随机、智能结构随机振动分析与主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以随机结构和随机智能桁架结构为对象,对结构动力特性分析模型与求解方法进行了研究;对结构在随机力或随机过程(平稳随机过程或非平稳随机过程)激励下,结构的动力响应、结构的振动主动控制、智能结构中作动和传感元件配置位置与闭环控制系统增益优化、结构参数对振动主动控制效果的影响等问题开展了全面而系统的研究。主要内容如下:
    1、考虑压电智能桁架结构主动杆单元及被动杆单元物理参数、几何参数同时具有随机性,基于随机因子法,构建了结构动力特性分析模型,提出求解方法,推导出结构动力特性随机变量的数字特征计算表达式。通过算例验证了理论和方法的正确性和有效性,为随机结构的动力响应分析提供了必要的基础。
    2、考虑压电智能桁架结构物理参数、几何参数、结构阻尼和外荷载、闭环系统控制电压分别或同时为随机变量,构建了结构在随机力作用下的动力响应分析模型,提出了求解方法,推导出结构动力响应随机变量的数字特征计算表达式,通过算例验证了所建模型和所提求解方法的正确性和有效性。
    3、利用随机因子法对随机桁架和随机刚架结构的动力特性进行了分析。在此基础上,从随机振动频域分析出发,导出了在平稳或非平稳随机激励下,随机结构的位移响应均方值、应力响应均方值的数字特征计算表达式,通过算例验证了所建模型和所提求解方法的正确性和有效性。
    4、同时考虑智能桁架结构的物理参数、几何参数、阻尼的随机性,构建了随机智能桁架随机响应闭环振动主动控制模型,分别以位移负反馈和速度负反馈为控制律,导出了随机智能桁架结构在平稳或非平稳随机激励下闭环控制位移响应均方值和应力响应均方值的均值、方差的计算表达式。研究了8米口径智能天线结构在随机风荷作用下其保精度闭环控制随机响应问题。
    5、对结构物理、几何参数、阻尼同时具有随机性,外荷载为随机力或随机过程力时,以速度输出负反馈作为控制律,采用智能结构的状态空间模型构建了基于最大耗散能准则的目标函数,分别建立了具有动应力、动位移可靠性约束的主动杆的优化配置和增益优化模型,和具有位移响应均方值、应力响应均方值可靠性约束的主动杆配置和控制增益的优化模型。利用分布函数法和可靠性安全系数法分别对可靠性约束进行显示化处理,使之转化为常规约束进行优化设计。对结构振动主动控制效果进行了计算机数字仿真,证明了所建振动主动控制模型的正确性与可行性,获得了若干对压电智能桁架结构振动主动控制有意义的结论。
The stochastic structure and stochastic intelligent truss structure are taken as research object in this paper. The analytical model and method of the structural dynamic characteristic are investigated. When the applied forces are random excitation or random process (stationary random process or non- stationary random process) excitation, the structural dynamic response, the active vibration control for the intelligent structure, the optimal placement of the sensor and the actuator and the optimization of the feedback gains of the closed loop control system for the intelligent structure, and the effects of the structural parameters on the active vibration control et al are all studied systemically. The main research works can be described as follows:
    1. Considering the randomness of physics parameters of structural material, geometric dimensions of active bars and passive bars of the piezoelectric intelligent truss structure simultaneously, the analytic model of the structural dynamic characteristics are built based on the Random Factor Method (RFM). Then, the solving methods are proposed and the computational expressions of the numerical characteristic of the structural dynamic characteristics are developed. The correctness and validity of the theory and method presented in this paper are inspected by several examples, which are the credible base of the dynamic response analysis of stochastic structures.
    2. Considering the randomness of physics parameters of structural material, geometric dimensions, damping, loads and closed loop control voltage respectively or simultaneously, the analytic model of the stochastic structure under random forces are built. The solving methods are proposed. The computational expressions of the numerical characteristic of the structural dynamic response are developed. The correctness and validity of the theory and method presented in this paper are inspected by several examples.
    3. The dynamic characteristics of stochastic truss structures and stochastic frame structures are analyzed by using Random Factor Method. Then, from the expressions of structural random response of the frequency domain, the computational expressions of the mean value, variance and variation coefficient of the mean square value of the structural displacement and stress response under the stationary random excitation or non- stationary random excitation are developed by means of the random variable’s
    
    
    functional moment method and the algebra synthesis method. The correctness and validity of the theory and method presented in this paper are inspected by several examples.
