用户名: 密码: 验证码:
伪随机序列在微弱光信号测量中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在光纤性能测试以及各种应用中,经常需要测量微弱的光信号,如何有效精确地测量微弱的光信号也是许多光学系统所要解决的重要问题,研究新的检测方法是解决问题的关键。本文在现有文献的基础之上,将伪随机序列(PNs)应用到光学测量系统,利用伪随机序列的良好的随机性来检测淹没在噪声和干扰中的微弱光信号。论文对这种相关测量方法作了系统、深入的研究,主要工作如下:
     本文分析比较了各种伪随机序列的特性,讨论了各种序列的构造方法,改进了产生m序列的本原多项式的搜索算法,为产生不同周期的伪随机序列提供了理论基础。
     伪随机序列可以用来辨识系统的脉冲响应,将这种方法应用于光学测量系统,利用伪随机序列与系统输出之间的互相关峰值,可以测量出淹没在噪声与干扰中的信号的强度。使用理论分析与仿真的方法,分析了伪随机序列参数与测量性能之间的关系,结果表明测量系统的线性、测量误差以及信噪比增益都与伪随机序列的周期有关。为了消除各种干扰的影响,讨论了加权平均法的作用。
     为进一步测量输入信号的时域波形,论文讨论了扩频通信原理在微弱光信号测量系统中的应用。在频域上讨论了信号的扩频与解扩过程中信号以及噪声和干扰的频谱变化,用梳妆滤波器对伪随机序列进行滤波,然后再用其解扩,这种方法可以有效地消除各种频率的干扰信号,仿真检验了这种方法的测量精度。
     论文最后论述了基于伪随机序列的微弱信号测量系统的实验装置,完成了系统各部分的电路设计与调试并设计了信号处理程序。用这个实验系统测量了两类微弱信号,测量结果与理论分析结果基本符合,验证了基于伪随机序列的微弱光信号测量方法的有效性。
     伪随机序列用于微弱信号测量的研究内容十分广泛,在理论和实验两个方面都有深入研究的必要。在理论方面,需要进一步研究相关辨识理论和扩频原理的内在关系,使二者更加协调地联系起来,形成一个统一的相关测量理论。在实验方面,信号的产生与调制,信号的硬件处理都需要进一步完善和提高。
It is a crucial problem that how to detect weak light signals accurately in the measurement of optical fiber performance and its applications or other optical systems. The key of the solution to this problem is to find some new detection methods. In this paper, on a base of many references, pseudo random sequences (PNs) were used in the optical measurement, weak light signals under strong interferences and noise background could be detected effectively using the nice randomness of pseudo random sequences. This correlation detection method was investigated in detail, studied systematically. The research works are as follows:
     In this paper, we have analyzed the characteristics of various pseudo random sequences, discussed all kinds of generation methods and improved on searching algorithm for primitive polynomials of m sequences. All above works provided a theoretical foundation for the generation of pseudo random sequences.
     The unit impulse response of a linear system could be distinguished by pseudo random sequences using correlation identification method. We applied this method to the optical measurement system. Through theoretical analysis and simulation, the relation between the performance of measurement and the parameters of PNs was shown that the linearity of system, mean square error and improvement factor of signal-to-noise ratio all were determined by the period of PNs. In order to eliminate various interferences, weighted average method was used.
     For detecting the time domain waveform of input signals, the principle of spread spectrum communication found its applications for an optical weak signal measurement system. All the varied spectrum of signals, interferences and noise were shown in the process of spreading and despreading. A pseudo random sequence after a comb filter for despreading removed the spectrum of interference from the range of signals, and therefore avoided harmonic interference. A simulation experiment verified the measurement accuracy using this method.
     Finally, the experimental devices of weak light signal measurement system based on pseudo random sequence were discussed at the end of this paper. We have finished the design and debug of all circuits and software in the system. Experimental results testing with two types of signals showed that the measurement accuracy was accordant to the theoretical analysis and this method was a valid method for the detection of weak light signals.
     There are many research works which need to be explored on the application of PNs to the detection of weak optical signals either in theory or on experiment. In theory, it is necessary to study the inherent relation between correlation identification and the principle of spread spectrum and to find a uniform correlative detection theory on weak signals. For experiments, there is a need for the improvement on signal generators modulation and the processing by hardware.
