区间和未确知参数结构(机构)分析方法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先以区间参数、随机区间混合参数和未确知参数结构为研究对象,探索性地研究了当结构参数和外载荷为区间变量或未确知变量时结构的静力响应、动力特性、动力响应以及非概率可靠性指标;然后以在研的国家863高技术研究发展计划项目《大型星载可展开天线结构系统多状态全过程的可靠性综合分析研究》为工程背景,针对小样本、贫信息事件,基于未确知理论对星载天线展开机构中的旋转关节运动可靠性进行了计算、预测和分析。主要内容如下:
     1、基于区间模型的结构静力分析。
     将结构系统中的不确定性参数用区间数表示,建立系统的区间有限元控制方程。对该方程组的求解提出一种基于导数信息的仿射算法。此方法通过令独立的不确定性参数转换成仿射型,将区间线性方程组的求解转化为相应的确定性问题,再搜索各方程解中的最大最小值得到位移响应的区间范围。
     2、基于区间模型的结构动力特性和动力响应分析方法研究。
     对多自由度区间参数结构的广义特征值问题和在区间荷载激励下的动力响应分析问题进行研究。将不确定结构系统中的区间参数用仿射型来表示,对获得的动力方程的求解方法进行研究,提出了一种基于区间离散的改进的仿射算法。此方法考虑到广义特征值及响应方程中各元素的相关性,通过独立的区间参数在子区间上转为仿射型,将特征值及响应方程的求解转化为相应的确定性问题,再利用常规的仿射算法,搜索方程解中的最大最小值来确定各特征值和响应的范围。
     3、区间参数杆系结构非概率可靠性的仿射算法。
     将杆系结构中的不确定性参数用区间数表示,建立结构的非概率可靠性指标求解方程。将矩阵形式的仿射算术和递归导数信息结合,提出了改进的二元区间多项式矩阵形式的仿射上下界公式。给出了有界不确定性变量的仿射型和区间形式的相互转化,将有界不确定性变量的仿射型及结合导数信息的矩阵形式的仿射运算引入到杆系结构基于区间模型的非概率可靠性指标计算中。分别以某外伸梁和十杆桁架结构为例对文中方法的可行性和有效性进行了验证。
     4、基于可信度约束的区间参数天线结构力学分析。
     构建了物理参数、几何参数和载荷同时具有不确定性的桁架结构有限元分析模型。基于不确定性的区间模型描述,将可信度约束引入区间分析,提出了基于可信度约束的区间因子法的结构分析方法;定义了具有可信度约束的区间运算规则;利用区间因子的数学表述,推导出结构位移、应力响应区间及动力特征值响应的计算表达式。
     5、区间参数天线结构动力特性分析的概率处理。
     将不确定桁架结构中的区间参数用随机变量来表示,对获得的广义区间特征值方程的求解方法进行研究。假定各区间参量在允许取值区间内为具有熵最大的矩形分布,各随机变量在所定义区域内均匀分布并假设它们彼此独立,将区间特征值方程的求解采用概率理论来处理,再利用随机因子算法,来确定结构动力特征值边界,并与用随机正态分布变量描述的区间求解做比较,得出相应的结论。
     6、随机区间混合模型天线结构的有限元及可靠性分析。
     对随机区间型天线结构有限元及可靠性分析方法进行研究,提出结构保精度和保强度两工况的概率描述。同时考虑结构的物理参数、几何参数的随机性和作用风载荷的区间性,首先将随机变量固定,利用区间因子法求得结构位移和应力响应的区间范围,然后在区间内任意点处利用随机因子法求结构响应的随机分布范围。通过推导,构造天线反射面位移响应和结构单元应力响应不确定变量的数字特征计算公式;进而得到结构各响应量的可靠性指标。
     7、基于未确知理论的天线展开机构运动可靠性分析。
     对某周边桁架式大型星载天线的展开运动机理和伞状天线展开机构中的旋转关节运动机理进行研究,建立展开机构的力学分析和未确知运动可靠性的分析模型。综合考虑尺寸误差和太空环境因素的影响,将运动功能函数视为未确知变量函数,利用未确知有理数计算的法则推导出可靠性计算公式,对机构在整个展开过程中的运动可靠性进行预测。与成熟的随机方法想比,该方法简单易行,且能在缺乏足够数据或信息不完整的情况下,获得更安全、可信度更高的机构可靠性计算结果。算例给出了未确知性天线展开机构功能函数的可能值及其可信度的计算结果,表明该方法的合理性和可行性。
     8、基于未确知理论的板梁组合结构静力、动力特性分析。
     为了克服随机方法对于小样本难以处理的缺陷,充分利用客观的不确定性信息,构建了物理参数和载荷同时具有未确知性的空间板梁组合结构有限元分析模型,并提出了基于未确知因子法的板梁组合结构分析方法;利用未确知因子的数学表述和未确知有理数的运算规则,推导出板梁组合结构静力响应、动力特征值的计算表达式。算例给出了未确知信息板梁组合结构的静力响应和固有频率可能值及其可信度的计算结果,表明该方法的可行性和有效性。
Firstly, structures with interval parameters, random-interval parameters or unascertained parameters are taken as research objects in this paper. Structural static responses, dynamic characteristics, dynamic responses and non-probability reliability index are derived under the conditions that physical parameters of materials, structural geometric dimensions and applied loads are all interval, random-interval or unascertained variables. Secondly, based on the engineering background of national 863 project, reliability computation, prediction and analysis on deployment mechanism system of satellite antenna are derived by means of unascertained theory. The main research works can be described as follows:
     1. The static analysis of interval truss structures.
     By representing the uncertain parameters as interval numbers, the governed equations of the structural system are obtained by means of the finite element method. Some solution methods for these equations are discussed and affine arithmetic polynomial evaluation method plus recursive derivative information is proposed. In this method, the independent uncertain parameters are transferred to affine forms, and the linear interval equations are changed to the corresponding certain ones. Then the bounds of every interval solution components are determined by searching for the maximums and the minimums.