    4. The closed loop active vibration control model for stochastic intelligent truss structures are built in which the randomness of physics parameters of structural material, geometric dimensions and damping are considered simultaneously. A neglect displacement feedback control law and a neglect velocity feedback control law are considered respectively, the computational expressions of the mean value, variance and variation coefficient of the mean square value of the closed loop control system of structural displacement and stress response under the stationary random excitation or non- stationary random excitation are developed. The problems of guaranteed precision of random dynamic response of closed loop system of 8-meter intelligent caliber antenna under random wind excitation are studied.
    5. A neglect velocity feedback control law is considered and the performance function is developed based on the maximization of dissipation energy due to control action. When structural physical parameters, geometric parameters and damping are all having randomness and applied loads are random forces or random process excitations, Then, the optimal mathematical model with the reliability constraints on structural dynamic stress and displacement response or the reliability constraints on the mean square value of structural dynamic displacement and stress response are construct. The reliability constrains are transformed as the normal
引文
[1] Inderjit Chopra. Review of state of art of smart structures and integrated systems. AIAA Jounal, 2002, 40(11):2145-2187.
    [2] Mehdi Ahmadian & Andrew P.DeGuilio, Recent advances in the use of piezoceramics for vibration suppression. The shock and vibration digest, 2001, 33(1): 15-22.
    [3] A. Benjeddou. Advances in piezoelectric finite element modeling of adaptive structural elements: a surve. Computer & Structures, 2000, 76: 347-363.
    [4] 李俊宝, 张景绘, 任勇生, 张令弥. 振动工程中智能结构的研究进展.力学进展, 1999, 29(2): 165-177.
    [5] 李山清, 刘正兴, 杨耀文. 压电材料在智能结构形状和振动控制中的应用. 力学进展, 1999, 29(1): 66-76.
    [6] 刘天雄, 石银明, 华宏星等. 主动约束层阻尼振动控制技术现状及展望. 振动与冲击, 2001, 20(2): 1-6.
    [7] Gun-Shing Chen, Robin J Bruno & Moktar Salama. Optimal placement of active/passive members in structures using simulated annealing. AIAA Jounal, 1991 ,29(8): 1327-1334.
    [8] Sun C T, Wang T. Damping augmentation by delayed actuation in adaptive structures. AIAA paper 93-1692-CP.
    [9] Lu L Y, Utku S & Wada B K. Vibration suppression for large scale adaptive truss structures using direct output feedback control. Journal of intelligent material system & structures, 1993, 4(3): 385-397.
    [10] R. Lammering, Jianhu Jia & C. A. Rogers. Optimal placement of piezoelectric actuators in adaptive truss structure. Journal of sound and vibration, 1994, 171(1): 67-85.
    [11] Chin Chung Won ,Jeffrey l. Sulla, Dean W. Sparks Jr. & W. Keith Belvin. Application of piezoelectric devices to vibration suppression. Journal of guidance, control, and dynamics, 1994, 17(6): 1333-1338.
    [12] 聂润兔, 邵成勋, 邹振祝. 智能桁架机电耦合动力分析与振动控制. 振动工程学报, 1997, 10(2): 119-124.
    [13] 聂润兔, 邵成勋, 邹振祝. 压电桁架结构动力学建模与振动控制. 宇航学报,1998,19(4): 8-14.
    [14] Rao Singiresu S., Pan Tzong-Shi & VipperLa B Venkayya. Optimal placement of actuator in activiely controlled structures using genetic algorithms[J]. AIAA Journal, 1991, 29(6): 942-943.
    [15] W. Gao, J. J. Chen., H. B. Ma & X. S. Ma. Optimal placement of active bars in active vibration control for piezoelectric intelligent truss structures with random parameters. Computers & Structures, 2003, 81(1): 53-60
    [16] W. Gao, J. J. Chen & H. B. Ma. Dynamic response analysis of closed loop control system for
    
    
    intelligent truss structures based on probability. Structural Engineering & Mechanics, 2003, 15(2): 239-248.
    [17] 高伟, 陈建军, 刘伟, 马洪波, 马孝松. 随机参数智能桁架结构在随机力下的闭环控制动力响应分析. 机械科学与技术, 2002, 21(6): 909-912.
    [18] 高伟, 陈建军, 马洪波, 崔明涛, 马孝松. 随机参数智能桁架结构振动控制中主动杆的优化配置. 振动工程学报, 2003, 16(1): 89-94.