引文
1毛谦.光纤通信仍然是最主要的传输技术,电信科学.2000,4:38-42.
    2 Lee Byoungho, Roh Sookyoung, Park Junghyun. Current status of micro-and nano-structured optical fiber sensors. Optical Fiber Technology, 2009, 15(3): 209-221.
    3 Tan W. Shi Z.-Y. Smith S. Birnbaum D. Kopelman R. Submicrometer intracellular chemical optical fiber sensors. Science, 1992, 258(5083):778-781.
    4 Kazemi, Alex A. Fiber optic microsensor technology for detection of hydrogen in space applications. Proceedings of SPIE, 2008, 7003: 70032E.
    5 Guerrero J. Gualdrón O, Torres Y. Lasprilla M. Optoelectronic inspection for on-line detection of superficial defects in optical fibers. Proceedings of SPIE, 2001, 4419:363-366.
    6 Fasol, G. Time-resolved photoluminescence measurements using a boxcar averager. Journal of Physics E: Scientific Instruments, 1982, 15(12): 1296-1299.
    7 Maximiliano Osvaldo Sonnaillon and Fabián Jose Bonetto. A low-cost, high-performance, digital signal processor-based lock-in amplifier capable of measuring multiple frequency sweeps simultaneously. Review of Scientific Instruments. 2005, 76: 024703.
    8 Gaspar, Javier. Chen, Suei Feng. Gordillo, Alejandro. Hepp, Mateo.Ferreyra, Pablo. Marques, Carlos. Digital lock in amplifier: Study, design and development with a digital signal processor. Microprocessors and Microsystems, 2004, 28(4): 157-162.
    9 Romanov, D. Filin, A. Compton, R. Levis, R. Phase matching in femtosecond BOXCARS. Optics Letters, 2007,32(21): 3161-3163.
    10 Faber, Nicolaas M. Compression of broad-banded spectra by boxcar averaging: Application to the near-infrared prediction of oxygenate concentration in gasoline. Applied Spectroscopy, 1999,53(8): 1011-1015.
    11 Moon, Sucbei. Kim, Dug Young. Analog single-photon counter for high-speed scanning microscopy. Optics Express, 2008, 16(18): 13990-14003.
    12 Zhang Qiang, Soon Hock Wei, Tian Halting, Fernando Shakith, Ha Yajun, Chen Nan Guang. Pseudo-random single photon counting for time-resolved optical measurement. Optics Express, 2008, 16(17):13233-13239.
    13陈佳圭.微弱信号检测.北京:中央广播电视大学出版社,1987:1-15.
    14戴逸松.微弱信号检测方法及仪器.北京:国防工业出版社,1994:270-291.
    15曾庆勇.微弱信号检测.第二版.杭州:浙江大学出版社, 1986: 47-53.
    16 Paul A. Temple. An introduction to phase-sensitive amplifiers: An inexpensive student instrument. American Journal of Physics.1975, 43 (9): 801–807.
    17 Barragán, L. A. Artigas, J. I. Alonso, R. Villuendas, F. A modular, low-cost, digital signal processor-based lock-in card for measuring optical attenuation. Review of Scientific Instruments. 2001, 72 (1): 247.
    18 Canadian Pacific Railway's (CPR).New technology for CPR's boxcars. Pulp and Paper Canada, 2004, 105(3): 21.
    19 Maurer, Re. Franks Le. Optimal linear processing of randomly distorted signals. IEEE Trans Circuit Theory, 1970, CT-17(1): p 61-67.
    20 McGillem, Clare D. Aunon, Jorge I. Childers, Donald G. Signal processing in evoked potential research: application of filtering and pattern recognition. Critical Reviews in Bioengineering, 1981, 6(3): 225-265.
    21 Cardimona,S. Waveform inversion and digital filter theory. Geophysics, 1991,56(4): 534-536.
    22 W?lder, Konrad. N?ther, Wolfgang.Wagner, Sven. Improving inverse model fitting in trees-Anisotropy, multiplicative effects, and Bayes estimation. Ecological Modelling, 2009, 220(8): 1044-1053.
    23 Cedervall, Mats. Moses,Randolph L. Efficient maximum likelihood DOA estimation for signals with known waveforms in the presence of multipath. IEEE Transactions on Signal Processing, 1997, 45(3): 808-811.