     2. The study on dynamic characteristic and dynamic responses of interval truss structures.
     Not only considering the interval characteristics of structural physical parameters and geometric dimension, but also considering interval characteristics of applied load simultaneously, uncertainty of the MDOF structural dynamic response is studied. By describing the interval parameters of uncertain structure with affine forms, the interval structural dynamic equation is researched, and an improved affine arithmetic based on interval division is presented, where correlations between the interval elements in eigenvalue and responses equations are considered, independent uncertain parameters are transformed to affine forms, and the solution of eigenvalue and response equations are transformed into the corresponding certain ones. With general affine arithmetic, the eigenvalue of each order and response bounds are determined by searching for the maximum and minimum in the solutions. Some numerical examples were provided to illustrate the validity and feasibility of the present method.
     3. Non-probabilistic reliability index of bar structures with interval parameters based on modified affine arithmetic.
     By representing the uncertain parameters as interval numbers, the reliability index equations of bar structures are obtained. A modified matrix affine arithmetic polynomial evaluation method plus recursive derivative information is proposed in this paper, which keeps all powers of noise symbols without approximation. Based on the nature that affine forms and intervals variables can transform each other, affine forms of bounded uncertain variables and modified affine arithmetic including derivative information for univariate interval polynomial evaluation are introduced into modeling and calculating non-probabilistic reliability index. An extended beam example and a ten-bar truss structure example are provided to illustrate the validity and feasibility of the presented procedures.
     4. Interval method with faith degree constraints for structures analysis.
     The finite element analysis model of uncertain truss structures is built, in which the structural physical parameters, geometrical dimensions and the loads are all considered as unascertained variables. And a structural analysis method based on the interval factor method with faith degree constraint is given. The arithmetic operation rules of interval analysis with faith degree constraint are defined. By the mathematics expression of interval factor, the computational expressions of structural static responses, dynamic eigenvalue and dynamic responses are developed.
     5. Dynamic eigenvalues analysis of structures with interval parameters based on probabilistic theory.
     By describing the interval parameters of uncertain structure with random variables, a generalized eigenvalues interval equation was researched, and a simple arithmetic was presented. The interval variables were supposed to be rectangle distribution with maximum entropy in allowable range, and random variables obeyed uniform distribution in definition region on the assumption that they were independent each other. The solution of interval eigenvalues equations are tackled by using the probabilistic theory, then the random factor method is applied to obtain the bounds of eigenvalues. For comparisons, the interval variables are also supposed to be random normal distribution and the corresponding eigenvalues ranges are obtained. Finally an engineering application was applied to confirm the feasibility and validity of this approach.
     6. Finite element and reliability analyses for antenna structures with the mixture of random and interval variables.
     A model for finite element and reliability analyses for antenna structures with random parameters under interval loads was constructed, a new method of finite element analysis for dealing with structural uncertainty factors was presented, and the structural probability descriptions in the cases of preserved-precision and preserved-intensity were given. The stochastic property of physical parameters and geometry dimensions and the interval property of wind loads applied on antenna structures were considered simultaneously. Firstly the stochastic variables were fixed to obtain the ranges of structural displacement and stress by using the interval factor method, and then the random distribution ranges of structural responses for any points in the interval were gained based on the random factor method. The computational expressions for the numerical characteristic of antenna reflector responses including displacements and structural element stresses were constructed; thereby the reliability indexes of the structural responses were obtained. Finally, the rationality and the feasibility of the method were confirmed by the analysis of an antenna structure with an 8-meter caliber.
     7. Reliability analysis for antenna deployment mechanism based on unascertained theory.
     The deployment principium of a large hoop-truss satellite antenna was studied and the mechanical analysis model and the unascertained reliability model of its deployment mechanism were presented. Synthetically considering the effect of dimension errors and the space environment factors, we treat the mechanism movement as a function of some unascertained rational numbers, and derive the reliability formula by using computational theorem of unascertained rational numbers. The movement reliability of the mechanism of a large satellite antenna in the whole spreading process is predicted. Compared to the mature random method, the proposed method can obtain reliability result of safer and higher faith degree in the case of inadequate data or insufficient information; moreover, it is simple and easy to apply.
     8. Static and dynamic eigenvalue analysis for beam-plates composite structures based on unascertained theory.
     Random method doesn’t suit the case of small sample. To overcome this limitation, the objective unascertained information was made full use of, and the static finite element and dynamic characteristic analysis models of space beam-plate composite structure were built, in which the structural physical parameters and the applied loads were all considered as unascertained variables. And a structure analysis method based on the unascertained factor method was given. By the mathematics expression of unascertained factor and the arithmetic operation rules of unascertained rational numbers, the computational expressions of the structural displacement response, the element stress response and dynamic eigenvalue are developed. At last, an example is given, in which the possible values and faith degrees of the unascertained structure static responses and natural frequency are obtained. The rationality and validity of the presented method are demonstrated.
引文
[1]刘玉彬,王光远.工程结构广义可靠性理论.北京:科学出版社, 2005.
    [2]刘德顺,岳文辉.不确定性分析与稳健设计的研究进展.中国机械工程, 2006, 17(17): 1834-1841.
    [3]胡海昌.多自由度结构固有振动理论.北京:科学出版社, 1987.
    [4]钱令希.工程结构优化设计.北京:水利电力出版社, 1983.
    [5]钟万勰.计算结构力学与最优控制.大连:大连理工大学出版社, 1993.
    [6]程耿东.工程结构优化设计基础.北京:水利电力出版社, 1983.
    [7]闻邦椿,刘树英,何琼.振动机械的理论与动态设计方法.北京:机械工业出版社, 2001.
    [8] Chen J J, Che J W, Sun H A, et al. Probabilistic dynamic analysis of truss structures. Structural Engineering & Mechanics, 2002, 13(2): 231-239.
    [9] Dai J, Chen J J, Li Y G. Dynamic response optimization design for engineering structures based on reliability. Applied Mathematics and Mechanics, 2003, 24(1): 43-52.