    [19] 李俊宝, 刘华, 张令弥. 自适应桁架结构振动控制中主动构件的最优配置. 航空学报, 1996, 17(6): 755-759.
    [20] Allik H. Finite element method for piezoelectric vibration. Int. Journal of Numerical Methods Engrg, 1970, 2: 151-157.
    [21] Ghandi K. A hybrid finite element model for phase transition in nonlinear electro-mechanically coupled material. In: Varadan VV. Chandra J. editors. Smart Struct Mater. Washington: SPIE: 1997: 3039: 97-112.
    [22] Chen T, Baz A. Performance characteristics of active constrained layer damping versus passive constrained layer damping with active control. In: Varadan VV. Chandra J. editors. Smart Struct Mater. Washington: SPIE: 1996: 2715: 256-269.
    [23] Chin L C. Hybrid finite element formulation for periodic piezoelectric arrays subjected to fluid loading. Int. Journal of Numerical Methods Engrg, 1994, 37: 2987-3003.
    [24] Ghandi K. Nonlinear finite element modeling of phase transition in electro-mechanically coupled material. In: Varadan VV. Chandra J. editors. Smart Struct Mater. Washington: SPIE: 1996: 2715: 121-140.
    [25] Ha S K, Keilers C. Finite element analysis of composite structures containing distributed piezoelectric sensors and actuators. AIAA Journal, 1992: 30: 772-780.
    [26] Kim J. Finite element modeling of a smart cantilever plate and comparison with experiments. Smart Mater Struct, 1996, 5: 165-170.
    [27] Kim J. Finite element modeling of structures including piezoelectric active devices. Int. Journal of Numerical Methods Engrg, 1997, 40: 817-832.
    [28] Koko I S. Finite element based design tool for smart composite structures. In: Varadan VV. Chandra J. editors. Smart Struct Mater. Washington: SPIE: 1997: 3039: 125-134.
    [29] Lim Y H. Closed loop finite element modeling of active structural damping in the frequency domain. Smart Mater Struct, 1997, 6: 161-168.
    [30] Lim Y H. Finite element modeling of the transient response of MEMs sensors. Smart Mater Struct, 1997, 6: 53-61.
    [31] X. Q. Peng ,K. Y. Lam & G. R. Liu. Active vibratin control of composite beams with piezoelectrics: A finite element model with third order theory. Journal of sound and vibration, 1998, 209(4): 635-650
    [32] Varadan V V. Closed loop finite element modeling of active/passive damping in structural vibration control. Smart Mater Struct, 1996, 5: 685-694.
    
    [33] Sung Kyu Ha,Charles Keilers & Fu-kuo Chang.Finite element analysis of composite structures containg distributed piezocermaic sensors and actuators. AIAA Journal, 1992, 30(3): 772-780.
    [34] Woo-Seok Hwang and Hyun Chul Park. Finite element modeling of piezoelectrics sensors and actuators. AIAA Journal, 1993, 31(5): 930-937.
    [35] Lammering R. The application of a finite element for composites containing piezoelectric polymers in vibration control. Computers & Structures, 1991, 41: 1101-1109.
    [36] Guo N, Cawley P. The finite element models for analysis of the vibration characteristics of piezoelectric discs. Journal of Sound and Vibration, 1992, 159: 115-138.
    [37] Varadan V V. Finite element modeling of flextensional electroacoustic transducers. Smart Mater Struct, 1993, 2: 201-207.
    [38] Tzou H S. Analysis of piezoelectric system with laminated piezoelectric triangular shell elements. AIAA Journal, 1996: 34: 110-115.
    [39] Eric M. Studies on kinematic assumptions for sandwich beams. SPIE, 1998, 3045: 173-183.
    [40] Baz A. Boundary control of beams using active constrained layer damping. Journal of Vibration and Acoustic, 1997, 119: 166-172.
    [41] Baz A. Vibration control of plate with active constrained layer damping. Smart Materials and Structures. 1996, 5: 572-580.
    [42] Park C H. Vibration control of bending modes using active constrained layer damping. Journal of Sound and Vibration, 1999, 227(4): 711-734.
    [43] H.S.Tzou & C.I.Tseng ,Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a piezoelectric finite element approach. Journal of Sound and Vibration, 1990, 138(1): 17-34.
    [44] Chen C Q. Optimal control of active structures with piezoelectric modal sensors and actuators. Smart Materials and Structures. 1997, 6: 403-409.