    24 Sun, Shuli. Linear minimum variance estimators for systems with bounded random measurement delays and packet dropouts. Signal Processing, 2009, 89(7): 1457-1466.
    25 Wang,C.M. Least-squares estimation of time-base distortion of sampling oscilloscopes.IEEE Transactions on Instrumentation and Measurement, 1999, 48(6):1324-1332.
    26 Fattah, Shaik A.Zhu, Wei-Ping. Ahmad, M.O. A novel technique for the identification of ARMA systems under very low levels of SNR. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55(7):988-2001.
    27 Chelidze,David. Zhou,Wenliang. Smooth orthogonal decomposition-based vibration mode identification. Journal of Sound and Vibration, 2006, 292(3): 461-473.
    28 Nobre, C.M.B. Braga Jr., R.A. Costa, A.G. Cardoso, R.R. da Silva, W.S. Sáfadi, T. Biospeckle laser spectral analysis under Inertia Moment, Entropy and Cross-Spectrum methods. Optics Communications, 2009, 282(11): 2236-2242.
    29 Zhu, Henian; Liu, Liguo; Wen, Yiwu; Lü, Zhengde; Zhang, Baizhe. High-precision system for automatic null ellipsometric measurement. Applied Optics, 2002, 41(22): 4536-4540.
    30 Wang, Xiaoyi. Sensitive digital lock-in amplifier using a personal computer. Review of Scientific Instruments. 1990, 61 (70): 1999.
    31 Lousberg, Gregory P. Lundeberg, Lars D.A.; Boiko, Dmitri L.; Kapon, Eli Space-domain lock-in amplifier based on a liquid-crystal spatial light modulator. Optics Letters, 2006, 31(7):990-992.
    32 Libbrecht KG, Black ED, Hirata CM. A basic lock-in amplifier experiment for the undergraduate laboratory. American Journal of Physics. 2003, 71(11):1208–1213.
    33孙志斌,陈佳圭.锁相放大器的新进展.物理,2006, 35(10):879-884.
    34 Collier, J.L. Goddard, B.J. Goode, D.C. Marka, S. Telle, H.H. Low-cost gated integrator boxcar averager. Measurement Science and Technology, 1996, 7(9): 1204-1211.
    35 Sonnaillon, Maximiliano O. Urteaga, Raúl; Bonetto, Fabián J. High-frequency digital lock-in amplifier using random sampling. IEEE Transactions on Instrumen -tation and Measurement, 2008, 57(3):616-621.
    36黄建军,廖学军,张哲皇.Boxcar积分器模型参数选择.大学物理实验, 1999,12(3):20-22.
    37 Yamamoto, K. Yamamura, K. Sato, K. Ota, T. Suzuki, H. Ohsuka, S. Development of Multi-pixel Photon Counter. IEEE Nuclear Science Symposium Conference Record, 2007, 2:1094-1097.
    38 Du, Y. Retière, F. After-pulsing and cross-talk in multi-pixel photon counters. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 596(3):396-401.
    39 A. Restelli, R. Abbiati, and A. Geraci (2005). Digital field programmable gate array-based lock-in amplifier for high-performance photon counting applications. Review of Scientific Instruments.2005, 76:093112.
    40 Garayev, Rashit A. Optical multichannel spectra analyzer using neural network. Proceedings of SPIE. 2005, 5854: 187-193.
    41 Wang Guanyu, Chen Dajun, Lin Jianya, Chen Xing, Application of chaotic oscillators to weak signal detection. IEEE.Transactions on Industrial Electronics. 1999, 46(2):440-444.
    42 Le Bo, Liu Zhong, Gu tianxiang. Chaotic oscillator and other techniques for detection of weak signals. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2005, E88 (10): 2699-2701.
    43李月,杨宝俊.检测强噪声背景下周期信号的混沌系统.科学通报,2003, 48(1): 19-20.
    44叶青华,黄海宁,张春华.用于微弱信号检测的随机共振系统设计.电子学报.2009,37(1): 216-220.
    45张林,王莲芬,宁小磊等.基于Duffing振子的微弱正弦信号检测研究与仿真.传感技术学报, 2009, 22(8): 1137-1141.