    [10] Gao W, Chen J J, Ma H B. Dynamic response analysis of closed loop control system for intelligent truss structures based on probability. Structural Engineering & Mechanics, 2003, 15(2): 239-248.
    [11]马梁,陈塑寰,孟广伟.区间参数有大变化时的结构特征值分析.吉林大学学报(工学版), 2009, 39(1): 98-102.
    [12]阎云聚,顾家柳.失调叶片盘耦合振动的力学模型.航空学报, 1993, 14(8): 365-371.
    [13] Ewins D J, Han Z S. Resonant Vibration Levels of Mistune Bladed Disk. ASME, 1984, 106: 185-188.
    [14] Srinivasan A V. Vibrations of bladed-disk assemblies-a selected survey. Vibration Acoustics Stress Reliability in Design, 1984, 106: 165-168.
    [15]欧阳德,孔瑞莲,宋兆私.叶片振动可靠性评估方法研究.航空动力学报, 1998, 13(2): 161-164.
    [16]李润方,王建军.齿轮系统动力学(振动、冲击、噪声).北京:科学出版社, 1997.
    [17]张剑波,陈仲仪.一种识别齿轮刚度的新方法.第四届全国振动理论及应用学术会议论文, 1990, 265-273.
    [18]童忠钫,张杰.加工中心立柱床身结合面动态特性研究及参数识别.振动与冲击, 1992,43(3): 13-19.
    [19]诸德培.振动环境对结构特性的影响.全国振动理论及应用学术会议论文集, 1993, 79 -82.
    [20]张杰.复杂机械结构结合面动力学建模及其参数识别方法的研究.机械强度, 1996, 18(2): 1-5.
    [21] Astrom K J, Wittenmark B. Adaptive control. Addison Wesley Publishing Company, 1989.
    [22]孙爱荣.核电厂结构系统参数不确定性分析.东北林业大学学报, 1995, 23(1): 108-115.
    [23]王仁.地震危险区预测—一个非线性反演问题.北京:科学出版社, 1993.
    [24]王光远.论不确定性结构力学的进展.力学进展, 2002, 32(2): 205-211.
    [25]王光远.未确知信息及其数学处理.哈尔滨建筑大学学报. 1990, 23(4): 1-9.
    [26]刘开弟,吴和琴,庞彦军等.不确定性信息数学处理及应用.北京:科学出版社, 2000.
    [27] Thoft-Christensen P, Baker M J. Structural reliability theory and its applications. Springer-Verlag, 1982.
    [28] Li J, Chen J B. Dynamic response and reliability analysis of structures with uncertain parameters. International Journal for Numerical Methods in Engineering, 2005, 62(2): 289-315.
    [29] Zhao L, Chen Q. Neumann dynamic stochastic finite element method of vibration for structures with stochastic parameters to random excitation. Computers and Structures, 2000, 77(6): 651-657.
    [30]朱位秋.随机振动.北京:科学出版社, 1992.
    [31]陈塑寰.随机参数结构的振动理论.长春:吉林科学技术出版社, 1992.
    [32] Nagpal V K. Probabilistic structural analysis to quantify uncertainties associated with turbopump blades. AIAA Journal, 1989, 27(6): 809-813.
    [33] Hien T D, Kleiber M. Finite element analysis based on stochastic Hamilton variation principle. Computer and Structures, 1990, 37(6): 893-902.
    [34]刘宁,吕泰仁.随机有限元及其工程应用.力学进展, 1996, 25(4): 437-452.
    [35]朱位秋.非线性随机振动理论的近期进展.力学进展, 1994, 24(2): 163-172.
    [36]庄表中,陈乃立,高瞻.非线性随机振动理论及应用.杭州:浙江大学出版社, 1989.
    [37]刘先斌,陈虬,陈大鹏.非线性随机动力系统的稳定性和分岔研究.力学进展, 1996, 26(4): 437-452.
    [38]赵雷,陈虬.随机有限元动力分析方法的研究进展.力学进展, 1999, 29(1): 9-18.
    [39] Gao W, Chen J J, Ma H B, et al. Optimal placement of active bars in active vibration control for piezoelectric intelligent truss structures with random parameters. Computers & Structures, 2003, 81(1): 53-60.
    [40] Gao W, Chen J J, Ma J, et al. Dynamic response analysis of stochastic frame structures under nonstationary random excitation. AIAA Journal, 2004, 42(9): 1818-1822.
    [41] Gao W, Chen J J, Ma H B, et al. Dynamic response analysis of closed loop control system for intelligent truss structures based on probability. Structural Engineering and Mechanics, 2003, 15(2): 239-248.
    [42] Gao W, Chen J J, Hu T B, et al. Optimization of active vibration control for random intelligent truss structures under non-stationary random excitation. Structural Engineering and Mechanics, 2004, 18(2): 137-150.
    [43] Ellishakoff I. Essay on uncertainties in elastic and viscoelastic structures: from A M Freudenthal's criticisms to modern convex modeling. Computers & Structures, 1995, 56(6): 871-895.
    [44] Chen S H, Yang X W. Interval finite element method for beam structures. Finite Elements in analysis and Design, 2000, 34(1): 75-88.
    [45] Elishakoff I. Three versions of the finite element method based on concept of stochasticty, fuzziness or anti-optimization. Applied Mechanics Review, 1998, 51(3): 209-218.
    [46] Elishakoff I. Possible limitations of probabilistic methods in engineering. Applied Mechanics Review, 2000, 53(2): 19-36.
    [47] Chiang W L, Dong W M, Wong F S. Dynamic response of structures with uncertain parameters: a comparative study of probabilistic and fuzzy set models. Probabilistic Engineering Mechanics, 1987, 2: 82-91.
    [48] Wood K L, Antonsson E K, Beck J L. Representing imprecision on engineering design: comparing fuzzy and probabilistic calculus. Probabilistic Engineering Mechanics, 1990, 1: 187-203.
    [49] Bemardini A. Fuzzy measures of seismic vulnerability of masonry buildings, in probabilistic mechanics and structural and geotechnical reliability. ASCE press, 1992, 25-28.
