爱祥,杨保华,刘金枝,张杰.基于X光CT技术的矿岩散体浸出过程中孔隙演化规律分析[J].过程工程学报,2007,7(5):960-966
    48. 葛修润.岩石疲劳破坏的变形控制律、岩土力学试验的实时X射线CT扫描和边坡坝基抗滑稳定分析的新方法[J].岩土工程学报,2008,30(1):1-20
    49. 杨更社,刘慧.基于CT图像处理技术的岩石损伤特性研究[J].煤炭学报,2007,32(5):463-468
    50.李晓军,张金夫,刘凯年,张肖宁.基于CT图像处理技术的岩土材料有限元模型[J].岩土力学,2006,27(8):1331-1334
    51. 刘增利,李洪升,朱元林,蒲毅彬.冻土单轴压缩动态试验研究[J].岩土力学,2002,23(1):12-16
    52. 刘增利,李洪升,朱元林.冻土单轴压缩损伤特征与细观损伤测试[J].大连理工大学学报,2002,42(2):223-227
    53. 杨更社,张全胜,蒲毅彬.冻融条件下岩石损伤扩展特性研究[J].岩土工程学报,2004,26(6):838-842
    54. 任建喜.冻结裂隙岩石加卸载破坏机理CT实时试验[J].岩土工程学报,2004,26(5):641-644
    55.孙星亮,汪稔,胡明鉴.冻土三轴剪切过程中细观损伤演化CT动态试验[J].岩土力学,2005,26(8):1298-1311
    56.徐春华,徐学燕,沈晓东.不等幅值循环荷载下冻土残余应变研究及其CT分析[J].岩土力学,2005,26(4):572-576
    57. 王俐,杨春和.不同初始饱水状态红砂岩冻融损伤差异性研究[J].岩土力学,2006,27(10):1772-1776
    58. 张全胜,高广运,杨更社,蒲毅彬.寒区隧道围岩变形机理分析初探[J].岩土力学,2007,28(2):307-314
    59.刘慧,杨更社,任建喜.基于数字图像处理的冻融页岩温度场的数值分析方法[J].岩石力学与工程学报,2007,26(8):1678-1683
    60.周国庆,杨维好.中砂融沉位移与单桩负摩阻力关系的试验研究[J],中国矿业大学学报,1999,28(6):535-538.
    61. 王建平,王文顺,史天生.人工冻结土体冻胀融沉的模型试验[J],中国矿业大学学报,1999,28(4):303-306
    62. 何平,程国栋,杨成松,等.冻土融沉系数的评价方法[J].冰川冻土,2003,25(6):608~612
    63.刘波,陶龙光,叶圣国,等.地铁隧道施工引起地层变形的反分析预测系统[J].中国矿业大学学报,2004,33(3):277-282
    64. 王效宾.人工冻土融沉特性及其对周围环境影响研究[D],南京林业大学,2009
    65. 祁长青,吴青柏,施斌,等.基于遗传算法的冻土路基融沉可靠性分析[J],岩土力学,2006,27(8):1429-1436.
    66. 梁波,张贵生,刘德仁.冻融循环条件下土的融沉性质试验研究[J].岩土工程学报,2006,28(10),1213-1217
    67. 梁波,刘德仁,张贵生.青藏铁路冻土密度、含水量与融沉(冻胀)关系的试验研究[C],第二届全国岩土与工程学术大会论文集.357-362
    68. 侯署光,多年冻土路基融沉机理及路面结构对策研究[D],东南大学,2005.
    69. 岳丰田,张水宾,李文勇,等.地铁联络通道冻结加固融沉注浆研究[J].岩土力学,2008,29(8):2283-2286.
    70.郑先昌,郑伟锋.中国南极中山站区冻土融沉和冻胀模拟试验及基础对策研究[J],工程力学,2010,27(Ⅰ):154-158.
    71. 王家澄,程国栋等.饱水粉土反复冻融时成冰条件的实验研究[J].冰川冻土,1992,14(2):101-106
    72. 王家澄,刘继民.土冻结时的物理过程和冷生组构[C]//第三届全国冻土学术会议论文选集.北京:科学出版设,1989:78-84
    73. 吴紫汪,马巍.冻土强度与蠕变[M].兰州:兰州大学出版社,1994
    74. 崔广心,杨维好,吕恒林.深厚表土层中的冻结壁和井壁[M].徐州:中国矿业大学出版社,1998
    75. 马祖罗夫.冻土物理力学性质[M].梁惠生,伍建期,译.北京:煤炭供工业出版社,1980
    76. 中华人民共和国煤炭工业部.MT/T 593人工冻土物理力学性能试验[S].煤炭工业部发布,1996
    77. Tsytovich, N. A. kronik, ya. A., Markin, K.F.,Aksenov, V, I., and Samuel, son, M.V.1978. "physical and mechanical properties of saline soils," USSR contribution, proceedings of the second international conference on permafrost (1973), yakutsk, USSR, national academy of sciences, Washington,D.C.,pp.238-247.
