蛋白质相互作用结构域PDZ结合特性的研究方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本部分介绍了一种新的随机多肽文库的构建方法,即用基因组DNA为原料来构建随机多肽文库
     一般认为,基因组DNA是不能够直接用来表达出有生物学意义的蛋白质或多肽。但是,如果我们需要的是随机多肽,基因组DNA就可以被认为是非常有用的资源。当大的基因组DNA被仅识别4个核苷酸的限制性内切酶酶切后,产生的短片段DNA可以近似的认为是随机序列的片段,这样的短的随机片段在本实验中被用来直接表达随机多肽,成为随机多肽文库。例如人的基因组DNA为2.91×10~9bp,这样大的基因组DNA经识别4个核苷酸的限制性内切酶(DpnⅡ或Tsp509I)酶切后,因为这种酶在基因组上平均每隔256bp即有一个酶切位点,因此可以产生约10~7(2.91×10~9/256)个片段。由于每个片段的平均长度为256bp,所以这样的片段可以编码85个氨基酸(256/3),又由于每64个密码子当中有3个终止密码子,所以最后这样的片段表达出的多肽的平均长度为21个氨基酸(64/3)。这些片段可以克隆到任何表达载体中。在这里我们将这些片段连接到用DpnⅡ(Tsp509I)的同尾酶BamHI(EcoRI)预先酶切的酵母双杂交载体pGADT7上后,电击转化大肠杆菌形成随机多肽文库
     在论文中,我们构建了两个这样的随机多肽文库。一个是用DpnⅡ酶切人基因组DNA,所构建的文库的容量为1.1×10~6cfu。另一个是用Tsp509I酶切人基因组DNA,所构建的文库的容量为1.4×10~7cfu。
A novel method for making random peptide library with genomic DNA was introduced in the first part of this dissertation. It is generally believed that genomic DNA cannot be directly used for expression of biological meaningful proteins or peptides. However, if we are to make random peptide library, genomic DNA can be considered a useful DNA fragment sources. Large genomic DNAs can be digested to short fragments and those short fragments of DNA can be considered nearly random and were used here for making random peptide library. For example, the human genomic DNA is 2.91× 10~9bp and can produce 10~7(2.91 × 10~9/256) fragments after it is fully digested with restriction endonuclease DpnII or Tsp509I, which recognizes 4 nucleotides. These fragments, which are 256bp long in average and can be cloned into any expression vectors, for example yeast two-hybrid vector pGADT7, predigested by BamHI or EcoRI, which generates compatible cohesive ends with DpnII or Tsp509I respectively. In those libraries, average fragment codes 85(256/3) amino acids. Since there are 3 stop codons in every 64 codons, the peptides expression stop at average length of 21 amino acid residues.
    In the first part of the dissertation, two such random peptide libraries were constructed, one was human genomic DNA digested by DpnII, in which 1.1 × 10~6 independent clones were obtained while the other was digested by Tsp509I, in which 1.4 ×10~7 independent clones were obtained.
引文
[1] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, J. D. Gocayne, P. Amanatides, R. M. Ballew, D. H. Huson, J. R. Wortman, Q. Zhang, C. D. Kodira, X. H. Zheng, L. Chen, M. Skupski, G. Subramanian, P. D. Thomas, J. Zhang, G. L. Gabor Miklos, C. Nelson, S. Broder, A. G. Clark, J. Nadeau, V. A. McKusick, N. Zinder, A. J. Levine, R. J. Roberts, M. Simon, C. Slayman, M. Hunkapiller, R. Bolanos, A. Delcher, I. Dew, D. Fasulo, M. Flanigan, L. Florea, A. Halpern, S. Hannenhalli, S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K. Remington, J. Abu-Threideh, E. Beasley, K. Biddick, V. Bonazzi, R. Brandon, M. Cargill, I. Chandramouliswaran, R. Charlab, K. Chaturvedi, Z. Deng, V. Di Francesco, P. Dunn, K. Eilbeck, C. Evangelista, A. E. Gabrielian, W. Gan, W. Ge, F. Gong, Z. Gu, P. Guan, T. J. Heiman, M. E. Higgins, R. R. Ji, Z. Ke, K. A. Ketchum, Z. Lai, Y. Lei, Z. Li, J. Li, Y. Liang, X. Lin, F. Lu, G. V. Merkulov, N. Milshina, H. M. Moore, A. K. Naik, V. A. Narayan, B. Neelam, D. Nusskern, D. B. Rusch, S. Salzberg, W. Shao, B. Shue, J. Sun, Z. Wang, A. Wang, X. Wang, J. Wang, M. Wei, R. Wides, C. Xiao, C. Yan, et al., The sequence of the human genome, Science 291 (2001) 1304-1351.
    [2] R. A. Houghten, C. Pinilla, S. E. Blondelle, J. R. Appel, C. T. Dooley, and J. H. Cuervo, Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery, Nature 354 (1991) 84-86.
    [3] K. S. Lam, S. E. Salmon, E. M. Hersh, V. J. Hruby, W. M. Kazmierski, and R. J. Knapp, A new type of synthetic peptide library for identifying ligand-binding activity, Nature 354 (1991) 82-84.
    [4] S. F. Parmley, and G. P. Smith, Filamentous fusion phage cloning vectors for the study of epitopes and design of vaccines, Adv Exp Med Biol 251 (1989) 215-218.
