几类无界域上耗散演化方程解的长时间行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现实世界中很多物理现象可以由具有能量耗散的非线性发展方程描述.对这些发展方程解的长时间行为研究有助于我们理解非线性科学中的复杂现象.全局吸引子是无穷维动力系统中的核心概念.我们主要关心全局吸引子的存在性,正则性,分形维数估计等等.对于吸引子的高正则性,弱耗散系统,非局部耗散等,这些问题将变得更加困难.本文主要致力于处理这几类问题,具体安排如下.
     第一章,我们对无穷维动力系统的主要内容作简要介绍,包括吸引子存在性的充分必要刻画,紧性描述以及相关论题.
     第二章,考虑具有任意增长阶非线性的反应扩散方程,通过一系列解的估计,得出单位算子在吸收集内是L2-H2∩L2p-2Holder连续的,结合解半群在L2中的渐近紧性,证明了L2-H2∩L2p-2全局吸引子的存在性.由于方程的平衡点至多属于上述空间,因此该结果已经达到最优.
     第三章,研究了广义KdV方程解的渐近行为.通过构造三个守恒律能量方程,证明了H2中吸收集的存在性.利用Ball的能量方法,证明了解半群在H2中的渐近紧性,从而得到全局吸引子的存在性.我们还给出了一个平凡吸引子的充分条件.结果表明当外力项相对阻尼系数小时,吸引子是平凡的,即只包含一个平衡点.
     第四章,分析了QG方程解的渐近行为.首先,利用分数拉普拉斯算子的正性不等式,交换子估计以及Besov空间技巧,证明了无界域上阻尼QG方程在LP中全局吸引子的存在性.
     第五章,利用Chueshov.Lasiecka拟稳定估计方法,得出2维环域上全局吸引子的分形维数依赖耗散系数的精确估计.维数上界随着耗散系数增大而减小,这与物理事实是对应的.
     第六章,考虑了具有白噪声扰动的分数拉普拉斯反应扩散方程.用∈正则性方法得到解的适定性.通过尾端估计方法,得出系统在L2中随机吸引子的存在性.
It's known to us that many phenomena in physics can be described by dissipative non-linear evolution equation. The study of long time behavior of solutions of these equations will enhance our understanding of the complexity in nonlinear science. The central topic of infinite dimensional dynamical system is the global attractor. Topics like existence of the global attractor, further regularity and fractal dimension are mainly concerned. Especially, if one works on global attractor in regular spaces, weak dissipative or nonlocal dissipative equations, new difficulties will arise. In the dissertation, we are devoted to deal with prob-lems of this kind. The outline is as follows.
     In Chapter1, we introduce the main concepts and theorems in the field of infinite dimensional dynamical system briefly, including the sufficient and necessary conditions of the existence of global attractor, the description of compactness and related topics.
     In Chapter2, we consider the long-time behavior of solution of reaction diffusion equa-tion with arbitrary growth nonlinear term. Based on several a priori estimates, it can be shown that the unitary operator is Holder continuous from L2to H2∩L2p-2. Since the so-lution semigroup is asymptotically compact in L2, we obtain the L2-H2∩L2p-2asymp-totical compactness of semigroup, and then the L2-H2∩L2p-2global attractor. This result is sharp in the sense that the stationary point is at most in H2∩L2p-2.
     In Chapter3, we investigate the long-time behavior of solution of generalized KdV equation on the real line. We obtain the existence of an absorbing set in H2by establishing three energy equations. Using the Ball's idea, we prove the asymptotical compactness of solution semigroup in H2. Moreover, we analyze the structure of attractor in some special cases. Precisely, it can be shown that the global attractor will reduce to a single stationary point if the force is relatively small compared to the dissipative coefficient.
     In Chapter4, we consider the surface Quasi-Geostrohic equation on the whole space. At first, applying positive lemma of fractional Laplacian, commutator estimates and Besov spaces technique, we prove the existence of global attractor in LP.