    46梁军利,杨树元,唐志峰.基于随机共振的微弱信号检测.电子与信息学报,2006, 28(6) :1068-1072
    47徐威,郭静波.混沌直扩信号检测的最大Lyapunov指数方法.应用科学学报. 2009, 27(2):111-116.
    48黄宜军,汪金友.小波分析在微弱信号测量中的应用研究.计量学报, 2007, 28(4): 163-166.
    49陶维亮,王先培,刘艳等.基于小波模极大值移位相关的光谱去噪方法.光谱学与光谱分析, 2009, 25(5).1241-1245.
    50徐红梅,郝志勇,郭磊等.基于独立成分小波分析的内燃机噪声源识别.内燃机工程, 2007,28(6):61-65.
    51 Naik, Kshirasagar. Wei, David S.L. Su, Yu T. Shiratori, N. A random graph-based model to analyze packet interference between frequency hopping systems with an application to Bluetooth. Computer Communications, 2008, 31(14):3286-3291.
    52 Buck, M. Zierler, N. Decimations of linear recurring sequences. Computers and Mathematics with Applications, 2000, 39(11):95-102.
    53 Zeng, Xiangyong.Liu, John Qingchong; Hu, Lei Generalized Kasami sequences: The large set. IEEE Transactions on Information Theory, 2007, 53(7): 587-2598.
    54 Gong, Guang. Dai, Zong Duo. Golomb, Solomon W. Enumeration and criteria for cyclically shift-distinct GMW sequences. IEEE Transactions on Information Theory, 2000, 46(2): 474-484.
    55 Chun, Dexter; Wolf, Jack Keil. Special hardware for computing the probability of undetected error for certain binary CRC codes and test results. IEEE Transactions on Communications, 1994, 42(10):2769-2772.
    56 Mayhew, Gregory L.; Golomb, Solomon W. Linear spans of modified de Bruijn sequences. IEEE Transactions on Information Theory, 1990, 36(5):1166-1167.
    57 Beard, James K. Russo, Jon C. Erickson, Keith G. Monteleone, Michael C. Wright, Michael T. Costas array generation and search methodology. IEEE Transactions on Aerospace and ElectronicSystems, 2007, 43(2): 522-538.
    58 No, Jong-Seon. Gil, Gang-Mi. Shin, Dong-Joon. Generalized construction of binary Bent sequences with optimal correlation property. IEEE Transactions on Information Theory, 2003, 49(7):1769-1780.
    59 Fiedler, Frank. Jedwab, Jonathan. Parker, Mathew G. A framework for the construction of Golay sequences. IEEE Transactions on Information Theory, 2008, 54(7):3114-3129.
    60 Moharir, P.S.; Selvarajan, A. Optical Barker codes. Electronics Letters, 1974, 10(9):154-155.
    61 Lin, J.-C. Channel estimation assisted by postfixed pseudo-noise sequences padded with zero samples for mobile orthogonal-frequency-division-multiplexing communications. IET Communica- tions, 2009, 3(4):561-570.
    62 Menhaj, A. Assaad, J. Rouvaen, J.M. Heddebaut, M. Bruneel,C. New collision avoidance radar system using correlation receiver and compressed pulses. Measurement Science and Technology, 1998, 9(2):283-286.
    63 El Khaldi, B.Rouaven,J.M. One bit correlation receiver of pseudorandom sequences for target localization. Advances in Modeling and Analysis B, 2003, 46(7-8):1-10.
    64 Sun, Fuyan. Liu, Shutang. Cryptographic pseudo-random sequence from the spatial chaotic map. Chaos, Solitons and Fractals, 2009, 41(5):2216-2219.
    65丁溯泉,杨知行,潘长勇等.扩频技术:历史、现状及发展.电讯技术, 2004(6): 1-6.
    66本专辑责任编委组.超宽带无线电技术.通信学报. 2005, 26 (10):2-6.
    67 O'Farrell, T. Design and evaluation of a high data rate optical wireless system for the diffuse indoor channel using barker spreading codes and RAKE reception. IET Communications, 2008, 2(1):35-44.
    68 Welch, Lloyd R. Scholtz, Robert A. Continued fractions and Berlakamp’s algorithm. IEEE Transactions on Information Theory, 1979, IT-25(1):19-27.