    78. Stahli, M. and stadler, D. (1997). "Measurement of water and solute dynamics in freezing soil columns with time domain reflectometry." Journal of hydrology, NO.195,pp.352-369.
    79. Michalowski, R.L., Zhu, M.,2006. Frost heave modeling using porosity rate function.J. Numer. Anal. Meth. Geomech.30,703-722.
    80. Fukuda, M., Kim, H., Kim, Y.,1997. Preliminary results of frost heave experiments using standard test sample provided by TC8. Proceedings of the International Symposium on Ground Freezing and Frost Action in Soils, Lulea, Sweden, pp.25-30.
    81. 徐学祖.国外对冻土中水分迁移课题的研究[J].冰川冻土,1982,4(3):98-103
    82. 王家澄,徐学祖,邓永生,张立新.压力对冻土空隙特征的影响[J].冰川冻土,1993,15(1):160-165
    83.王家澄,徐学祖,张立新,邓永生.土类对正冻土成冰及冷生组构影响的实验研究[J1.冰川冻土,1995,17(3):250-257
    84.汪家澄,徐学祖,王玉杰.单向冻结时的土颗粒位移的热筛效应及对流迁移[J].冰川冻土,1996,18(3):252-255
    85.徐学祖,邓永生,S王家澄,刘继民.饱水正冻土中水分迁移特征研究[C]//第三届全国冻土学术会议论文选集,1989:204-210
    86. 吴紫旺,马巍.冻土强度与蠕变[M]兰州:兰州大学出版社,1994
    87. 吴紫旺,刘永智.冻土地基与工程建筑[M].北京:海洋出版社,2005
    88. 徐学祖,邓永生.冻土中水分迁移的实验研究[M].北京:科学出版社,1991
    89. 徐学祖,张立新,邓永生等.多晶冰中的未冻水含量[J].冰川冻土,1993,15(1):149-152
    90. 徐学祖,王家澄,张立新等.温度梯度诱导薄膜水迁移的冻胀机理[J].科学通报,1997,42(9):956-959
    91. 陈文豹,汤志斌.冻结法施工[M].北京:煤炭工业出版社,1993
    92.徐学祖.土水势,未冻水含量和温度[J].冰川冻土,1985,7(1):1-14
    93. 李述训.立井冻结法凿井工程中的热工计算[J].冰川冻土,1994,16(1):21-30
    94. 孙斌祥,徐学祖,赖远明,汪双杰,章金钊.温度周期波动时自然对流体对块石导热系数测定的影响[J].土木工程学报,2004,37(1):99-103
    95. Anderson,D.M.,1968,Undercooling freezing point depression and ice nucleation of soil water,J.chem.,6,pp.349-355
    96. 王建平,王文顺,史天生.人工冻结土体冻胀融沉的模型试验[J].中国矿业大学学报,1999,28(4):303-305
    97. Anderson, D. M., and N. R. Morgenstem.1973. Physics, chemistry, and mechanics of frozen ground:A review. In North Am. Contrib.2nd Int. Conf. on Permafrost, Yakutsk, USSR. Washington, D.C.:National Academy of Science, pp.257-88.
    98. 陈湘生.冻土力学之研究——21世纪岩土力学的重要领域之一[J].煤炭学报,1998,23(1):53-57
    99. 李宁,程国栋,徐学祖,朱元林.冻土力学的研究进展与思考[J].力学进展.2001,31(1):95-102
    100.陈明华.“冻实”是深厚黏土层提高冻结壁强度与稳定性值得推荐的方案[C]//王传久,虞咸祥.矿井建设技术论文集.徐州:中国矿业大学出版社,1995:175-175
    101. Allen R. Tice, Duwayne M. Anderson, Kay F. Sterrett.,1981. Unfrozen water contents of submarine permafrost determined by nuclear magnetic resonance. Engineering Geology.18,135-146
    102. Banin, A., and D.M. Anderson.1974. Effect of salt concentration changes during freezing on the unfrozen water content of porous materials. Water Resour. Res.10(1):124-28.
    103. Farouki, O. T.1981.Termal Properties of Soil. U.S. Army Cold Regions Research and Engineering Laboratory Monograph 81-1.
    104.陈瑞杰,程国栋,李述训等.人工地层冻结应用研究进展和展望[J].岩土工程学报,2000,22(1):40-43
    105.安维东等.冻土的温度水分应力及其相互作用[M].兰州:兰州大学出版社,1989
    106.翁家杰.井巷特殊施工[M].北京:煤炭工业出版社,1991
    107. Patterson, D. E., and M. W. Smith.1983. Measurement of unfrozen water content in saline permafrost using time domain reflectometry. In Proc.4th Int. Conf. on Permafrost, Fairbanks, Alaska. Washington, D.C.: National Academy Press, pp.968-72
    108. B. Liu, T. Li. Numerical modeling on a subway construction accident:case history and analysis. Continuum and Distinct Element Numerical Modeling in Geo-Engineering, Proc.1st Inter. FLAC/DEM Symp. Minneapolis USA 2008,8:529-539
    109. B. Liu, Y. Han. A FLAC3D-based subway tunneling induced ground settlement prediction system developed in China, Proc. of the 4th Int. FLAC Symposium on Numerical Modeling in Geomechanics. Hart & Varona, Madrid, Spain 2006:55-61
    110.岳丰田,仇培云,杨国祥,等.复杂条件下隧道联络通道冻结施工设计与实践[J].岩土工程学报,2006,28(5):660-663.