     In Chapter5, we obtain the precise estimate of fractal dimension of global attractor on torus by quasi-stable method of Chueshov&Lasiecka. The upper bound is decreasing function of dissipative coefficient, which conforms to physical intuition.
     In Chapter6, a fractional reaction diffusion equation with white noise is studied. The well-posedness of solution is proved by∈-regular approach. Applying the idea of tailed estimates, we show the existence of global random attractor in L2.
引文
[1]Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics.2nd. New York: Springer,1997.
    [2]Hale J. Asymptotic Behavior of Dissipative Systems. Providence:American Mathematical Society, 1988.
    [3]Ladyzhenskaya O. Attractors for semigroups and evolution equations. Cambridge:Cambridge University Press,1991.
    [4]Babin A.,Vishik M. Attractors of Evolution Equations. North-Holland:Elsevier,1992.
    [5]Cholewa J., Dlotko T. Global Attractors in Abstract Parabolic Problems. Cambridge:Cambridge University Press,2000.
    [6]Chueshov I. Introduction to the Theory of Infinite-Dimensional Dissipative Systems. Kharkov: ACTA Scientific Publishing House,2002.
    [7]郭柏灵.无穷维动力系统.北京:国防工业出版社,2002.
    [8]Zhong C., Yang M., Sun C. The existence of global attractors for the norm-to-weak continuous semigroup and applications to the nonlinear reaction diffusion equatoins. J. Differential Equations, 2006,223:367-399.
    [9]Pata V., Zelik S. A result on the existence of global attractors for semigroups of closed operators. Commun. Pure Appl. Anal.,2007,6:481-486.
    [10]Robinson J. Infinite-Dimensional Dynamical Systems. Cambridge:Cambridge University Press, 2001.
    [11]Sell G., You Y. Dynamics of Evolutionary Equations. New York:Springer,2002.
    [12]Ma Q., Wang S., Zhong C. Necessary and sufficient conditions for the existence of global attractors for semigroups and applications. Indiana University Math. J.,2002,51:1541-1559.
    [13]Adams RA. Sobolev spaces. New York:Academic press,1975.
    [14]Yosida K. Functional Analysis. Berlin Heidelberg:Springer-Verlag,1980.
    [15]Wang B. Attractors for reaction diffusion equations in unbounded domains. Physica D,1999, 128:41-52.
    [16]Arsenio D., Raymond L. Compactness in kinetic transport equations and hypoellipticity. J. Funct. Anal.,2011,261:3044-3098.
    [17]Stanislavova M., Stefanov A., Wang B. Asymptotic smoothing and attractors for the generalized Benjamin-Bona-Mahony equation on R3. J. Differential Equations,2005,219:451-483.
    [18]Tao T. A (concentration-)compact attractor for high-dimensional non-linear Schrodinger equations. Dyn. Partial Differ. Equ.,2007,4:1-53.
    [19]Sun C., Zhong C. Attractors for the semilinear reaction-diffusion equation with distribution deriva-tives in unbounded domains. Nonlinear Anal.,2005,63:49-65.
    [20]Kolmogorov A. N., Tikhomirov V. M. e- Entropy and e- Capacity of Sets in Functional Spaces. In:Selected Works of A.N. Kolmogorov, Vol Ⅲ, ed., Dordrecht:Kluver,1993.
    [21]Zelik S. V. The Attractor for a bonlinear reaction-diffusion system in the unbounded domain and Kolmogorov's e-entropy. Math. Nachr.,2001,232:129-179.
    [22]Foias C, Olson E. Finite fractal dimension and Holder-Lipschitz parametrization. Indiana Univ. Math. J., (1996),45:603-616.
    [23]Chueshov I., Eller M., Lasiecka I. Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation. Commun. Part. Diff. Eq.,2004,29:1847-1876.