    69 Seberry, Jennifer; Tran, Le Chung; Wang, Yejing; Wysocki, Beata J.; Wysocki, Tadeusz A.; Zhao, Ying. Orthogonal spreading sequences constructed using Hall's difference set. Joint 1st Workshop on Mobile Future and Symposium on Trends in Communications - Proceedings, 2004, SympoTIC'04:82-85.
    70 Zadeh,L.A. From Circuit Theory to System Theory. Proceedings of the IRE. 1962, 50(5): 856- 865.
    71 Astrom, K.J.. Eykhoff.P. System identification, a survey. Automatica, 1971, 7(2): 123-162.
    72 Ljung, Lennart. Convergence analysis of parametric identification methods. IEEE Transactions on Automatic Control, 1978, AC-23(5):770-783.
    73 Chou, I-Chun, Voit, Eberhard O. Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Mathematical Biosciences, 2009, 219(2): 57-83.
    74 Dutton, K. Groves, C.N. Self-tuning control of a cold mill automatic gauge control system. International Journal of Control, 1996, 65(4):573-588.
    75 To, K.W.V. David, A.K. On-line identification and control of an AC/DC power system. International Journal of Electrical Power and Energy System, 1996, 18(4): 223-227.
    76 Zhang, Youjie. Jiang, Shengyao. Study on flow stability margin by method of system identification. Kerntechnik, 1999, 64(5-6):259-263.
    77 Hans-Jürgen Zepernick, Adolf Filger.伪随机信号处理_理论与应用.甘良才译.北京:电子工业出版社, 2007:44-46.
    78赵晓群.阵列偶和加权二元序列理论的研究.[哈尔滨工业大学博士论文].1998: 4-5, 9.
    79肖国镇,梁传甲,王育民.伪随机序列及其应用.北京:国防工业出版社, 1985:249, 81-83.
    80丁石孙.线性移位寄存器序列.上海:上海科学技术出版社,1982:36-63.
    81万哲先,代宗泽,刘木兰等.非线性移位寄存器.北京:科学出版社,1978:93-111.
    82郭鑫,陈克非.求解本原多项式的快速算法.计算机工程,2008, 34(15):146-147
    83吕辉,何晶,王刚.伪随机序列中本原多项式生成算法.计算机工程, 2004, 30(16): 108-109
    84 Smeets, B.J.M. Chambers, W.G. Windmill pn-sequence generators. IEE Proceedings E: Computers and Digital Techniques, 1989, 136(5):401-404.
    85吴明捷,田小平,胡鑫.用递推法查找伪随机码和本原多项式.辽宁工程技术大学学报, 2005, 24(1):90-92.
    86王泽辉,方小洵.Fp上不可约与本原多项式的高效确定算法.中山大学学报,2004, 43(6):89-92.
    87万哲先.代数与编码(第二版).北京:科学出版社, 1980:526-528.
    88 J.L.Massey. Shift-register synthesis and BCH decoding. IEEE Transactions on. Information Theory. 1969, 15(1):122-127.
    89 J.L.Massey. Optimum frame synchronization. IEEE Transactions on Communications,1972, COM-20(2):15-119.
    90 Ipatov, V.P. Samoilov, I.M. Binary Sequences and Nonuniformly Spaced Antenna Arrays fromRelative Difference Sets. Journal of Communications Technology and Electronics, 1999, 44(8): 894-897.
    91 Paterson, Kenneth G. Binary sequence sets with favorable correlations from difference sets and MDS codes. IEEE Transactions on Information Theory, 1998, 44(1):172-180.
    92 Jensen, Jorn M. Jensen, Helge Elbrond. Hoholdt,Tom. The merit factor of binary sequences related to difference sets. IEEE Transactions on Information Theory, 1991, 37(3):617-626.
    93 Golomb, Solomon W. On the classification of cyclic Hadamard sequences. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2006, E89-A(9): 2247-2253.
    94 Fuji-Hara, Ryoh. Momihara, Koji. Yamada, Mieko. Perfect Difference Systems of Sets and Jacobi Sums. Discrete Mathematics, 2009, 309(12):3954-3961.