    [5] J. K. Scott, and G. P. Smith, Searching for peptide ligands with an epitope library, Science 249 (1990) 386-390.
    [6] S. E. Cwirla, E. A. Peters, R. W. Barrett, and W. J. Dower, Peptides on phage: a vast library of peptides for identifying ligands, Proc Natl Acad Sci U S A 87 (1990) 6378-6382.
    [7] J. J. Devlin, L. C. Panganiban, and P. E. Devlin, Random peptide libraries: a source of specific protein binding molecules, Science 249 (1990) 404-406.
    [8] R. B. Christian, R. N. Zuckermann, J. M. Kerr, L. Wang, and B. A. Malcolm, Simplified methods for construction, assessment and rapid screening of peptide libraries in bacteriophage, J Mol Biol 227 (1992) 711-718.
    [9] J. A. Lenstra, J. H. Erkens, J. G. Langeveld, W. P. Posthumus, R. H. Meloen, F. Gebauer, I. Correa, L. Enjuanes, and K. K. Stanley, Isolation of sequences from a random-sequence expression library that mimic viral epitopes, J Immunol Methods 152 (1992) 149-157.
    [10] M. Yang, Z. Wu, and S. Fields, Protein-peptide interactions analyzed with the yeast two-hybrid system, Nucleic Acids Res 23 (1995) 1152-1156.[1] A. S. Fanning, and J. M. Anderson, PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane, J Clin Invest 103 (1999) 767-772.
    [2] D. A. Doyle, A. Lee, J. Lewis, E. Kim, M. Sheng, and R. MacKinnon, Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ, Cell 85 (1996) 1067-1076.
    [3] C. P. Ponting, Evidence for PDZ domains in bacteria, yeast, and plants, Protein Sci 6 (1997) 464-468.
    [4] J. Schultz, R. R. Copley, T. Doerks, C. P. Ponting, and P. Bork, SMART: a web-based tool for the study of genetically mobile domains, Nucleic Acids Res 28 (2000) 231-234.
    [5] T. Pawson, and J. D. Scott, Signaling through scaffold, anchoring, and adaptor proteins, Science 278??(1997) 2075-2080.
    [6] Z. Songyang, A. S. Fanning, C. Fu, J. Xu, S. M. Marfatia, A. H. Chishti, A. Crompton, A. C. Chan, J. M. Anderson, and L. C. Cantley, Recognition of unique carboxyl-terminal motifs by distinct PDZ domains, Science 275 (1997) 73-77.
    [7] Y. Gao, M. Li, W. Chen, and M. Simons, Synectin, syndecan-4 cytoplasmic domain binding PDZ protein, inhibits cell migration, J Cell Physiol 184 (2000) 373-379.
    [8] L. H. Wang, R. G. Kalb, and S. M. Strittmatter, A PDZ protein regulates the distribution of the transmembrane semaphorin, M-SemF, J Biol Chem 274 (1999) 14137-14146.
    [9] R. C. Bunn, M. A. Jensen, and B. C. Reed, Protein interactions with the glucose transporter binding protein GLUT1CBP that provide a link between GLUT1 and the cytoskeleton, Mol Biol Cell 10 (1999) 819-832.
    [10] L. De Vries, X. Lou, G. Zhao, B. Zheng, and M. G. Farquhar, GIPC, a PDZ domain containing protein, interacts specifically with the C terminus of RGS-GAIP, Proc Natl Acad Sci U S A 95 (1998) 12340-12345.
    [11] T. Ligensa, S. Krauss, D. Demuth, R. Schumacher, J. Camonis, G. Jaques, and K. M. Weidner, A PDZ domain protein interacts with the C-terminal tail of the insulin-like growth factor-1 receptor but not with the insulin receptor, J Biol Chem 276 (2001) 33419-33427.
    [12] H. Cai, and R. R. Reed, Cloning and characterization of neuropilin-1-interacting protein: a PSD-95/Dlg/ZO-1 domain-containing protein that interacts with the cytoplasmic domain of neuropilin-1, J Neurosci 19 (1999) 6519-6527.
    [13] T. F. Liu, G. Kandala, and V. Setaluri, PDZ domain protein GIPC interacts with the cytoplasmic tail of melanosomal membrane protein gp75 (tyrosinase-related protein-1), J Biol Chem 276 (2001) 35768-35777.
    [14] G. C. Blobe, X. Liu, S. J. Fang, T. How, and H. F. Lodish, A novel mechanism for regulating transforming growth factor beta (TGF-beta) signaling. Functional modulation of type III TGF-beta receptor expression through interaction with the PDZ domain protein, GIPC, J Biol Chem 276 (2001) 39608-39617.
    [15] T. T. Tani, and A. M. Mercurio, PDZ interaction sites in integrin alpha subunits. T14853, TIP/GIPC binds to a type I recognition sequence in alpha 6A/alpha 5 and a novel sequence in alpha 6B, J Biol Chem 276 (2001) 36535-36542.
    [16] S. E. Craven, and D. S. Bredt, PDZ proteins organize synaptic signaling pathways, Cell 93 (1998) 495-498.
    [17] E. Kim, M. Niethammer, A. Rothschild, Y. N. Jan, and M. Sheng, Clustering of Shaker-type K+channels by interaction with a family of membrane-associated guanylate kinases, Nature 378 (1995) 85-88.