    [45] Chen C Q. Finite element approach of vibration control using self-sensing piezoelectric actuators. Computers & Structures, 1996, 60: 505-513.
    [46] S.H.Chen,Z.D.Wang & X.H.Liu, Active vibration control and suppression for intelligent structures. Journal of Sound and Vibration, 1997, 200(2): 167-177.
    [47] 马爱军, 刘守荣, 陈塑寰. 压电框架单元及其在结构振动控制中的应用. 宇航学报, 1999, 20(1): 33-40.
    [48] 唐纪晔, 黄海, 夏人伟. 压电复合材料层板自适应结构的振动控制. 计算力学学报, 2000, 17(4): 441-446.
    [49] Ray M C. Static analysis of an intelligent structure by finite element method. Computers & Structures, 1994, 52: 617-631.
    [50] Carpenter M. Using energy methods to derive beam finite elements incorporating piezoelectric materials. Journal of Intelligent Material Systems and Structures, 1997, 6: 1545-1548.
    [51] Shen I Y. Hybrid damping through intelligent constrained layer treatments. Journal of Vibration and Acoustic, 1994, 116: 341-349.
    
    [52] Shen I Y. Stability and controllability of Euler-Bernolli beams with intelligent constrained layer treatments. Journal of Vibration and Acoustic, 1996, 118: 70-77.
    [53] Rongong J A. Modeling of a hybrid layer piezoceramic approach to active damping. Journal of Vibration and Acoustic, 1997, 119: 120-130.
    [54] 蔡炜, 李山青, 杨耀文, 刘正兴. 压电层合板振动控制的有限元方法. 固体力学学报, 1998, 19(1): 45-51.
    [55] Liao W H & Wang K W. On the analysis of viscoelastic material for active constrained layer damping treatments. Journal of Sound and Vibration, 1997, 207(3): 319-334.
    [56] Baz A. Optimization of energy dissipation characteristics of active constrained layer damping. Journal of Intelligent Material Systems and Structures, 1997, 6: 360-368.
    [57] Hu B G. A modified MSE for viscoelastic systems: a weighted stiffness matrix approach. Journal of Vibration and Acoustic, 1995, 117(1): 226-231.
    [58] 石银明, 张洪渊, 华宏星等. 主动约束层阻尼梁的有限元建模及模型简化. 振动与冲击, 2001, 20(2): 29-31.
    [59] Jinyoung Suk, Sunwoong Boo & Youdan Kim. Lyapunov control law for slew maneuver using time finite element analysis. Journal of guidance, control, and dynamics, 2001, 24(1): 87-94.
    [60] J.Tang,T. Liu & K.W. Wang. Semiactive and active-passive hybrid structural damping treatments via piezoelectric materials. The shock and vibration digest, 2000, 32(3): 189-200.
    [61] Chattppadhyay A. Modeling segmented active constrained layer damping using hybrid displacement field. AIAA Journal, 2001, 39(3): 480-486.
    [62] 刘豹. 《现代控制理论》. 机械工业出版社, 1988
    [63] 段广仁. 《线性系统理论》. 哈尔滨工业大学出版社, 1996
    [64] Ahmsadian M. Controllability and obaervability of general linear lumped-parameter systems. Journal of guidance, control, and dynamics, 1985, 8(6): 669-672
    [65] Lim K B. Method for optimal actuator and sensor placement for large flexible structures. Journal of guidance, control, and dynamics, 1992, 15(1): 48-57
    [66] Gawronski W & Lim K B. Balance actuator and sensor placement for flexible structures. In: Proceedings of SDM Conference. AIAA-95-3259-cp. 1995. 1871-1880
    [67] Hyoun-Surk Roh & Youngjin Park,Acutor and excitor placement for flexible structures. Journal of guidance, control, and dynamics, 1997, 20(5): 850-856
    [68] Osam J.Aldraihem. Tarurai Singh & C.Wetherhold, Optimal size and location of actuator/sensors: practice considerations. Journal of guidance , control ,and dynamics, 2000, 23(3): 509-515.
    [69] Schulz G, Heimbold G. Dislocated actuator/sensor positioning and feedback design for flexible structures. Journal of Guidance, Control, and Dynamics, 1983, 6(5): 361-366
    [70] Kondoh S, et al. The positioning of sensors and actuators in the vibration control of flexible systems. JSME International Journal, Series C, Vibration Control Engineering, 1990, 33(2):145-152.