    [50] Ge Q, Wu H Q. Several unascertained model on developing strategies in the Yangte river basin. ISDSRC, 1991.
    [51]王光远.工程软科学理论.北京:科学出版社, 1992.
    [52]朱增青,陈建军.板梁组合结构有限元分析的未确知因子法. 2008年航空航天航海科学与技术全国博士生学术论坛, 2008, 20-27.
    [53] Zhu Z Q, Liang Z T, Chen J J. Unascertained factor method of dynamic characteristic analysis for antenna structures. Journal of China Ordnance, 2008, 4(3): 167-172.
    [54] Li L, Jia R J, Liu H T. The application of unascertained mathematics in stock speculation performance. International Institute for General Systems Studies Special Issue, 1997.
    [55]梁震涛,陈建军,胡太彬.未确知桁架结构有限元分析的未确知因子法.机械强度, 2005, 27(4): 498-503.
    [56] Liang Z T, Chen J J, Gao W, et al. Reliability allocation of large spaceborne antenna deployment mechanism system using unascertained method. 1st International Symposium on Systems and Control in Aerospace and Astronautics (ISSCAA), Harbin, 2006, 2006: 1098-1103.
    [57] Ben-Haim Y, Elishakoff I. Convex models of uncertainty in applied mechanics. Amsterdam: Elsevier science Publishers, 1990.
    [58] Elishakoff I, Eliseef P, Glegg S. Convex modeling of material uncertainty in vibrations of a viscoelastic structure. AIAA Journal, 1994, 32: 843-849.
    [59] Elishakoff I. Convex modeling-a generalized of interval analysis for non-probabilistic treatment of uncertainty. International Journal of Reliable Computing, Supplement, 1995, 76-79.
    [60] Qiu Z P, Gu Y X. Extension of convex models and its improvement on the approximate solution, ACTA Mechanic A SINICA (English series), 1996, 12(4): 349 -357.
    [61] Ganzerli S, Pantelides C P. Load and resistance convex models for optimum design. Structural Optimization, 1999, 17: 259-268.
    [62] Ganzerli S, Pantelides C P. Optimum structural design via convex model superposition, C omputers and Structures, 2000, 74: 639-647.
    [63] Pantelides C P, Berkeley C B. Computer-aided design of optimal structures with uncertainty. Computers and Structures, 2000, 74: 293-307.
    [64] Chen S H, Qiu Z P. A new method for computing the upper and lower bounds on frequencies of structures with interval parameters. Mechanics Research Communication, 1994, 2: 583-592.
    [65] Qiu Z P, Chen S H, Elishakoff. Natural frequencies of structures with uncertain-but-non-random parameters. Journal of Optimization Theory and Applications, 1995, 86(3): 669-683.
    [66] Qiu Z P, Chen S H, Elishakoff I. Bounds of eigenvalues for structures with an interval description of uncertain-but-non-random parameters. Chaos, Soliton, and Fractral, 1996, 7(3): 425-434.
    [67] Chen S H, Qiu Z P. Perturbation method for computing eigenvalue bounds in vibration system with interval parameters. Communications in Numerical Methods in Engineering, 1994, 10(2): 121-134.
    [68] Soong T T, Bogdanoff J. On the natural frequencies of a disordered linear chain of n degrees of freedom. International Journal of Mechanical Science, 1963, 5: 237-265.
    [69] Boyce E W, Goodwin B E. Random transverse vibration of elastic beams. SIAM Journal, 1964, 12(3): 613-629.
    [70] Collins J D, Thompson W T. The eigenvalue problem for structural system with uncertain parameters. AIAA Journal, 1969, 7(4): 642-648.
    [71]胡太彬.随机结构动力分析与动力可靠性优化设计.西安电子科技大学博士学位论文, 2005.
    [72]李杰.随机结构系统─分析与建模(第一版).北京:科学出版社, 1996.
    [73]刘宁,吕泰仁.随机有限元及其工程应用.力学进展, 1995, 25(1): 114-126.
    [74]张湘伟.结构分析中的概率方法.北京:科学出版社, 2000.
    [75] Shafer G. Mathematical theory of fvidence. Princeton University Press, 1976.
    [76] Zadeh L. Fuzzy sets as a basis for theory of possibility. Fuzzy Sets and systemsw, 1978.
    [77]邓聚龙.灰色系统理论教程.武汉:华中理工大学出版社, 1990.
    [78]王时标,陈树勋,王光远.未确知信息的证据合成.哈尔滨建筑工程学院学报, 1991, 24(1): 1-8.
    [79]张跃,王时标,陈树勋等.未确知测度和信比测度.哈尔滨建筑工程学院学报, 1991, 24(2): 1-8.
    [80]王时标,张跃,陈树勋等.未确知度.哈尔滨建筑工程学院学报, 1991, 24(3): 1-7.
    [81]刘开第,庞彦军,吴和琴等.信息及其数学表达.系统工程理论与实践, 1999, 19(8): 91-93.
    [82]吴和琴.盲数的四则运算明.河北建筑科技学院学报, 1998, 15(3): 6-9.
    [83]刘开第,庞彦军,吴和琴等.复盲数可信度的概念及BM2模型.系统工程理论与实践, 1999, 19(9): 85-91.
    [84]高志强,王义闹.相依未确知信息的数学表达及其运算.华中科技大学学报(自然科学版), 2003, 31(4): 36-38.
    [85]王时标,姚振兴.未确知系统的模糊模式识别.模糊系统与数学, 1998, 12(3): 75-84.
    [86]刘开第,吴和琴,王念鹏等.未确知数学.武汉:华中理工大学出版社, 1997.
    [87]岳常安.未确知有理数论.石家庄:河北教育出版社, 2001.
    [88]梁震涛.不确定性结构的分析方法研究.西安电子科技大学博士学位论文, 2007.
    [89]辛成.未确知数学在沙河水环境容量计算中的应用研究.西南交通大学硕士学位论文, 2006.
    [90]岳长安,吴和琴,徐东明.未确知有理数的定义、运算及在建筑工程中的应用.数学的实践与认识, 1995, 25(4): 14-19.