    [18] H. Oschkinat, A new type of PDZ domain recognition, Nat Struct Biol 6 (1999) 408-410.
    [19] A. Y. Hung, and M. Sheng, PDZ domains: structural modules for protein complex assembly, J Biol Chem 277 (2002) 5699-5702.
    [20] P. Vaccaro, and L. Dente, PDZ domains: troubles in classification, FEBS Lett 512 (2002) 345-349.
    [21] G. Fuh, M. T. Pisabarro, Y. Li, C. Quan, L. A. Lasky, and S. S. Sidhu, Analysis of PDZ domain-ligand interactions using carboxyl-terminal phage display, J Biol Chem 275 (2000) 21486-21491.
    [22] P. Vaccaro, B. Brannetti, L. Montecchi-Palazzi, S. Philipp, M. Helmer Citterich, G. Cesareni, and L. Dente, Distinct binding specificity of the multiple PDZ domains of INADL, a human protein with homology to INAD from Drosophila melanogaster, J Biol Chem 276 (2001) 42122-42130.[1] M. B. Kennedy, Origin of PDZ (DHR, GLGF) domains, Trends Biochem Sci 20 (1995) 350.
    [2] C. P. Ponting, Evidence for PDZ domains in bacteria, yeast, and plants, Protein Sci 6 (1997) 464-468.
    [3] D. A. Doyle, A. Lee, J. Lewis, E. Kim, M. Sheng, and R. MacKinnon, Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ, Cell 85 (1996) 1067-1076.
    [4] P. Vaccaro, B. Brannetti, L. Montecchi-Palazzi, S. Philipp, M. Helmer Citterich, G. Cesareni, and L. Dente, Distinct binding specificity of the multiple PDZ domains of INADL, a human protein with homology to INAD from Drosophila melanogaster, J Biol Chem 276 (2001) 42122-42130.
    [5] E. Kim, M. Niethammer, A. Rothschild, Y. N. Jan, and M. Sheng, Clustering of Shaker-type K+channels by interaction with a family of membrane-associated guanylate kinases, Nature 378 (1995) 85-88.
    [6] H. C. Kornau, L. T. Schenker, M. B. Kennedy, and P. H. Seeburg, Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95, Science 269 (1995) 1737-1740.
    [7] J. P. Borg, S. Marchetto, A. Le Bivic, V. Ollendorff, F. Jaulin-Bastard, H. Saito, E. Fournier, J. Adelaide, B. Margolis, and D. Birnbaum, ERBIN: a basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor, Nat Cell Biol 2 (2000) 407-414.
    [8] Y. P. Hsueh, F. C. Yang, V. Kharazia, S. Naisbitt, A. R. Cohen, R. J. Weinberg, and M. Sheng, Direct interaction of CASK/LIN-2 and syndecan heparan sulfate proteoglycan and their overlapping distribution in neuronal synapses, J Cell Biol 142 (1998) 139-151.
    [9] J. Staudinger, J. Lu, and E. N. Olson, Specific interaction of the PDZ domain protein PICK1 with the COOH terminus of protein kinase C-alpha, J Biol Chem 272 (1997) 32019-32024.
    [10] Y. Gao, M. Li, W. Chen, and M. Simons, Synectin, syndecan-4 cytoplasmic domain binding PDZ protein, inhibits cell migration, J Cell Physiol 184 (2000) 373-379.
    [11] A. Marchese, M. Sawzdargo, T. Nguyen, R. Cheng, H. H. Heng, T. Nowak, D. S. Im, K. R. Lynch, S. R. George, and F. O'Dowd B, Discovery of three novel orphan G-protein-coupled receptors, Genomics 56 (1999) 12-21.
    [12] Y. Kawasawa, K. Kume, S. Nakade, H. Haga, T. Izumi, and T. Shimizu, Brain-specific expression of novel G-protein-coupled receptors, with homologies to Xenopus PSP24 and human GPR45, Biochem Biophys Res Commun 276 (2000) 952-956.
    [13] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J Mol Biol 215 (1990) 403-410.
    [14] H. Haiming, Z. Ling, C. Qinghua, J. Tianzi, M. Sucan, and G. Youhe, Finding Potential Ligands for PDZ Domains by Tailfit, a JAVA Program, Chinese Medical Sciences Journal (2004) In press.
    [15] M. Irie, Y. Hata, M. Takeuchi, K. Ichtchenko, A. Toyoda, K. Hirao, Y. Takai, T. W. Rosahl, and T. C. Sudhof, Binding of neuroligins to PSD-95, Science 277 (1997) 1511-1515.
    [16] S. H. Gee, R. Madhavan, S. R. Levinson, J. H. Caldwell, R. Sealock, and S. C. Froehner, Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins, J Neurosci 18 (1998) 128-137.
    [17] R. A. Hall, R. T. Premont, C. W. Chow, J. T. Blitzer, J. A. Pitcher, A. Claing, R. H. Stoffel, L. S. Barak, S. Shenolikar, E. J. Weinman, S. Grinstein, and R. J. Lefkowitz, The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange, Nature 392 (1998) 626-630.[18] S. Wang, R. W. Raab, P. J. Schatz, W. B. Guggino, and M. Li, Peptide binding consensus of the NHE-RF-PDZ1 domain matches the C-terminal sequence of cystic fibrosis transmembrane conductance regulator (CFTR), FEBS Lett 427 (1998) 103-108.