    [24]Chueshov I., Lasiecka I. Long-time behaviour of second order evolution equations with nonlinear damping. Memoirs of AMS, vol.195,2008.
    [25]Zelik S. The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and its dimension. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl.,2000,24:1-25.
    [26]Miranville A., Zelik S. Attractors for dissipative partial differential equations in bounded and un-bounded domains. In:Dafermos C., Pokomy M. Handbook of differential equations, Evolutionary partial differential equations. Amsterdam:Elsevier,2008.
    [27]Prazdk D. On finite fractal dimension of the global attractor for the wave equation with nonlinear damping. J. Dynamical Differential Equations,2002,14:764-776.
    [28]Chueshov I., Lasiecka I. Von Karman Evolution Equations:Well-Posedness and Long-Time Dynamics. New York:Springer,2010.
    [29]Arnold L. Random Dynamical System. Berlin:Springer-Verlag,1998.
    [30]Crauel H. Random point attractors versus random set attractors. J. London Math. Soc.,2002,63: 413-427.
    [31]Crauel H., Debussche A., Flandoli F. Random attractors. J. Dynam. Differential Equations,1997,9: 307-341.
    [32]Flandoli F., SchmalfuB B. Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise. Stoch. Stoch. Rep.,1996,59:21-45.
    [33]郭柏灵,蔳学科.随机无穷维动力系统.北京:北京航空航天大学出版社,2009.
    [34]黄建华,郑言.无穷维随机动力系统的动力学.北京:科学出版社出版,2011.
    [35]Ball J. Global Attractors for Damped semilinear wave equations. Discrete Contin. Dyn. Syst., 2004,10:31-52.
    [36]Rosa R. The global attractor for the 2D Navier-Stokes flow on some unbounded domains. Nonlinear Anal. TMA,1998,32:71-85.
    [37]Prizzi M. A remark on reaction-diffusion equations in unbounded domains. Discrete Contin. Dyn. Syst.,2003,9:281-286.
    [38]Prizzi M., Rybakowski K. Attractors for reaction-diffusion equations on arbitrary unbounded domains. Topol. Methods Nonlinear Anal.,2007,30:251-277.
    [39]Morillas F., Valero J. Attractors for reaction-diffusion equations in Rn with continuous nonlinearity. Asymptot. Anal.,2005,44:111-130.
    [40]Arrieta J., Cholewa J., Dlotko T., et al. Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains. Nonlinear Anal.,2004,56:515-554.
    [41]Arrieta J., Moya N., Bernal A. On the finite dimension of attractors of parabolic problems in RN with general potentials. Nonlinear Anal.,2008,68:1082-1099.
    [42]Zhang Y, Zhong C., Wang S. Attractors in L2(RN) for a class of reaction-diffusion equations. Nonlinear Anal. TMA,2009,71:1901-1908.
    [43]Zhang Y., Zhong C., Wang S. Attractors in Lp(RN) and H1(RN) for a class of reaction-diffusion equations. Nonlinear Anal. TMA,2010,72:2228-2237.
    [44]Babin A.,Vishik M. Attractors of partial differential evolution equations in an unbounded domain. Proc. R. Soc. Edinburgh A,1990,116:221-243.
    [45]Babin A., Nicolaenko B. Exponential attractors of reaction-diffusion systems in an unbounded domain. J. Dyn. Diff. Eqs.,19957:567-590.
    [46]Efendiev M., Zelik S. The attractor for a nonlinear reaction-diffusion system in the unbounded domain. Commun. Pure Appl. Math.,2001,54:625-688.
    [47]Zelik S. Attractors of reaction-diffusion systems in unbounded domains and their spatial complex-ity. Commun. Pure Appl. Math.,2003,56:584-637.
    [48]Daners D., Merino S. Gradient-like parabolic semiflows on BUC on Rn. Proc. Roy. Soc. Sect. A Edinburgh,1998,128:1281-1291.