    [91]林启太.未确知数学在研究混合配矿中的应用闭.系统工程理论与实践, 2002, 22(1): 99-102.
    [92]李如忠,汪家权,王超等.基于未确知信息的河流纳污能力计算初探.河海大学学报(自然科学版), 2003, 31(4): 386-388.
    [93]王宝森,郑丕谔,李秋英.在投资项目不确定性分析中盲数法与概率法的比较.天津大学学报, 2003, 36(5): 642-644.
    [94]杨江,李治.未确知数分析的仿真模型确认方法.信息与控制, 2003, 32(5): 399-402.
    [95]翟海保.多不确定信息的电网灵活规划模型及算法研究.上海交通大学博士学位论文, 2007.
    [96]周书敬,孙凤明,牛少强.未确知期望在投资方案决策中的应用.河北建筑科技学院学报, 2000, 17(2): 74-76.
    [97]李炜,张忠诚.一个采购问题的未确知规划模型.运筹与管理, 2001, 10(2): 135-139.
    [98]刘开第,庞彦军,孙光勇等.城市环境质量的未确知测度评价.系统工程理论与实践, 1999, 19(12): 52-58.
    [99]宫凤强,李夕兵,董陇军等.基于未确知测度理论的采空区危险性评价研究.岩石力学与工程学报, 2008, 27(2): 323-330.
    [100]李树刚,马超,王国旗.基于未确知测度理论的矿井通风安全评价.北京科技大学学报, 2006, 28(2): 101-103.
    [101]李如忠,汪家权,钱家忠.河流允许排污量确定的未确知风险评价.武汉大学学报(工学版), 2005, 38(3): 14-18.
    [102]郭奇,李亚.未确知测度模型在环境工程中的应用.河北建筑科技学院学报, 2001, 18(2): 44-47.
    [103] Burkill J C. Functions of intervals. Proceedings of the London Mathematical Society, 1924, 22(2): 375-446.
    [104] Young R C. The algebra of many-valued quantities. Mathematische Annalen, 1931, 104(1): 260-290.
    [105] Sunaga T. Theory of an interval algebra and its application to numerical analysis. In: RAAG Menorrs, Tokyo, Japan, 1958, 2: 29-46.
    [106] Moore R E. Interval arithmetic and automatic error analysis in digital computing. Stanford: Stanford University, 1962.
    [107] Moore R E. Interval analysis. New Jersey: Prentice-Hall, 1966.
    [108] Moore R E. Methods and applications of interval analysis. Philadelphia: SIAM, 1979.
    [109] Milne P S. On the algorithms and implementation of a geometric algebra system. Bath, England: University of Bath, 1900.
    [110] Alefeld G, Herzberg J. Introduction to interval computation. New York: Academic Press, 1983.
    [111] Neumaier A. Interval methods for systems of equations. Cambridge: Cambridge University Press, 1990.
    [112] Ratschek H, Rokne J. New computer methods for global optimization. New York: Wiley, 1988.
    [113] Hansen E R. Global optimization using interval analysis. New York: Marcel Dekker, Inc., 1992.
    [114] Kearfott R B. Rigorous global search: continuous problems. Dordrecht: Kluwer Academic Publishers, 1996.
    [115] Kearfott R B. Interval computations introduction, uses, and resources. Euromath Bulletin, 1996, 2(1): 95-112.
    [116] Comba J L D, Stolfi J. Affine arithmetic and its applications to computer graphics. In: Proceedings of Anais do V II S B GRAPI, Recife, Brazil, 1993: 9-18.
    [117] De Figueiredo L H. Surface intersection using affine arithmetic. In: Proceedings of Graphics Interface, Toronto, Ontario, Canada, 1996: 168-175.
    [118] De Figueiredo L H, Stolfi J. Adaptive enumeration of implicit surfaces with affine arithmetic. Computer Graphics Forum, 1996, 15(5): 287-296.
    [119] De Cusatis A J, De Figueiredo L H, Gattass M. Interval methods for ray casting implicit surfaces with affine arithmetic. In: X II Brazilian Symposium on Computer Graphics and Image Processing, Campinas, Brazil, 1999: 65-71.
    [120] Heidrich W, Seidel H P. Ray tracing procedural displacement shaders. In: Proceedings of Graphics Interface, Vancouver, British Columbia, Canada, 1998: 8-16.
    [121] Heidrich W, Slusallek P, Seidel H P. Sampling of procedural shaders using affine arithmetic. ACM Transactions on Graphics, 1998, 17(3): 158-176.
    [122] Voiculescu I, Berchtold J, Bowyer A, et al. Interval and affine arithmetic for surface location of power and Bemstein form polynomials. In: Mathematics of Surfaces IX, London: Springer, 2000: 410-423.
    [123] Bühler K. Linear interval estimations for parametric objects theory and application. Computer Graphics Forum, 2001, 20(3): 522-531.
    [124] Bühler K. Taylor models and affine arithmetics-towards a more sophisticated use of reliable arithmetics in computer graphics. In: Proceedings of the 17th Spring Conference in Computer Graphics(SCCG’01), Budmerice, Slovakia, 2001: 40-48.
    [125] Bühler K, Barth W. A new intersection algorithm for parametric surfaces based on linear interval estimations. In: Scientific Computing, Validated Numerics, Interval Methods, Boston/Dordrecht/London: Kluwer Academic Publishers, 2001: 179-190.
    [126] Bühler K. A new subdivision algorithm for the intersection of parametric surfaces. Vienna: Vienna University of Technology, 2001.
    [127] Bühler K. Fast and reliable plotting of implicit curves. In: Uncertainty in Geometric Computations, Boston/Dordrecht/London: Kluwer Academic Publishers, 2002: 15-28.
    [128] De Figueiredo L H, Stolfi J, Velho L. Approximating parametric curves with strip trees using affine arithmetic. Computer Draphics Forum, 2003, 22(2): 171-179.