    [19] S. Naisbitt, E. Kim, J. C. Tu, B. Xiao, C. Sala, J. Valtschanoff, R. J. Weinberg, P. F. Worley, and M. Sheng, Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin, Neuron 23 (1999) 569-582.
    [20] J. C. Tu, B. Xiao, S. Naisbitt, J. P. Yuan, R. S. Petralia, P. Brakeman, A. Doan, V. K. Aakalu, A. A. Lanahan, M. Sheng, and P. F. Worley, Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins, Neuron 23 (1999) 583-592.
    [21] J. Zhou, H. G. Shin, J. Yi, W. Shen, C. P. Williams, and K. T. Murray, Phosphorylation and putative ER retention signals are required for protein kinase A-mediated potentiation of cardiac sodium current, Circ Res 91 (2002) 540-546.
    [22] Y. Zheng, J. Schlondorff, and C. P. Blobel, Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPH1, J Biol Chem 277 (2002) 42463-42470.
    [23] M. H. Roh, C. J. Liu, S. Laurinec, and B. Margolis, The carboxyl terminus of zona occludens-3 binds and recruits a mammalian homologue of discs lost to tight junctions, J Biol Chem 277 (2002) 27501-27509.
    [24] A. Piserchio, M. Pellegrini, S. Mehta, S. M. Blackman, E. P. Garcia, J. Marshall, and D. F. Mierke, The PDZ1 domain of SAP90. Characterization of structure and binding, J Biol Chem 277 (2002) 6967-6973.
    [25] T. Suzuki, Y. Ohsugi, M. Uchida-Toita, T. Akiyama, and M. Yoshida, Tax oncoprotein of HTLV-1 binds to the human homologue of Drosophila discs large tumor suppressor protein, hDLG, and perturbs its function in cell growth control, Oncogene 18 (1999) 5967-5972.
    [26] D. Gardiol, C. Kuhne, B. Glaunsinger, S. S. Lee, R. Javier, and L. Banks, Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation, Oncogene 18 (1999) 5487-5496.
    [27] D. Pim, M. Thomas, and L. Banks, Chimaeric HPV E6 proteins allow dissection of the proteolytic pathways regulating different E6 cellular target proteins, Oncogene 21 (2002) 8140-8148.
    [28] K. M. Patrie, A. J. Drescher, A. Welihinda, P. Mundel, and B. Margolis, Interaction of two actin-binding proteins, synaptopodin and alpha-actinin-4, with the tight junction protein MAGI-1, J Biol Chem 277 (2002) 30183-30190.
    [29] A. Kuo, C. Zhong, W. S. Lane, and R. Derynck, Transmembrane transforming growth factor-alpha tethers to the PDZ domain-containing, Golgi membrane-associated protein p59/GRASP55, Embo J 19 (2000) 6427-6439.
    [30] G. Fuh, M. T. Pisabarro, Y. Li, C. Quan, L. A. Lasky, and S. S. Sidhu, Analysis of PDZ domain-ligand interactions using carboxyl-terminal phage display, J Biol Chem 275 (2000) 21486-21491.
    [31] I. Dobrosotskaya, R. K. Guy, and G. L. James, MAGI-1, a membrane-associated guanylate kinase with a unique arrangement of protein-protein interaction domains, J Biol Chem 272 (1997) 31589-31597.
    [32] K. Nakahama, A. Fujioka, M. Nagano, S. Satoh, K. Furukawa, H. Sasaki, and Y. Shigeyoshi, A role of the C-terminus of aquaporin 4 in its membrane expression in cultured astrocytes, Genes Cells 7 (2002) 731-741.
    [33] Y. Miyagi, T. Yamashita, M. Fukaya, T. Sonoda, T. Okuno, K. Yamada, M. Watanabe, Y. Nagashima, I.??Aoki, K. Okuda, M. Mishina, and S. Kawamoto, Delphilin: a novel PDZ and formin homology domain-containing protein that synaptically colocalizes and interacts with glutamate receptor delta 2 subunit, J Neurosci 22 (2002) 803-814.
    [34] H. J. Kreienkamp, M. Soltau, D. Richter, and T. Bockers, Interaction of G-protein-coupled receptors with synaptic scaffolding proteins, Biochem Soc Trans 30 (2002) 464-468.
    [35] I. Izawa, M. Nishizawa, K. Ohtakara, and M. Inagaki, Densin-180 interacts with delta-catenin/neural plakophilin-related armadillo repeat protein at synapses, J Biol Chem 277 (2002) 5345-5350.
    [36] J. Choi, J. Ko, E. Park, J. R. Lee, J. Yoon, S. Lim, and E. Kim, Phosphorylation of stargazin by protein kinase A regulates its interaction with PSD-95, J Biol Chem 277 (2002) 12359-12363.
    [37] R. Takeya, K. Takeshige, and H. Sumimoto, Interaction of the PDZ domain of human PICK1 with class I ADP-ribosylation factors, Biochem Biophys Res Commun 267 (2000) 149-155.