    [49]Merino S. On the existence of the compact global attractor for semilinear reaction-diffusion systems on-Rn. J. Differential Equations,1996,132:87-106.
    [50]Cholewa J., Dlotko T. Bi-spaces globle attractors in abstract parabolic equations. Evolution equa-tions Banach Center Publications, vol.,2003,60:13-26.
    [51]Yang M., Zhong C. The existence and uniqueness of the solutions for partly dissipative reaction diffusion systems in Rn. Journal of Lanzhou University,2006,3:130-136(in Chinese).
    [52]Zhang Y., Mu L. Existence of the solution to a class of nonlinear reaction-diffusion equation in Rn. J. Gansu Normal College,2007,12:1-4 (in Chinese).
    [53]Yang L., Yang M. Long-time behavior of reaction-diffusion equations with dynamical boundary condition. Nonlinear Anal.,2011,74:3876-3883.
    [54]Wu Z., Yin J., Wang C. Elliptic and Parabolic Equations. Singapore:World Scientific,2006.
    [55]Grafakos L. Classical and Modern Fourier Analysis.2nd. New York:Springer,2008.
    [56]Wang M., Tang Y. Attractors in H2 and L2p-2 for reaction diffusion equations on unbounded domains. Communications on Pure and Applied Analysis,2013,12:1111-1121.
    [57]Korteweg D., Vries G. On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos. Mag.,1895,5:422-443.
    [58]Ott E., Sudan R.. Damping of solitary waves. Phys. Fluids,1970,13:1432-1434.
    [59]Cabral M., Rosa R. Chaos for a damped and forced KdV equation. Physica D,2004,192:265-278.
    [60]Laurencot P. Compact attractor for weakly damped driven Korteweg-de Vries equations on the real line. Czechoslovak Math. J.,1998,48:85-94.
    [61]Bernal R., Wang B. Attractors for partly dissipative reaction diffusion systems in Rn. J. Math. Anal. Appl.,2000,252:790-803.
    [62]Rosa R. The global attractor of a weakly damped, forced Korteweg-de Vries equation in H1 (R). Mat Contemp.,2000,19:129-152.
    [63]Kenig C., Ponce G., Vega L. Well-posedness and scattering results for the generalized Kortewegde-Vries equation via the contraction principle. Comm. Pure Appl. Math.,1993,46:527-620.
    [64]Sun C., Yang M., Zhong C. Global attractors for the wave equation with nonlinear damping. J. Differential Equations,2006,227:427-443.
    [65]Chen W., Tian L., Deng X. The global attractor and numerical simulation of a forced weakly damped MKdV equation. Nonlinear Anal. RWA,2009,10:1822-1837.
    [66]Dlotko T., Kania M., Yang M. Generalized Korteweg-de Vries equation in H1(R). Nonlinear Anal. TMA,2009,71:3934-3947.
    [67]Dlotko T., Sun C. Asymptotic behavior of the generalized Korteweg-de Vries-Burgers equation. J. Evol. Equ.,2010,10:571-595.
    [68]Dlotko T. The generalized Korteweg-de Vries-Burgers equation in H2(R). Nonlinear Anal. TMA, 2011,74:721-732.
    [69]Linares F., Ponce G. Introduction to Nonlinear Dispersive Equations. Rio de Janeiro:Publicoes Matemicas do IMPA,2008.
    [70]Martel Y., Merle F. Blow up in finite time and dynamics of blow up solutions for the L2-critical generalized KdV equation. J. Amer. Math. Soc.,2002,15:617-664.
    [71]Raphael C. Construction of solutions to the L2-critical KdV equation with a given asymptotic behaviour. Duke Math. J.,2007,138:487-531.
    [72]Bona J., Smith R. S. The initial value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London,1975,278:555-604.
    [73]Saut J. C. Applications de 1'interpolation non lineaire a des problemes d'evolution non lineaires. J. Math. Pures Appl.,1974,9:27-52.