    95 Kim, J-H. Song, H-Y. On the linear complexity of Hall's sextic residue sequences. IEEE Transactions on Information Theory, 2001, 47(5):2094-2096.
    96 No, Jong-Seon. New cyclic difference sets with singer parameters constructed from d- homogeneous functions. Designs, Codes, and Cryptography, 2004, 33(3):199-213.
    97李白勇.伪随机信号及相关辨识.北京:科学出版社,1987:94-130.
    98 Wang,Xianbin.Wu,Yiyan.Caron,Bernard. Transmitter identification using embedded pseudo random sequences. 2004, 50(3):244-252.
    99 Miao, Botao. Zane, Regan. Maksimovic, Dragan. System identification of power converters with digital control through cross-correlation methods. IEEE Transactions on Power Electronics, 2005, 20(5):1093-1099.
    100 Ludvig, Daniel. Kearney, Robert E. Real-time estimation of intrinsic and reflex stiffness. IEEE Transactions on Biomedical Engineering, 2007, 54(10):1875-1884.
    101 Li, Erning. MacAlpine, J.M.K. Liu,Yanbing. On-line identification of frequency response of current transformers using a correlation method. IEEE International Symposium on Circuits and Systems. 1997, 4:2701-2704.
    102胡德文.非线性与多变量系统相关辨识.长沙:国防科技大学出版社,2000:65-69
    103 W.D.T.戴维斯.自适应控制的系统识别.潘裕焕译.北京:科学出版社.1977:155-158.
    104 C.E.Shannon.A Mathematical Theory of Communication.The Bell System Technical Journal, 1948, 27:379-423, 623–656.
    105 Kharkevich.A.A. Signal Transmission by Modulate Noise. Electrosviaz. 1957, 11: 42-46
    106 Win Moe Z and Scholtz Robert A, Ultra-wide bandwidth time-hopping spread spectrum impulse radio for wireless multiple-access communications. IEEE Transactions on Communications, 2000, 48(4):679-691.
    107查光明,熊贤祚.扩频通信.西安:西安电子科技大学出版社出版, 1990:15-17.
    108韦惠民.扩频通信技术及应用.西安:西安电子科技大学出版社, 2007:6-13.
    109田日才.扩频通信.北京:清华大学出版社, 2004:5-6.
    110 Sadler, Brian M. Swami, Ananthram. On the performance of episodic UWB and direct-sequence communication systems. IEEE Transactions on Wireless Communications, 2004, 3(6):2246-2255.
    111 Holden, Thomas P. Feher, Kamilo. A spread-spectrum based synchronization technique for digital broadcast systems. IEEE Transactions on Broadcasting, 1990, 36(3):185-194.
    112 Agee, Brian G. Kleinman, Roland J. Reed, Jeffrey H. Soft synchronization of direct sequence spread-spectrum signals.IEEE Transactions on Communications, 1996, 44(11):1527-1535.
    113 Tsui T.S.D and Clarkson T.G. Spread-spectrum communication techniques. Journal of Electronics & Communication Engineering.1994, 6(1):3-6.
    114刘鹏,田小建,单东江.高稳定度激光器驱动器的研究与设计.半导体技术.2005, 30(2):66-69.
    115 Muhammad, S. Sheikh, Brandi, P., Leitgeb, E., Koudelka, O., Jelovcan, I. VHDL based FPGA implementation of 256-ary PPM for free space optical links. Proceedings of 2007 9th International Conference on Transparent Optical Networks, 2007, 3:174-177.
    116陈勇,凌聪.混沌跳频序列发生器的FPGA实现.电子学报,2001,29(7):868-871.
    117 Analog Devices, Inc., Data Sheet AD734, 1999.
    118刘波,孙桂玲,童峥嵘等.光纤光栅传感网络中微弱光信号的检测.南开大学学报(自然科学版),2003,36(2):55-58.
    119刘卫东,刘延冰,刘建国.检测微弱光信号的PIN光电检测电路的设计.电测与仪表, 1999, 36(4): 28-30.
    120 National Instruments. LabVIEW User Manual., 1998:30-42.
    121 National Instruments. LabVIEW Measurement Manual 2000:10-16.
    122 G.W.Johnson, R.Jennings. LabVIEW图形编程.武嘉澍,陆劲昆译.北京:北京大学出版社, 2002:90-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700