    [129] Bowyer A, Martin R, Shou H, et al. Affine intervals in a CSG geometric modeler. In: Uncertainty in Geometric Computations, Boston/Dordrecht/London: Kluwer Academic Publishers, 2002: 1-14.
    [130] Rao S S, Berke L. Analysis of uncertain structural system using interval analysis. AIAA Journal, 1997, 35: 727-735.
    [131] Kylüoglu H U, Cakmak A S, Nielsen S R. Interval algebra to deal with pattern loading and structural uncertainty. Journal of Engineering Mechanics, ASMC, 1995, 121: 1149-1157.
    [132] Qiu Z P, Elishakoff I. Antioptimization of structures with large uncertain-but-nonrandom parameters via interval analysis. Comput. Methods Appl. Mech. Engrg., 1998, 152: 361-372.
    [133] Mc William S. Anti-optimization of uncertain structures using interval analysis. Computers and Structures, 2001, 79: 421-430.
    [134] Pantelides C P, Ganzeli S. Design of truss under uncertain loads using convex models, Journal of Engineering Mechanics, 1998, 124(3): 318-329.
    [135] Markov S. An iterative method for algebraic solution to interval equations. Applied Numerical Mathematics, 1999, (30): 225-239.
    [136] Dessombz O, Thouverez F, Laine J P, et al. Analysis of mechanical systems using interval computations applied to finite element methods. Journal of Sound and Vibration, 2001, 239(5): 949-968.
    [137]郭书样,吕震宙.区间有限元静力控制方程的一种迭代解法.西北工业大学学报, 2002, 20(1): 20-23.
    [138]吕震宙,冯蕴雯,岳珠峰.改进的区间截断法及基于区间分析的非概率可靠性分析方法.计算力学学报, 2002, 19(3): 260-264.
    [139]陈怀海.非确定结构系统区间分析的直接优化法.南京航空航天大学学报, 1999, 31(2): 146-150.
    [140]王登刚,李杰.计算不确定结构系统静态响应的一种可靠方法.计算力学学报, 2003, 20(6): 662-669.
    [141]禹智涛,吕恩琳,王彩华.结构模糊有限元平衡方程的一种解法.重庆大学学报, 1996, 19(11): 53-58.
    [142]吴晓,罗佑新,文会军等.非确定结构系统区间分析的泛灰求解方法.计算力学学报, 2003, 20(3): 329-334.
    [143]王清印.灰色数学基础.武汉:华中理工大学出版社, 1996.
    [144]全凌云,杨钊.区间数和泛灰数在区间分析中的比较.河北工业大学学报, 2001, 30(4): 93-96.
    [145]郭书样,吕震宙.线性区间有限元静力控制方程的组合解法.计算力学学报, 2003, 20(1): 34-38.
    [146]刘世军.岩石力学反演分析研究及工程应用.河海大学博士学位论文, 2003.
    [147]邱志平,顾元宪.有界不确定性参数结构静力位移范围的区间参数摄动法.兵工学报, 1998, 19(3): 255-258.
    [148] Koylouglu H U, Cakmak A S, Nielsen S R K. Interval algebra to deal with pattern loading and structural uncertainties. Journal of Engineering Mechanics, 1995, 121(11): 1149-1157.
    [149]郭书祥,吕震宙.区间运算和区间有限元.应用数学和力学, 2001, 22(12): 1249-1254.
    [150] Qiu Z P. Comparison of static response of structures using convex models and interval analysis method. International Journal for Numerical Methods in Engineering, 2003, 56: 1735-1753.
    [151]张海联,周建平.固体推进机药柱结构分析的非概率凸集合理论模型.国防科技大学学报, 2002, 24(2): 1-5.
    [152] Chen S H, Lian H D, Yang X W. Interval static displacement analysis for structures with interval parameters. International Journal for Numerical Methods in Engineering, 2002, 53: 393-407.
    [153]杨晓伟,陈塑寰,滕绍勇.基于单元的静力区间有限元法.计算力学学报, 2002, 19(2): 179-183.
    [154] Chen S H, Yang X W. Interval finite element method for beam structures. Finite Elements in Analysis and Design, 2000, 34: 75-88.
    [155] Deif A S. Sensitivity analysis in linear systems. Berlin, NewYork: Springer-Verlag, 1996.
    [156]陈塑寰,邱志平,宋大同等.区间矩阵标准特征值问题的一种解法.吉林工业大学学报, 1993, 23(3): 1-8.
    [157]邱志平,陈塑寰,周振平.对称区间矩阵标准特征值问题的一种新算法.吉林工业大学学报, 1994, 4(3): 62-65.
    [158]陈塑寰.结构动态设计的矩阵摄动理论.北京:科学出版社. 1999.
    [159] Chen S H, Qiu Z P. Perturbation method for computting eigenvalue bounds in vibration system with interval parameters. Communication in Numerical Methods in Engineering, 1994, 10: 121-134
    [160]邱志平,王晓军,马一.结构复固有频率区域的区间摄动法.北京航空航天大学学报, 2003, 29 (5) : 406-409.
    [161]邱志平,顾元宪,王寿梅.有界参数结构特征值的上下界定理.力学学报, 1999, 31(4): 466-474.
    [162] Chen S H, Qiu Z P, Song D T. A new method for computing the upper and lower bounds on frequencies of structures with interval parameters. Mechanics Research Communications, 1994, 2: 583-592.
    [163] Qiu Z P, Chen S H, Elishakoff I. Natural frequences of structures with uncertain but nonrandom parameters. J Optimization Theory and Applications, 1995, 86: 669-683.
    [164] Qiu Z P, Chen S H, Elishakoff I. Bounds of eigenvalues for structures with a description of uncertain-but-nonrandom parameters. Chaos, Solitons and Fractals, 1996, 7(3): 425-434.
    [165] Yang X W, Chen S H, Lian H D. Bounds of complex eigenvalues of structures with interval parameters. Engineering Mechanics, 2001, 23: 557-563.
    [166]陈怀海,陈正想.求解实对称矩阵区间特征值问题的直接优化法.振动工程学报, 2000, 13(1): 117-121.