    [74]Bona J., Scott R. Solutions of the KdV equation in fractional order Sobolev spaces. Duke Math. J., 1976,43:87-99.
    [75]Saut J. C., Temam R. Remarks on the Korteweg-de Vries equation. Israel J. Math.,1976,24:78-87.
    [76]Kato T. On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Adv. Math Suppl. Stud., Stud. Appl. Math.,1983,8:93-128.
    [77]Kenig C., Ponce G., Vega L. Well-posedness of the initial value problem for the Korteweg-De Vries equation. J. Amer. Math. Soc.,1991,4:323-347.
    [78]Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, II:the KdV-equation. Geom. Funct. Anal.,1993,3:209-262.
    [79]Kenig, C., Ponce, G., Vega, L. A bilinear estimate with applications to the KdV equation. J. Am. Math. Soc.,1996,9:573-603.
    [80]Colliander J., Keel M., Stafillani G., Takaoka H., Tao T. Sharp global wellposedness for KdV and modified KdV on R and T. J, Am. Math. Soc.,2003,16:705-749.
    [81]Kenig C., Ponce G., Vega L. On the ill-posedness of some canonical dispersive equations. Duke Math. J.,2001,106:617-633.
    [82]Guo, Z. H. Global well-posedness of Korteweg-de Vries equation in H-4s(R). J. Math. Pures Appl.,2009,91:583-597.
    [83]Ghidaglia J. Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time. J. Differential Equations,1988,74:369-390.
    [84]Ghidaglia J. A note on the strong convergence towards attractors for damped forced KdV equations. J. Differential Equations,1994,110:356-359.
    [85]Goubet O. Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations. Discrete Contin. Dynam. Systems,2000,6:625-644.
    [86]Tsugawa K. Existence of the global attractor for weakly damped, forced KdV equation on Sobolev spaces of negative index. Comm. Pure Appl. Anal.,2004,3:301-318.
    [87]Yang X. Y. Global attractor for the weakly damped forced KdV equation in Sobolev spaces of low regularity. Nonlinear Differ. Equ. Appl.,2011,18:273-285.
    [88]Held I., Pierrehumbert R., Garner S., et al. Surface quasi-geostrophic dynamics. J. Fluid Mech., 1995,282:1-20.
    [89]Pedlosky J. Geophysical Fluid Dynamics. New York:Springer-Verlag,1987.
    [90]Resnick S. Dynamical Problems in Nonlinear Advective Partial Differential Equations. University of Chicago,1995.
    [91]Cafferelli L., Vasseur A. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math.,2011,171:1903-1930.
    [92]Chen Q., Miao C, Zhang Z. A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation. Comm. Math. Phys.,2007,271:821-838.
    [93]Constantin P., Wu J. Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math-Anal.,1999,30:937-948.
    [94]Constantin P., Cordoba D., Wu J. On the critical dissipative quasi-geostrophic equations. Indiana Univ. Math. J.,2001,50:97-107.
    [95]Constantin P., Iyer G., Wu J. Global regularity for a modified critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J.,2008,57:2681-2692.
    [96]Constantin P. Euler equations, Navier-Stokes equations and turbulence. In:Cannone M, Miyakawa T. Mathematical foundation of turbulent viscous flows. Berlin:Springer,2006,1-43.
    [97]Cordoba A. and Cordoba D. A maximum principle applied to quasi-geostrophic equations. Co-munn. Math. Phys,2004,249:511-528.
    [98]Ju N. The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Commun. Math. Phys.,2005,255:161-181.
    [99]Ju N. Global solutions to the two dimensional quasi-geostrophic equation with critical or super-critical dissipation. Math. Ann.,2006,334:627-642.
    [100]Kiselev A., Nazarov F., Volberg A. Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Inventiones Math.,2007,167:445-453.
    [101]Wu J. The quasi-geostrophic equation and its two regularizations. Commun. Partial Diff. Eqs., 2002,27:1161-1181.