    [38] C. Reynaud, S. Fabre, and P. Jalinot, The PDZ protein TIP-1 interacts with the Rho effector rhotekin and is involved in Rho signaling to the serum response element, J Biol Chem 275 (2000) 33962-33968.
    [39] G. Kozlov, K. Gehring, and I. Ekiel, Solution structure of the PDZ2 domain from human phosphatase hPTP1E and its interactions with C-terminal peptides from the Fas receptor, Biochemistry 39 (2000) 2572-2580.
    [40] F. Kanai, P. A. Marignani, D. Sarbassova, R. Yagi, R. A. Hall, M. Donowitz, A. Hisaminato, T. Fujiwara, Y. Ito, L. C. Cantley, and M. B. Yaffe, TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins, Embo J 19 (2000) 6778-6791.
    [41] J. I. Hwang, K. Heo, K. J. Shin, E. Kim, C. Yun, S. H. Ryu, H. S. Shin, and P. G. Suh, Regulation of phospholipase C-beta 3 activity by Na+/H+ exchanger regulatory factor 2, J Biol Chem 275 (2000) 16632-16637.
    [42] K. S. Erdmann, J. Kuhlmann, V. Lessmann, L. Herrmann, V. Eulenburg, O. Muller, and R. Heumann, The Adenomatous Polyposis Coli-protein (APC) interacts with the protein tyrosine phosphatase PTP-BL via an alternatively spliced PDZ domain, Oncogene 19 (2000) 3894-3901.
    [43] S. Breton, T. Wiederhold, V. Marshansky, N. N. Nsumu, V. Ramesh, and D. Brown, The Bl subunit of the H+ATPase is a PDZ domain-binding protein. Colocalization with NHE-RF in renal B-intercalated cells, J Biol Chem 275 (2000) 18219-18224.
    [44] H. Zitzer, D. Richter, and H. J. Kreienkamp, Agonist-dependent interaction of the rat somatostatin receptor subtype 2 with cortactin-binding protein 1, J Biol Chem 274 (1999) 18153-18156.
    [45] K. K. Murthy, K. Clark, Y. Fortin, S. H. Shen, and D. Banville, ZRP-1, a zyxin-related protein, interacts with the second PDZ domain of the cytosolic protein tyrosine phosphatase hPTP1E, J Biol Chem 274 (1999) 20679-20687.
    [46] C. Kurschner, and M. Yuzaki, Neuronal interleukin-16 (NIL-16): a dual function PDZ domain protein, J Neurosci 19 (1999) 7770-7780.
    [47] R. A. Hall, R. F. Spurney, R. T. Premont, N. Rahman, J. T. Blitzer, J. A. Pitcher, and R. J. Lefkowitz, G protein-coupled receptor kinase 6A phosphorylates the Na(+)/H(+) exchanger regulatory factor via a PDZ domain-mediated interaction, J Biol Chem 274 (1999) 24328-24334.
    [48] H. Cai, and R. R. Reed, Cloning and characterization of neuropilin-1-interacting protein: a PSD-95/Dlg/ZO-1 domain-containing protein that interacts with the cytoplasmic domain of neuropilin-1, J Neurosci 19 (1999) 6519-6527.
    [49] B. E. Snow, R. A. Hall, A. M. Krumins, G. M. Brothers, D. Bouchard, C. A. Brothers, S. Chung, J.??Mangion, A. G. Oilman, R. J. Lefkowitz, and D. P. Siderovski, GTPase activating specificity of RGS12 and binding specificity of an alternatively spliced PDZ (PSD-95/Dlg/ZO-1) domain, J Biol Chem 273 (1998) 17749-17755.
    [50] T. R. Muth, J. Ahn, and M. J. Caplan, Identification of sorting determinants in the C-terminal cytoplasmic tails of the gamma-aminobutyric acid transporters GAT-2 and GAT-3, J Biol Chem 273 (1998) 25616-25627.
    [51] L. De Vries, X. Lou, G. Zhao, B. Zheng, and M. G. Farquhar, GIPC, a PDZ domain containing protein, interacts specifically with the C terminus of RGS-GAIP, Proc Natl Acad Sci U S A 95 (1998) 12340-12345.
    [52] P. R. Brakeman, A. A. Lanahan, R. O'Brien, K. Roche, C. A. Barnes, R. L. Huganir, and P. F. Worley, Homer: a protein that selectively binds metabotropic glutamate receptors, Nature 386 (1997) 284-288.
    [53] A. Spiers, H. K. Lamb, S. Cocklin, K. A. Wheeler, J. Budworth, A. L. Dodds, M. J. Fallen, D. J. Maskell, I. G. Charles, and A. R. Hawkins, PDZ domains facilitate binding of high temperature requirement protease A (HtrA) and tail-specific protease (Tsp) to heterologous substrates through recognition of the small stable RNA A (ssrA)-encoded peptide, J Biol Chem 277 (2002) 39443-39449.
    [54] A. Duggan, J. Garcia-Anoveros, and D. P. Corey, The PDZ domain protein PICK1 and the sodium channel BNaC1 interact and localize at mechanosensory terminals of dorsal root ganglion neurons and dendrites of central neurons, J Biol Chem 277 (2002) 5203-5208.
    [55] H. S. Li, and C. Montell, TRP and the PDZ protein, INAD, form the core complex required for retention of the signalplex in Drosophila photoreceptor cells, J Cell Biol 150 (2000) 1411-1422.