    
    [71] Lee A C, Chen S T. Collocated sensor/actuator positioning and feedback design in the control of flexible structures systems. Transactions of ASME Journal of Vibration and Acoustics, 1994, 116: 146-154.
    [72] K.Xu,P.Warnichai & T.Igusa, Optimal placement and gains of sensors and actuators for feedback control. Journal of guidance, control, and dynamics, 1994, 17(5): 929-934.
    [73] Makola M. Abdullah. Optimal location and gains of feedback controllers at discrete locations. AIAA Jounal, 1998, 36(11): 2109-2116.
    [74] 任建亭, 闫云聚, 姜节胜. 振动控制传感器/作动器的数目和位置优化设计. 振动工程学报, 2001, 14(2): 237-241
    [75] I. Brunt, G. Coffignal, F. Lene & M. Verge. A methodology for determination of piezoelectric actuator and sensor location on beam structures. Journal of sound and vibration, 2001, 243(5): 861-882.
    [76] Q. Wang & M. Wang. A controllability index for optimal design of piezoelectric actuator in vibration control of beam structures, Journal of sound and vibration, 2001, 242(3): 507-518.
    [77] M. Sunar & S. S Rao. Thermopiezoelectric control design and actuator placement. AIAA Jounal, 1997, 35(3): 534-539
    [78] M. Sunar & S. S Rao. Distributed modeling and actuator location for piezoelectric control system. AIAA Jounal, 1996, 34(10): 2209-2211
    [79] Young Kyu Kang, Hyun Chul Park, Woonbong Hwang & Kyungf Seop Han, Optimum placement of piezoelectric sensor/actuator for vibration control of laminated beams. AIAA Journal, 1996, 34(9): 1921-1926
    [80] Matunaga S. & Onodal J. Actuator placement with failure consideration for static shape control of truss structures. AIAA Journal, 1995, 33(6): 1161-1163
    [81] Baruh H, Choe H. Sensor placement in structural control. Journal of guidance, control, and dynamics, 1987, 10(5): 474-482
    [82] 高伟, 陈建军. 压电主动杆位置和增益在随机智能桁架结构振动控制中的优化. 振动与冲击, 2003, 22(1): 56-60.
    [83] Choe K & Baruh H. Actuator placement in structural control. Journal of guidance, control, and dynamics, 1991, 14(1): 40-46
    [84] 李俊宝, 张令弥. 自适应桁架结构局部力反馈振动控制及其主动构件的配置研究. 振动工程学报, 1997, 10(3): 380-386
    [85] 聂润兔, 邵成勋, 邹振祝. 自适应桁架形状控制中主动杆多目标最优配置. 应用力学学报, 1997, 14(3):48-53.
    [86] Changho Nam & Youdan Kim.Optimal design of composite lifting surface for flutter suppresssion with piezoelectric actuators . AIAA Journal, 1995, 33(10): 1897-1904
    [87] 王中东, 关伟, 陈塑寰.智能结构振动控制中执行元件最优位置的选择. 振动工程学报, 1999, 12(4): 576-582
    [88] Singiresu S.Rao,Tzong-Shi Pan & VipperLa B Venkayya. Optimal placement of actuator in
    
    
    activiely controlled structures using genetic algorithms. AIAA Journal, 1991, 29(6): 942-943
    [89] 张宏伟, 徐世杰, 黄文虎. 作动器/传感器配置优化的遗传算法应用. 振动工程学报, 1999, 12(4): 529-534
    [90] 严天宏, 段登平, 王建宇, 王字孝, 黄文虎. 振动控制中传感器/作动器最有配置问题的模拟退火法研究. 振动与冲击, 2000, 19(2): 1-4
    [91] Xiaojian Liu & David William Begg. On simultaneous optimization of smart structures-Part Ⅰ: Theory. Comput. Methoods Appl. Engrg., 2000, 184: 15-24.
    [92] Xiaojian Liu & David William Begg. On simultaneous optimization of smart structures-Part Ⅱ: Algorithms and examples. Comput. Methoods Appl. Engrg., 2000, 184: 25-37.
    [93] 王忠东, 陈塑寰. 智能结构有限元动力模型的建立及主动振动控制和抑制. 计算力学学报, 1998, 15(1): 38-43
    [94] Preumont A, Achkire Y. Active tendon control of large trusses. AIAA Journal, 2000, 38(3): 493-498.