    [167]王登刚,李杰.计算具有区间参数结构特征值范围的一种新方法.计算力学学报, 2004, 21(1): 56-61.
    [168]王登刚.计算具有区间参数结构的固有频率的优化方法.力学学报, 2004, 36(3): 364-372.
    [169] Qiu Z P, Chen S H, Liu Z S. Matrix perturbation method for the vibration problem of structures with interval parameters. Applied Mathematics and Mechanics, 1994, 15(6): 551-560.
    [170] Qiu Z P, Wang X J. Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. International Journal of Solids and Structures, 2003, 40: 5423-5439.
    [171]王晓军,邱志平.含不确定参数弹簧质量系统振动反问题的区间分析法.固体力学学报, 2004, 25(4): 461-466.
    [172]吴杰,陈塑寰.区间参数振动系统的动力优化.力学学报, 2003, 35(3): 373-376.
    [173] Moms D, Vandepitte D. An interval finite element approach for the calculation of envelope frequency response functions. International Journal for Numerical Methods in Engineering, 2004, 61: 2480-2507.
    [174]冯元生.机构可靠性理论的研究.中国机械工程. 1992, 3(3): 1-3.
    [175]羊妗,冯元生.机构可靠性破坏模式研究.机械科学与技术, 1991, 2: 62-65.
    [176]冯元生.机构磨损可靠性.航空学报, 1993, 12: 84-86.
    [177]张建国.不确定机构、结构分析和可靠性专题研究.西安电子科技大学博士学位论文, 2006.
    [178]陶春虎,习年生,钟培道.航空装备失效典型案例分析.北京:国防工业出版社, 1998.
    [179]勃鲁也维奇H P著;浙大机械原理与零件教研室译.机构精确度.上海:上海科技出版社, 1966.
    [180] Sandler B Z著;马培荪,马烈译.机构概率设计.北京:科学出版社, 1991.
    [181] Rhyu J H, Kwak B M. Optimal stochastic design of four-bar mechanisms for tolerance and clearance. Transactions of the ASME, 1988, 110(9): 225-262.
    [182] Lee S J, Glimore B J. The determination of the probabilistic properties of velocities & accelerations in kinematics chains with uncertainty. Transactions of the ASME, 1991, 113(3): 84-90.
    [183] Howell L L, Rao L L, Midha A. The reliability-base optimal design of a bistable compliant Mechanism. ASME Journal of Mechanical Design, 1994, 116(4): 1115-1121.
    [184]罗延科.机构的概率值计算及电算程序.重庆:重庆大学出版社, 1988.
    [185]许卫良,张启先.空间机构运动误差的概率分析和蒙特卡罗模拟.机械工程学报, 1988, 24(3): 97-104.
    [186]卢曦.凸轮廓线误差对凸轮机构动力精度影响的相关函数法.机械设计与制造, 1999, 4: 34-35.
    [187]杨平.卫星齿轮传动系统的概率模糊设计与研究.机械工程学报, 1998, 34(2): 46-52.
    [188]陈建军,陈勇,高伟等.平面四杆机构运动精度可靠性分析与数字仿真.西安电子科技大学学报, 2001, 28(6): 759-763.
    [189]卢强,张友良. Stewart平台误差的蒙特卡罗模拟.机械科学与技术, 2001, 4: 543-544.
    [190]李嘉,王纪武等.基于广义几何误差模型微机器人精度分析.机械工程学报, 2000, 36(8): 20-24.
    [191]史天录.机构可靠性研究.西北工业大学博士学位论文, 1995.
    [192]肖宁聪,李彦锋,黄洪钟.卫星太阳翼展开机构的可靠性分析方法研究.宇航学报, 2009, 30(4): 1697-1703.
    [193]师忠秀,王锋.机构运动精度可靠性分析方法的研究.机械科学与技术, 1997, 16(1): 115-121.
    [194]贺东斌,冯元生.机构容差及其运动可靠性.中国机械工程, 1993, 4(3): 16-17.
    [195]陈建军,李小平,孙东森等.星载展开天线旋转关节热变形防卡滞的可靠性研究.星载大型可展开天线技术研讨会论文集, 2003, 165-174.
    [196]史天录.平行对称曲柄滑块机构不对称防卡可靠性研究.机械科学与技术, 2000, 19(3): 421-423.
    [197]冯蕴雯.结构、机构可靠性若干重要专题研究.西北工业大学博士学位论文, 2001.
    [198] Fen Y S. The development of a theory of mechanism reliability. Reliability Engineering and System Safety. 1993, 41: 95-99.
    [199] Fen Y S. A method for computing structural system reliability with high accuracy. Computers & Structures, 1989, 33(1): 1-5.
    [200] Misawa M. Deployment reliability prediction for large satellite antennas driven by spring mechanisms. Journal of Spacecraft and Rockets, 1994, 31(5): 878-882.
    [201]朱增青,陈建军,刘国梁等.星载天线展开机构可靠性的未确知分析法.西安电子科技大学学报(自然科学版), 2009, 36(5): 909-915.
    [202]顾长鸿,盛一兴,张树林.飞机起落架上位锁可靠性分析.北京航空航天大学学报, 1995, 21(4): 18-23.
    [203]师忠秀,张凤生,徐志良.多臂机构动作可靠性分析及计算方法.青岛大学学报, 1998, 13(1): 5-10.
    [204]张树林,黄文敏.飞行器机构的可靠性.北京航空航天大学学报, 1995, 21(4): 23-29.
    [205]纪玉杰.机构动作可靠性仿真技术研究.东北大学博士学位论文, 2006.
    [206]郭秩维,白广忱,高阳.矢量喷管机构运动功能可靠性分析.航空发动机, 2006, 32(4): 19-22.
    [207]何恩山,孙志礼,李良巧.动作可靠性分析方法评价.东北大学学报(自然科学版), 2009, 30(4): 589-592.
    [208] Shou H H, Lin H W, Martin R, et al. Modified affine arithmetic is more accurate than centered interval arithmetic or affine arithmetic. Mathematics of Surfaces, 2003, 2768: 355-365.