    [56] J. Xia, X. Zhang, J. Staudinger, and R. L. Huganir, Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1, Neuron 22 (1999) 179-187.
    [57] S. M. Marfatia, J. H. Morais-Cabral, A. C. Kim, O. Byron, and A. H. Chishti, The PDZ domain of human erythrocyte p55 mediates its binding to the cytoplasmic carboxyl terminus of glycophorin C. Analysis of the binding interface by in vitro mutagenesis, J Biol Chem 272 (1997) 24191-24197.
    [58] Y. Hata, S. Butz, and T. C. Sudhof, CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins, J Neurosci 16 (1996) 2488-2494.
    [59] R. Torres, B. L. Firestein, H. Dong, J. Staudinger, E. N. Olson, R. L. Huganir, D. S. Bredt, N. W. Gale, and G. D. Yancopoulos, PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands, Neuron 21 (1998) 1453-1463.
    [60] K. Ebnet, C. U. Schulz, M. K. Meyer Zu Brickwedde, G. G. Pendl, and D. Vestweber, Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1, J Biol Chem 275 (2000) 27979-27988.
    [61] X. Xu, Y. Shi, X. Wu, P. Gambetti, D. Sui, and M. Z. Cui, Identification of a novel PSD-95/Dlg/ZO-l (PDZ)-like protein interacting with the C terminus of presenilin-1, J Biol Chem 274 (1999) 32543-32546.
    [62] M. K. Thomas, K. M. Yao, M. S. Tenser, G. G. Wong, and J. F. Habener, Bridge-1, a novel PDZ-domain coactivator of E2 A-mediated regulation of insulin gene transcription, Mol Cell Biol 19 (1999) 8492-8504.
    [63] S. H. Gee, S. A. Sekely, C. Lombardo, A. Kurakin, S. C. Froehner, and B. K. Kay, Cyclic peptides as non-carboxyl-terminal ligands of syntrophin PDZ domains, J Biol Chem 273 (1998) 21980-21987.
    [64] F. A. Barr, N. Nakamura, and G. Warren, Mapping the interaction between GRASP65 and GM130, components of a protein complex involved in the stacking of Golgi cisternae, Embo J 17 (1998)??3258-3268.
    [65] R. van Huizen, K. Miller, D. M. Chen, Y. Li, Z. C. Lai, R. W. Raab, W. S. Stark, R. D. Shortridge, and M. Li, Two distantly positioned PDZ domains mediate multivalent INAD-phospholipase C interactions essential for G protein-coupled signaling, Embo J 17 (1998) 2285-2297.
    [66] A. Mancini, A. Koch, M. Stefan, H. Niemann, and T. Tamura, The direct association of the multiple PDZ domain containing proteins (MUPP-1) with the human c-Kit C-terminus is regulated by tyrosine kinase activity, FEBS Lett 482 (2000) 54-58.
    [67] A. Maximov, T. C. Sudhof, and I. Bezprozvanny, Association of neuronal calcium channels with modular adaptor proteins, J Biol Chem 274 (1999) 24453-24456.
    [68] A. Fujita, K. Nakamura, T. Kato, N. Watanabe, T. Ishizaki, K. Kimura, A. Mizoguchi, and S. Narumiya, Ropporin, a sperm-specific binding protein of rhophilin, that is localized in the fibrous sheath of sperm flagella, J Cell Sci 113 ( Pt 1) (2000) 103-112.
    [69] N. L. Stricker, K. S. Christopherson, B. A. Yi, P. J. Schatz, R. W. Raab, G. Dawes, D. E. Bassett, Jr., D. S. Bredt, and M. Li, PDZ domain of neuronal nitric oxide synthase recognizes novel C-terminal peptide sequences, Nat Biotechnol 15 (1997) 336-342.
    [70] L. Faccio, C. Fusco, A. Chen, S. Martinotti, J. V. Bonventre, and A. S. Zervos, Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia, J Biol Chem 275 (2000) 2581-2588.
    [71] P. Manivet, S. Mouillet-Richard, J. Callebert, C. G. Nebigil, L. Maroteaux, S. Hosoda, O. Kellermann, and J. M. Launay, PDZ-dependent activation of nitric-oxide synthases by the serotonin 2B receptor, J Biol Chem 275 (2000) 9324-9331.[1] S. P. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas, Light-directed, spatially addressable parallel chemical synthesis, Science 251 (1991) 767-773.
    [2] R. A. Houghten, C. Pinilla, S. E. Blondelle, J. R. Appel, C. T. Dooley, and J. H. Cuervo, Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery, Nature 354 (1991) 84-86.
    [3] K. S. Lam, S. E. Salmon, E. M. Hersh, V. J. Hruby, W. M. Kazrnierski, and R. J. Knapp, A new type of synthetic peptide library for identifying ligand-binding activity, Nature 354 (1991) 82-84.
    [4] S. F. Parmley, and G. P. Smith, Filamentous fusion phage cloning vectors for the study of epitopes and design of vaccines, Adv Exp Med Biol 251 (1989) 215-218.
    [5] J. K. Scott, and G. E Smith, Searching for peptide ligands with an epitope library, Science 249 (1990) 386-390.