    [95] Song-Tsuen Chen & An-Chen Lec. Vibration and robust control of symmetric flexible systems, Journal of guidance, control, and dynamics, 1993, 16(4): 677-685
    [96] 王存堂, 唐建中, 费鸣, 史维祥. 主动振动控制实现中传感/作动元件配置问题的全局优化方法研究. 应用力学学报, 1998, 15(1): 55-59.
    [97] Davenport A G. Buffeting of a suspension bridge by storm wind. Journal of Structural Division, 1962, 88(3): 233-268.
    [98] Chen Jianjun. Analysis of engineering structures response to random wind excitation. Computers & Structures, 1994, 51(6): 687-693.
    [99] 欧进萍, 牛荻涛, 杜修力. 设计用随机地震动的模型及其参数确定. 地震工程与工程振动, 1991, 11(3): 45-55.
    [100] McCormick A C & Nandi A K. Cyclostationary in rotating machine vibrations. Mechanical System and Signal Processing, 1998, 12(2): 225-242.
    [101] Jha A, Nikolaidis E & Gangadharan S. Vibration of dynamic system under cyclostationary excitations. AIAA Journal, 2000, 38(12): 2284-2291.
    [102] .Lin J H, Zhang W S & Li J J. Structural response to arbitrarily coherent stationary random excitation. Computers & Structures, 1994, 50: 629-633.
    [103] 孙东科, 林家浩. 复杂结构的风激随机振动分析. 机械工程学报, 2001, 37(3): 55-58.
    [104] 帅健, 许葵. 埋地管道的非平稳随机振动. 工程力学, 2002, 19(5): 130-134.
    [105] 马星, 邓洪洲, 王肇民. 桅杆结构随机风振的离散分析法. 2002, 19(1): 34-37.
    [106] 王宏, 郭彦林, 崔晓强. 索-拱杂交结构动力反应分析. 工程力学, 2003, 20(1): 144-148.
    [107] Fang T, Sun M N. A unified approach to two types of evolutionary random response problems in engineering. Archive Appl. Mech. 1997, 67(6): 495-506.
    [108] NC Nigam & Narayanan. Applications of random vibrations. New Delhi: Narosa, 1994.
    [109] 朱位秋. 随机振动. 北京: 科学出版社, 1998.
    
    [110] 欧进萍, 王光远. 结构随机振动. 北京: 高等教育出版社, 1998.
    [111] 高伟, 陈建军, 刘伟. 随机参数智能桁架结构动力特性分析. 应用力学学报, 2003, 20(1): 123-127.
    [112] 戴君, 陈建军, 马洪波, 崔明涛. 随机参数结构在随机和在激励下的动力响应分析. 工程力学, 2002, 19(3): 64-68.
    [113] 马洪波, 陈建军, 崔明涛. 随机参数桁架结构的有限元与可靠性分析. 西安电子科技大学学报,2003, 30(1): 103-107.
    [114] Chen J.J., Che J.W., Sun H.A., Ma H.B. & Cui M.T.. Probabilistic dynamic analysis of truss structures. Structural Engineering and Mechanics, 2002, 13(2): 231-239.
    [115] Dai J, Chen J.J., Li Y G. Dynamic response optimization design for engineering structures based on reliability. Applied Mathematics and Mechanics, 2003, 24(1): 43-52.
    [116] 高伟, 陈建军, 崔明涛. 线性随机智能桁架结构闭环动力响应, 西安电子科技大学学报,2003, 30(3): 357-361.
    [117] Grigoriu M. Eigenvalue problem for uncertain systems-part 2. Applied Mechanics Reviews, 1991, 44(11): 389-395.
    [118] Choi C K. Stochastic finite element analysis of plate structures by weighted integral method. Structural Engineering and Mechanics, 1996, 4(6): 703-715.
    [119] Kaminski M. Perturbation based on stochastic finite element method homogenization of two-phase elastic composites. Computers & Structures, 2000, 78(6): 811-826.
    [120] Yang X W, Chen S H & Wu B S. Eigenvalue reanalysis of structures using perturbations and Pade Approximation. Mechanical System and Signal Processing, 2001, 15(2): 257-263.
    [121] Singh B N, Yadav D & Iyengar N G R. Natural frequencies of composite plates with random material properties using higher-order shear deformation theory. International Journal of Mechanical Sciences, 2001, 43: 2193-2214.
    [122] Cho K N. Mass perturbation influence method for dynamic analysis of offshore structures. Structural Engineering and Mechanics, 2002, 13(4): 429-436.