    [209] De Figueiredo L H, Stolfi J. Self-validated numerical methods and applications. Brazilian Mathematics Colloquium Monographs. Rio de Janeiro, Brazil: Institute of Pure and Applied Mathematics, 1997.
    [210] Zhang Q, Martin R R. Polynomial evaluation using affine arithmetic for curve drawing. In: Proceedings of Eurographics UK Conference. Abingdon: UK, 2000: 49-56.
    [211] Shou H H. Subdivision methods for plotting implicit curves and surfaces. Hangzhou: Department of Mathematics, Zhejiang University, 2004.
    [212] Shou H, Lin H, Martin R, et al. Modified affine arithmetic in tensor form. In: Proceedings of International Symposium on Computing and Information. Zhuhai, China, 2004, 2: 642-646.
    [213] Martin R, Shou H, Voiculescu I, et al. Comparison of interval methods for plotting algebraic curves. Computer Aided Geometric Design, 2002, 19(7): 553-587.
    [214]张建国,陈建军,马孝松.具有区间参数的不确定结构静力区间分析的一种算法.机械科学与技术, 2005, 24(10): 1158-1162.
    [215]梁震涛,陈建军,王小兵.不确定性结构区间分析的改进Monte Carlo方法.系统仿真学报, 2007, 19(6): 1220-1223.
    [216] Qiu Z P, Wang X J. Parameter perturbation method for dymamic responses of structures with uncertain-but-bounded parameters based on interval analysis. International Journal of solids and structures, 2005, 42(18-19): 4985-4970.
    [217]易平.对区间不确定性问题的可靠性度量的探讨.计算力学学报, 2006, 23(2): 152-156.
    [218]吴昭同,杨将新.计算机辅助公差优化设计.杭州:浙江大学出版社, 1999.
    [219]马洪波,陈建军,马孝松等.基于体系可靠性的随机桁架结构优化设计.西安电子科技大学学报, 2005, 32(4): 593-598.
    [220] Ben-Haim Y. A non-probabilistic concept of reliability. Structural Safety, 1994, 14(4): 227-245.
    [221] Ben-Haim Y. Robust reliability in the mechanical sciences. Berlin: Springer-Verlag, 1996.
    [222]郭书祥,吕震宙.结构可靠性分析的概率和非概率混合模型.机械强度, 2002, 24(4): 524-527.
    [223]冯达武,赵人杰.空间大型网状展开天线展开机构的研究.中国空间科学技术, 1997, (1):64-70.
    [224] Misawa M, Yasaka T, Miyake S. Analytical and experimental investigations for satellite antenna deployment mechanisms. J Spacecraft, 1989, 26(3): 181-187.
    [225] Hu T B, Chen J J, Liang Z T. Movement reliability analysis of umbrella antenna rotation joint. 1st International Symposium on Systems and Control in Aerospace and Astronautics, 2006, 2006: 1104-1108.
    [226]刘明治,高桂芳.空间可展开天线结构研究进展.宇航学报, 2003, 24(1): 82-87.
    [227]马娟,陈建军,张建国等.不确定性桁架结构区间有限元分析的区间因子法.机械设计与研究, 2005, 21(6): 6-9.
    [228]陈建军,高伟,刘伟等.多工况下天线结构的可靠性优化设计.机械科学与技术, 2002, 21(3): 373-379.
    [229]陈建军,戴宝华.天线反射面精度和结构体系的可靠性分析.应用力学学报, 1990, 7(1): 56-65.
    [230] Smith E M. From Russia with TRIZ. Mechanical Engineering, 2003, 125: 18-20.
    [231] Mann D. Manufacturing technology evolution trends. Integrated Manufacturing Systems, 2002, 13(2): 86-90.
    [232] Mitugi J. Comparative analysis of deployable truss structures for mesh antenna reflectors. AIAA Journal, 1998, 36(8): 1546-1548.
    [233] Testoni P, Cau F, Sonato P. Electromechanical analysis of the ITER ion cyclotron antenna structure and components. Fusion Engineering and Design, 2007, 82(5-14): 666-670.
    [234]李团结,张琰,段宝岩.周边桁架可展开天线展开过程运动分析及控制.西安电子科技大学学报, 2007, 34(6): 916-921.
    [235]董志强,段宝岩.星载天线缠绕肋条的力学特性研究.西安电子科技大学学报, 2001, 28(6): 755-758.
    [236]朱敏波,曹峰云,刘明治等.星载大型可展开天线太空辐射热变形计算.西安电子科技大学学报, 2004, 31(1): 28-31.
    [237]岳建如,关富玲.大型可展构架式星载抛物面天线结构设计.浙江大学学报(工学版), 2001, 35(3): 238-243.
    [238] Gusella V, Materazzi A L. Non-Gaussian along-wind response analysis in time and frequency domains. Engineering Structures, 2000, 22(1): 49-57.
    [239]赵孟良,关富玲.考虑摩擦的周边桁架式可展天线展开动力学分析.空间科学学报, 2006, 26(3): 220-226.
    [240]陈勇.机构可靠性分析及其在星载可展开天线中的应用.西安电子科技大学硕士学位论文, 2000.
    [241] Sapountzakis E J, Mokos V G. Analysis of plates stiffened by parallel beams. InternationalJournal for Numerical Methods in Engineering, 2007, 70(10): 1209-1240.
    [242]安伟光,朱卫兵,严心池.随机有限元法在不确定性分析中的应用.哈尔滨工程大学学报, 2002, 23(1): 132-135.
    [243] Sapountzakis E J, Mokos V G. An improved model for the dynamic analysis of plates stiffened by parallel beams. Engineering Structures, 2008, 30(6): 1720-1733.
    [244]詹福良,杨嘉陵,黎在良.梁壳组合结构的一种非线性有限元计算方法.航空学报, 2001, 22(3): 281-283.
    [245]马洪波,陈建军,高伟等.随机杆系结构的概率优化设计.机械强度, 2003, 25(3): 325-329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700