    [6] S. E. Cwirla, E. A. Peters, R. W. Barrett, and W. J. Dower, Peptides on phage: a vast library of peptides for identifying ligands, Proc Natl Acad Sci U S A 87 (1990) 6378-6382.
    [7] J. J. Devlin, L. C. Panganiban, and P. E. Devlin, Random peptide libraries: a source of specific protein binding molecules, Science 249 (1990) 404-406.
    [8] R. B. Christian, R. N. Zuckermann, J. M. Kerr, L. Wang, and B. A. Malcolm, Simplified methods for construction, assessment and rapid screening of peptide libraries in bacteriophage, J Mol Biol 227 (1992) 711-718.
    [9] J. A. Lenstra, J. H. Erkens, J. G. Langeveld, W. P. Posthumus, R. H. Meloen, E Gebauer, I. Correa, L. Enjuanes, and K. K. Stanley, Isolation of sequences from a random-sequence expression library that mimic viral epitopes, J Immunol Methods 152 (1992) 149-157.
    [10] M. Yang, Z. Wu, and S. Fields, Protein-peptide interactions analyzed with the yeast two-hybrid system, Nucleic Acids Res 23 (1995) 1152-1156.
    [11] A. S. Fanning, and J. M. Anderson, PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane, J Clin Invest 103 (1999) 767-772.
    [12] S. E. Craven, and D. S. Bredt, PDZ proteins organize synaptic signaling pathways, Cell 93 (1998) 495-498.
    [13] C. P. Ponting, Evidence for PDZ domains in bacteria, yeast, and plants, Protein Sci 6(1997)464-468.
    [14] J. Schultz, R. R. Copley, T. Doerks, C. P. Ponting, and P. Bork, SMART: a web-based tool for the study of genetically mobile domains, Nucleic Acids Res 28 (2000) 231-234.
    [15] D. A. Doyle, A. Lee, J. Lewis, E. Kim, M. Sheng, and R. MacKinnon, Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by??PDZ, Cell 85 (1996) 1067-1076.
    [16] E. Kim, M. Niethammer, A. Rothschild, Y. N. Jan, and M. Sheng, Clustering of Shaker-type K+channels by interaction with a family of membrane-associated guanylate kinases, Nature 378 (1995) 85-88.
    [17] H. Oschkinat, A new type of PDZ domain recognition, Nat Struct Biol 6 (1999) 408-410.
    [18] Z. Songyang, A. S. Fanning, C. Fu, J. Xu, S. M. Marfatia, A. H. Chishti, A. Crompton, A. C. Chan, J. M. Anderson, and L. C. Cantley, Recognition of unique carboxyl-terminal motifs by distinct PDZ domains, Science 275 (1997) 73-77.
    [19] A. Y. Hung, and M. Sheng, PDZ domains: structural modules for protein complex assembly, J Biol Chem 277 (2002) 5699-5702.
    [20] P. Vaccaro, and L. Dente, PDZ domains: troubles in classification, FEBS Lett 512 (2002) 345-349.
    [21] H. C. Kornau, L. T. Schenker, M. B. Kennedy, and P. H. Seeburg, Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95, Science 269 (1995) 1737-1740.
    [22] M. Irie, Y. Hata, M. Takeuchi, K. Ichtchenko, A. Toyoda, K. Hirao, Y. Takai, T. W. Rosahl, and T. C. Sudhof, Binding of neuroligins to PSD-95, Science 277 (1997) 1511-1515.
    [23] S. H. Gee, R. Madhavan, S. R. Levinson, J. H. Caldwell, R. Sealock, and S. C. Froehner, Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins, J Neurosci 18 (1998) 128-137.
    [24] J. Staudinger, J. Lu, and E. N. Olson, Specific interaction of the PDZ domain protein PICK1 with the COOH terminus of protein kinase C-alpha, J Biol Chem 272 (1997) 32019-32024.
    [25] J. Xia, X. Zhang, J. Staudinger, and R. L. Huganir, Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1, Neuron 22 (1999) 179-187.
    [26] H. Dong, P. Zhang, I. Song, R. S. Petralia, D. Liao, and R. L. Huganir, Characterization of the glutamate receptor-interacting proteins GRIP1 and GRIP2, J Neurosci 19 (1999) 6930-6941.
    [27] S. M. Marfatia, J. H. Morais-Cabral, A. C. Kim, O. Byron, and A. H. Chishti, The PDZ domain of human erythrocyte p55 mediates its binding to the cytoplasmic carboxyl terminus of glycophorin C. Analysis of the binding interface by in vitro mutagenesis, J Biol Chem 272 (1997) 24191-24197.
    [28] Y. Hata, S. Butz, and T. C. Sudhof, CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins, J Neurosci 16 (1996) 2488-2494.
    [29] Y. P. Hsueh, F. C. Yang, V. Kharazia, S. Naisbitt, A. R. Cohen, R. J. Weinberg, and M. Sheng, Direct interaction of CASK/LIN-2 and syndecan heparan sulfate proteoglycan and their overlapping distribution in neuronal synapses, J Cell Biol 142 (1998) 139-151.
    [30] Y. Gao, M. Li, W. Chen, and M. Simons, Synectin, syndecan-4 cytoplasmic domain binding PDZ protein, inhibits cell migration, J Cell Physiol 184 (2000) 373-379.