    [123] Kaminski M. Stochastic finite element method homogenization of heat conduction problem in fiber composites. Structural Engineering and Mechanics, 2001, 11(4): 373-392.
    [124] Liu M Y, Chinag W L. Analytical and experimental research on wind-induced vibration in high-rise buildings with tuned liquid column dampers. Wind and Structures, 2003, 6(1): 71-90.
    [125] Zhao Lei, Chen Qiu. Neumann dynamic stochastic finite element method of vibration for structures with stochastic parameters to random excitation. Computers and structures, 2000, 77(6): 651-657.
    [126] 林家浩, 易平. 线性随机结构的平稳随机响应. 计算力学学报, 2001, 18(4): 402-408.
    [127] 李杰, 廖松涛. 线性随机结构在随机激励下动力响应分析. 力学学报, 2002, 34(3): 416-424.
    [128] 方同, 冷小磊, 李军强等. 演变随机响应问题的统一解法. 振动工程学报, 2002,
    
    
    15(3)290-294.
    [129] Kaminski M. Monte-Carlo simulation of effective conductive for fiber composites. Int. Communications in Heat and Mass Transfer, 1999, 26(6): 801-810.
    [130] Hurtado J E & Barbat A H. Monte Carlo techniques for stochastic finite elements. Arch. of Comput. Method in Eng., 1998, 5(1): 3-30.
    [131] 高伟, 陈建军, 崔明涛. 随机压电智能桁架结构闭环控制概率动力响应分析. 固体力学学报, 2003(3)
    [132] 高伟, 陈建军. 线性随机结构的平稳随机响应分析, 应用力学学报, 2003, 20(3)
    [133] 高伟, 陈建军, 马洪波. 闭环控制下随机智能桁架结构的平稳随机响应分析, 机械强度,2003, 25(4): 237-242.
    [134] W. Gao, J. J. Chen. Dynamic Response Analysis of linear Stochastic Truss Structures Under Stationary Random Excitation. Journal of Sound and Vibration, ( Accepted).
    [135] 易平, 林家浩, 赵岩. 线性随机结构的非平稳随机响应变异性分析. 固体力学学报: 2002, 23(1): 93-97.
    [136] Jensen H, Iwan W D. Response of system with uncertain parameters to stochastic excitation. Journal of Engineering Mechanics Division, ASCE 1992, 118(5): 1012-1025.
    [137] Spanos P D, Ghanem R G. Stochastic finite element expansion for random media. Journal of Engineering Mechanics Division, ASCE 1989, 115(5): 1035-1053.
    [138] Jensen H, Iwan W D. Response variability in structural dynamics. Earthquake Engineering and Structural Dynamics, 1991, 20(1): 949-959.
    [139] Iwan W D, Jensen H. On the dynamic response of continuous systems including model uncertainty. Journal of Applied Mechanics, ASME, 1993, 60(2): 484-490.
    [140] K. J. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall, Inc., 1982.
    [141] 陈建军, 车建文, 陈勇. 桁架结构动力可靠性优化设计.固体力学学报, 2001, 22(1): 54-60.
    [142] Chen Jianjun, Cao Yibo, Sun Huaian. Topology optimization of truss structures with systematic reliability constraints under multiple loading cases. Acta Mechanica Solida Sinica, 1999, 12(2): 165-173.
    [143] J. J. Chen & B. Y. Dum, Structural optimization by displaying the reliability constraints. Computer & Structures, 1994, 50(6): 777-783.
    [144] Liu Mingyi, Chinag Weiling & Chu Chinren. Analytical and experimental research on wind-induced vibration in high-rise buildings with tuned liquid column dampers. Wind and Structures, 2003, 6(1): 71-90.
    [145] 林家浩, 夏杰, 张亚辉, 易平. 非平稳随机摄动分析中久期项效应. 振动工程学报, 2003, 16(1): 124-127.
    [146] Jian-Jun Chen & Bao-Yan Duan. Reliability and Damage Tolerance, Netherlands: Gordon and Breach Science Publishers, 1999.