    111.李大勇,陈福全,张庆贺.地铁联络通道冻结施工的三维数值模拟[J].岩土力学,2004,25(2):472-474.
    112.李维特,黄保海,毕仲波.热应力理论分析及应用[M].北京:中国电力出版社,2004
    113.汪崇鲜,楼根达,马玉峰.繁华市区含水地层水平冻结及暗挖法施工[J].冰川冻土,2000,22(3):278-281.
    114.仇培云,岳丰田,杨国祥等.复杂地质条件下隧道联络通道冻结工程实录[J].地下空间与工程学报,2005,1(6):979-982.
    115. Smith, M., and A. Tice.1988. Measurement of unfrozen water content of soils. In Proc.5th Int. Conf. on Permafrost, Trondheim, Norway, ed. K. Senneset. Trondheim, Norway:Tapir, vol.1, pp.472-477
    116.赖远明,张明义,李双洋等.寒区工程理论与应用[M].北京:科学出版社,2009
    117.韩玉福.地铁旁通冻土融沉规律及注浆治理方法研究[D].北京:煤炭科学研究总院,2009.
    118.宁方波.地下冻结工程中土体冻胀融沉对地表变形的影响分析[D].北京:煤炭科学研究总院,2005.
    119.郑先昌,郑伟锋.中国南极中山站区冻土融沉和冻胀模拟试验及基础对策研究[J].工程力学,2010,27(1):154—158.
    120.陶龙光,巴肇伦.城市地下工程[M].北京:科学出版社,1996
    121. Dillon, H. B., and Andersland, O. B.1966. "Predicting unfrozen water contents in frozen soils." Can. Geotech. J.,3(2),53-60
    122.柯洁铭,杨平.冻土冻胀融沉的研究进展[J].南京林业大学学报,2004,28(4):105-108
    123. David C. Esch. Thermal Analysis, Construction, and Monitoring Methods for Frozen Ground[M].Published by American Society of Civil Engineers,2004
    124.木下诚一.冻土物理学[M].王异,译.吉林:吉林科学技术出版社,1985
    125. Patterson, D. E., and M. W. Smith.1985. Unfrozen water content in saline soils:Results using time-domain reflectometry. Can. Geotech. J.22(1):95-101
    126.费里德曼.冻土温度状况计算方法[M].徐学祖,译.北京:科学出版社,1982
    127.李述训,程国栋.冻融土中的水热输运问题[M].兰州:兰州大学出版社,1995
    128.王家澄,李数德.青藏公路沿线多年冻土下界面附近的热状况分析[C]//青藏冻土研究论文集.北京:科学出版社,1983:38-43
    129.翁佳杰,陈明雄.冻结技术在城市地下工程中的应用[J].煤炭科学技术,1997,25(7):51-53
    130.崔广心.我国人公冻结工程研究现状及展望[C]//第五届全国冰川冻土学大会论文集(下).兰州:甘肃文化出版社,1996:843-850
    131.中华人民共和国水利部.GB/T 50123-1999土工试验方法标准[S].北京:中国计划出版社,1999
    132.国家林业局.GB 50324-2001冻土工程地质勘查规范[S].北京:中国计划出版社,2001
    133. Kersten, M.S. (1949) Laboratory research for the determination of the thermal properties of soil. ACFEL Technical Report 23. AD712516. (Also, Thermal properties of soils. University of Minnesota Engineering Experiment Station Bulletin No.28.)
    134. Kay, B.D. and J.B. Goit (1975) Temperature-dependent specific heats of dry soil materials. Canadian Geotechnical Journal, vol.12, p.209-212.
    135. Haynes, D., D. Carbee and D. Vanpelt (1980) Thermal diffusivity of frozen soil. CRREL Special Report 80-38. ADA 094605.
    136. Lovell, C.W. (1957) Temperature effects on phase composition and strength of partially-frozen soil. Highway Research Board Bulletin 168, p.74-95.
    137. Winter, D.F. and J.M. Saari (1968) A particulate thermophysical model of the lunar soil. Boeing Scientific Research Laboratories Document D1-82-0725, Geo-astrophysics Laboratory, December.
    138. Wolf, L.M. and J.O. Thieme (1964) Physical and thermal properties of frozen soil and ice. Journal of the society of Petroleum Engineers, March, p.67-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700