    [31] A. Mancini, A. Koch, M. Stefan, H. Niemann, and T. Tamura, The direct association of the multiple PDZ domain containing proteins (MUPP-1) with the human c-Kit C-terminus is regulated by tyrosine kinase activity, FEBS Lett 482 (2000) 54-58.
    [32] M. Setou, T. Nakagawa, D. H. Seog, and N. Hirokawa, Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport, Science 288 (2000) 1796-1802.
    [33] P. Manivet, S. Mouillet-Richard, J. Callebert, C. G. Nebigil, L. Maroteaux, S. Hosoda, O. Kellermann, and J. M. Launay, PDZ-dependent activation of nitric-oxide synthases by the serotonin 2B receptor, J Biol Chem 275 (2000) 9324-9331.[34] K. S. Christopherson, B. J. Hillier, W. A. Lim, and D. S. Bredt, PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain, J Biol Chem 274 (1999) 27467-27473.
    [35] T. Pawson, and J. D. Scott, Signaling through scaffold, anchoring, and adaptor proteins, Science 278 (1997) 2075-2080.
    [36] S. Tobaben, T. C. Sudhof, and B. Stahl, The G protein-coupled receptor CL1 interacts directly with proteins of the Shank family, J Biol Chem 275 (2000) 36204-36210.
    [37] M. Itoh, M. Furuse, K. Morita, K. Kubota, M. Saitou, and S. Tsukita, Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins, J Cell Biol 147 (1999) 1351-1363.
    [38] J. Nie, M. A. McGill, M. Dermer, S. E. Dho, C. D. Wolting, and C. J. McGlade, LNX functions as a RING type E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation, Embo J 21 (2002) 93-102.
    [39] T. Ligensa, S. Krauss, D. Demuth, R. Schumacher, J. Camonis, G. Jaques, and K. M. Weidner, A PDZ domain protein interacts with the C-terminal tail of the insulin-like growth factor-1 receptor but not with the insulin receptor, J Biol Chem 276 (2001) 33419-33427.
    [40] L. De Vries, X. Lou, G. Zhao, B. Zheng, and M. G. Farquhar, GIPC, a PDZ domain containing protein, interacts specifically with the C terminus of RGS-GAIP, Proc Natl Acad Sci U S A 95 (1998) 12340-12345.
    [41] T. Hirakawa, C. Galet, M. Kishi, and M. Ascoli, GIPC binds to the human lutropin receptor (hLHR) through an unusual PDZ domain binding motif, and it regulates the sorting of the internalized human choriogonadotropin and the density of cell surface hLHR, J Biol Chem 278 (2003) 49348-49357.
    [42] G. C. Blobe, X. Liu, S. J. Fang, T. How, and H. F. Lodish, A novel mechanism for regulating transforming growth factor beta (TGF-beta) signaling. Functional modulation of type III TGF-beta receptor expression through interaction with the PDZ domain protein, GIPC, J Biol Chem 276 (2001) 39608-39617.
    [43] L. A. Hu, W. Chen, N. P. Martin, E. J. Whalen, R. T. Premont, and R. J. Lefkowitz, GIPC interacts with the betal-adrenergic receptor and regulates betal-adrenergic receptor-mediated ERK activation, J Biol Chem 278 (2003) 26295-26301.
    [44] R. C. Bunn, M. A. Jensen, and B. C. Reed, Protein interactions with the glucose transporter binding protein GLUT1CBP that provide a link between GLUT1 and the cytoskeleton, Mol Biol Cell 10 (1999) 819-832.
    [45] L. H. Wang, R. G. Kalb, and S. M. Strittmatter, A PDZ protein regulates the distribution of the transmembrane semaphorin, M-SemF, J Biol Chem 274 (1999) 14137-14146.[1] A. R. Mushegian, D. E. Bassett, Jr., M. S. Boguski, P. Bork, and E. V. Koonin, Positionally cloned human disease genes: patterns of evolutionary conservation and functional motifs, Proc Natl Acad Sci U S A 94 (1997) 5831-5836.
    [2] T. Pawson, G. D. Gish, and P. Nash, SH2 domains, interaction modules and cellular wiring, Trends Cell Biol 11 (2001) 504-511.
    [3] Z. Songyang, and L. C. Cantley, Recognition and specificity in protein tyrosine kinase-mediated signalling, Trends Biochem Sci 20 (1995) 470-475.
    [4] L. Y. Geer, M. Domrachev, D. J. Lipman, and S. H. Bryant, CDART: protein homology by domain architecture, Genome Res 12 (2002) 1619-1623.
    [5] J. Schultz, F. Milpetz, P. Bork, and C. P. Ponting, SMART, a simple modular architecture research tool: identification of signaling domains, Proc Natl Acad Sci U S A 95 (1998) 5857-5864.
    [6] C. Li, C. losef, C. Y. Jia, V. K. Han, and S. S. Li, Dual functional roles for the X-linked lymphoproliferative syndrome gene product SAP/SH2D1A in signaling through the signaling lymphocyte activation molecule (SLAM) family of immune receptors, J Biol Chem 278 (2003) 3852-3859.
    [7] M. Sucan., H. Haiming., P. Jumin., Y. Qiang., R. Rui-bao., and G. Youhe, Rapid Method of Construction Domain Library, Chinese Journal of Biochemistry and Molecular Biology 19 (2003) 537-541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700