    
    
    
    攻读博士学位期间发表的论文
    
    W. Gao, J. J. Chen., H. B. Ma & X. S. Ma. Optimal placement of active bars in active vibration control for piezoelectric intelligent truss structures with random parameters. Computers & Structures, 2003, 81(1): 53-60. (SCI、EI收录; SCI检索号:000180549100006, EI检索号: 03027318367)
    W. Gao, J. J. Chen & H. B. Ma. Dynamic response analysis of closed loop control system for intelligent truss structures based on probability. Structural Engineering & Mechanics, 2003, 15(2): 239-248. (SCI、EI收录; SCI检索号: 000180858800005, EI检索号: 03097371310)
    高伟, 陈建军. 随机参数智能桁架结构在随机力下的闭环控制动力响应分析. 机械科学与技术, 2002, 21(6): 909-912. (EI收录, EI检索号: 02517284626)
    高伟, 陈建军, 马洪波. 随机参数智能桁架结构振动控制中主动杆的优化配置. 振动工程学报, 2003, 16(1): 89-94.
    高伟, 陈建军, 刘伟. 随机参数智能桁架结构动力特性分析. 应用力学学报, 2003, 20(1):123-127.
    高伟, 陈建军. 压电主动杆位置和增益在随机智能桁架结构振动控制中的优化. 振动与冲击, 2003, 22(1): 56-60.
    陈建军, 高伟. 多工况下天线结构的可靠性优化设计. 机械科学与技术, 2002, 21(3):612-616.
    高伟, 陈建军. 线性随机智能桁架结构闭环动力响应, 西安电子科技大学学报,2003,30 (3): 357-361.
    高伟, 陈建军, 马洪波. 闭环控制下随机智能桁架结构的平稳随机响应分析, 机械强度,2003, 25(4): 237-242.(EI源期刊)
    W. Gao, J. J. Chen. Optimal placement of active bars’ placement and feedback gains in active vibration control for random piezoelectric intelligent truss structures. 3rd CHINA-JPAN SYMPOSIUM ON MECHANTRONICS, 2002,Cheng Du.
    高伟, 陈建军, 崔明涛. 随机压电智能桁架结构闭环控制概率动力响应分析. 固体力学学报, 2003(3), 即将见刊.
    高伟, 陈建军. 线性随机结构的平稳随机响应分析, 应用力学学报, 2003, 即将见刊.
    高伟, 陈建军. 随机刚架结构在平稳随机激励下的动力响应分析, 振动与冲击, 2003, 即将见刊.
    
    W. Gao & J. J. Chen. Dynamic Response Analysis of Stochastic Frame Structures Under Non-stationary Random Excitation. Computers & Structures, 2003 (Accepted). (SCI、EI源期刊)
    W. Gao & J. J. Dynamic Response Analysis of Closed Loop Control System for Random Intelligent Truss Structure under Random Forces, Mechanical Systems and Signal Processing, 2003 (Accepted). (SCI源期刊)
    W. Gao, J. J. Chen. Dynamic Response Analysis of linear Stochastic Truss Structures Under Stationary Random Excitation. Journal of Sound and Vibration, 2003 (Accepted). (EI源期刊)
    W. Gao & J. J. Chen. Optimization of Active Vibration Control for Random Intelligent Truss Structures under Non-stationary Random Excitation. Structural Engineering & Mechanics, 2003 (Accepted). (SCI、EI源期刊)
    高伟, 陈建军, 马娟.平稳随机激励下线性随机桁架结构动力响应分析, 振动工程学报, 2003, 录用.
    高伟, 陈建军. 基于信息熵的模糊桁架结构有限元分析, 西安电子科技大学学报,2003,录用.
    高伟, 陈建军. 非平稳随机激励下随机刚架结构动力响应分析, 工程力学, 2003, 录用. (EI源期刊)
    W. Gao & J. J.. Stationary Random Response Analysis of Closed Loop Control System for Stochastic piezoelectric Intelligent Truss Structures, Mechatronics, (Conditioned Accept).
    W. Gao, J. J. Chen. Optimization of Active Vibration Control for Random Intelligent Truss Structure under Stationary Random Excitation. The Quarterly Journal of Mechanics and Applied Mathematics, (Conditioned Accept).
    高伟, 陈建军. 平稳随机激励下随机智能桁架结构振动控制中的优化, 计算力学学报, 2003, 录用.
    高伟, 陈建军. 模糊桁架结构有限元分析的随机因子法, 应用力学学报, 2003, 录用.
    高伟, 陈建军. 随机桁架结构的非平稳随机动力响分析, 力学季刊, 2003, 录用.
    高伟, 陈建军. 风荷激励下随机天线反射面结构的随机响应分析, 机械工程学报, 2003, 待发表.
    高伟, 陈建军. 基于区间数的模糊结构动力特性分析, 振动工程学报,2003,待发表.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700