    [102]Chae D., Constantin P., Cordoba D., et al. Generalized surface quasi-geostrophic equations with singular velocities. Comm. Pure Appl. Math.,2012,65,1037-1066.
    [103]Berselli L. Vanishing viscosity limit and long-time behavior for 2D quasi-geostrophic equations. Indiana Univ. Math. J.,2002,51:905-930.
    [104]Wu J. Dissipative quasi-geostrophic equations with Lp data. Electronic J. Differ. Eq.,2001,56:1-13.
    [105]Henry D. Geometric Theory of Semilinear Parabolic Equations. New York/Berlin:Springer-Verlag,1981.
    [106]Wang B. Asymptotic behavior of stochastic wave equations with critical exponents on R3. Trans. Amer. Math. Soc.,2011,363:3639-3663.
    [107]Wang M., Li D., Zhang C., et al. Long time behavior of gKdV equations. J. Math. Anal. Appl., 2012,1390:36-150.
    [108]Wu J. Existence and uniqueness results for the 2-D dissipative quasi-geostrophic equation. Nonlinear Anal.,2007,67:3013-3036.
    [109]Carrillo J.A., Ferreira L.C.F. The asymptotic behavior of subcritical dissipative quasi-geostrophic equations. Nonlinearity,2008,21:1001-1018.
    [110]Wang M., Tang Y. On dimension of the global attractor for 2D quasi-geostrophic equations. Nonlinear Analysis Series B:Real World Applications,2013,14:1887-1895.
    [111]Huang Y., Yi Z., Yin Z. On the dimension of the global attractor for a damped semilinear wave equation with critical exponent. J. Math. Phys.,2000,41:4957-4966.
    [112]Zhou S. On dimension of the global attractor for damped nonlinear wave equations. J. Math. Phys.,1999,40:1432-1438.
    [113]Zhou S. Dimension of the global attractor for damped semilinear wave equations with critical exponent. J. Math. Phys.,1999,40:4444-4451.
    [114]Wu D., Zhong C. Estimate on the dimension of an attractor for a nonclassical hyperbolic equation. Electron Res. Announc. Amer. Math. Soc,2006,12:63-70.
    [115]Cabral M., Rosa R., Temam R. Existence and dimension of the attractor for the Benard problem on channel-like domains. Discrete Contin. Dyn. Syst.,2004,10:89-116.
    [116]Sun C., Yang M. Dynamics of the nonclassical diffusion equations. Asymptotic Analysis,2008, 59:51-81.
    [117]Sun C., Yang L., Duan J. Asymptotic behavior for a semilinear second order evolution equation. Tran. Amer. Math. Soc.,2011,363:6085-6109.
    [118]Crauel H., Flandoli F. Attractors for random dynamical systems. Probab. Theory Related Fields, 1994,100:365-393.
    [119]Li J., Li Y, Wang B. Random attractors of reaction-diffusion equations with multiplicative noise in Lp. Appl. Math. Comput.,2010,215:3399-3407.
    [120]Li Y, Guo B. Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations. J. Differential Equations,2008,245:1775-1800.
    [121]Bates P., Lu K., Wang B. Random attractors for stochastic reaction-diffusion equations on unbounded domains. J. Differential Equations,2009,246:845-869.
    [122]Zhao W., Li Y. (L2, Lp)-random attractors for stochastic reaction-diffusion equation on unbounded domains. Nonlinear Anal.,2012,75:485-502.
    [123]Prizzi M., Rybakowski K. Attractors for reaction-diffusion equations on arbitrary unbounded domains. Topol. Methods Nonlinear Anal.,2007,30:251-277.
    [124]Zheng Q., Yao X. Higher order kato class potentials for Schrodinger operators. Bull. London. Math. Soc.,2009,41:293-301.
    [125]Nezzaa E., Palatuccia G., Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bulletin des Sciences Mathematiques,2012,136:521-573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700