电场对铁磁/铁电异质结构磁性及输运性质调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着信息存储技术的快速发展,对具有高密度、高速度、非挥发、低能耗的新概念随机存储器的研究,是一个意义重大并颇具难度的课题。其中,用电场替代磁场或电流来控制磁性以实现信息的高速度、低能耗写入是至关重要的。为了实现这个目标,一个可行并有效的方法就是利用多铁性材料及其磁电耦合效应。然而目前室温下具有较好的磁电耦合性能的单相多铁性材料很少,其磁电耦合系数也比较小;而在铁磁/铁电复合结构中,具有丰富的材料可选择和较大磁电耦合效应,因此有着较好的应用前景,而被广泛地研究。本论文以Co_(40)Fe_(40)B_(20)/Pb(Mg_(1/3_Nb_(2/3))_(0.7)Ti_(0.3)O_3铁磁/铁电复合多铁异质结构为研究对象,围绕利用电场来调控磁性和磁电阻的课题展开,主要内容体现在以下两个方面:
     利用超高真空磁控溅射系统在Pb(Mg_(1/3_Nb_(2/3))_(0.7)Ti_(0.3)O_3单晶衬底上生长非晶Co_(40)Fe_(40)B_(20)薄膜,制备成为多铁异质结构,并用原位加电场的测量磁性技术进行研究。研究发现,在(001)取向的样品中,室温下磁性随电场的变化行为呈现类似铁电Loop的形式,这与前人所报道的以应力为媒介的铁磁/铁电复合结构中所得到的Butterfly形状的调控行为不同。进一步深入而系统的实验研究与理论分析表明:铁电畴的109°翻转与无磁晶各向异性的铁磁薄膜的组合,导致了实验中观察到的这种非挥发的电调控磁性的行为——这是以应力为媒介的电磁调控体系中的一种新机制。此外,由于该结果中磁调控的状态不会随电场的撤销而消失,体现出非挥发的特性,因而具有应用价值。
     另一方面,由于面内应变的各向异性,我们在(110)取向的样品上,发现了更大的室温下电场调控磁性的能力,进一步研究表明铁磁薄膜的易磁化轴在电场的作用下产生了90°的旋转。利用这种大的电场调控磁性效应的结果,在样品上进一步制备自旋阀结构,进行巨磁电阻的测量,实现了室温下电场控制磁性进而控制磁电阻的结果,这对于电写/磁读式新一代高性能信息存储器件的实现,具有参考价值。
With the fast development of information storage, exploiting new concepts fordense, fast, and non-volatile random access memory with reduced energyconsumption is a significant and challenging task. To realize this goal, electric-fieldcontrol of magnetism is crucial. A promising way to control magnetism via electricfields is using the converse magnetoelectric effect, which permits control ofmagnetism with electric fields rather than with electric currents or with magneticfields. In that context, multiferroic materials which exhibit simultaneous magneticand ferroelectric orders with coupling between them are among the top candidates forrealizing electric-field control of magnetism. However, single-phase multiferroicmaterials are rare at room temperature and the converse magnetoelectric effects aretypically also too small to be useful. The use of artificial two-phase systemsconsisting of ferromagnetic and ferroelectric materials, especially various roomtemperature ferromagnetic (FM) and ferroelectric (FE) materials, serves as analternative approach to achieve electric-field control of magnetism and has beenwidely studied in recent years. In this thesis, we have investigated the electric-fieldcontrol of magnetization as well as the spin dependent transportation based on aCo_(40)Fe_(40)B_(20)(CoFeB)/Pb(Mg_(1/3_Nb_(2/3))_(0.7)Ti_(0.3)O_3(PMN-PT) FM/FE heterostructure. Themain work can be divided to two parts as follows:
     Multiferroic samples were fabricated by depositing amorphous CoFeB films ontop of PMN-PT substrates with a magnetron sputtering system and the electric-fieldcontrol of magnetization was performed by magnetic property measurement systemwith in situ electric fields. We have found that the magnetization of CoFeB film onthe (001) oriented PMN-PT exhibits a giant loop-like response to electric field atroom temperature instead of the butterfly-like behavior commonly observed in thestrain-mediated FM-FE structures. Through systematic experimental investigationand theoretical analyse, it was demonstrated that the loop-like magnetization responseto electric field originates from the combined action of109°ferroelastic domainswitching in PMN-PT and absence of magnetocrystalline anisotropy in CoFeB, which is a new story for the strain-mediated FM-FE two phase systerm. What’s more, thislarge electric-field control of magnetization is tunable and non-volatile, which issignificant for applications.
     In another aspect, we have found even larger electric-field control ofmagnetization of CoFeB on the (110) oriented PMN-PT due to the in-plane strainanisotropy. Further experiments have demonstrated that the easy axis of CoFeB canrotate90degree at electric fields. Based on this large converse magnetoelectriceffect, spin-valves were fabricated on top of (110) oriented PMN-PT. It was shownthat both of the magnetization and the giant magnetoresistance of the structure can betuned by electric field at room temperature, which is very important for applications,especially in terms of the electric-writing and magnetic-reading random accessmemories.
引文
[1]张立.信息存储技术的现状及发展.信息记录材料,2006,5:47~54
    [2] Zhuang W W, Pan W, Ulrich B D, et al. Novell Colossal Magnetoresistive thin filmnonvolatile resistance random access memory (RRAM): INTERNATIONALELECTRON DEVICES2002MEETING, TECHNICAL DIGEST,2002,193~196
    [3]戴道生,钱昆明.铁磁学(上册)北京:科学出版社,1998.
    [4] Coey J M D, College T, Dublin. Magnetism and Magnetic Materials. UK: CambridgeUniversity Press,2010.
    [5] Speliotis D E. Magnetic recording beyond the first100years. JOURNAL OFMAGNETISM AND MAGNETIC MATERIALS,1999,193:29~35
    [6] Zutic I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications. REVIEWSOF MODERN PHYSICS,2004,76:323~410
    [7]马斌,沈德芳,狄国庆,等.超高密度磁存储的展望.功能材料与器件学报,2001,2:205~210
    [8]孙维平.磁记录技术的新发展.信息记录材料,2004,1:34~44
    [9] Chappert C, Fert A, Van Dau F N. The emergence of spin electronics in data storage.NATURE MATERIALS,2007,6:813~823
    [10]彭子龙,韩秀峰,赵素芬,等.磁随机存储器中垂直电流驱动的磁性隧道结自由层的磁化翻转.物理学报,2006,2:860~864
    [11]吴晓薇,郭子政.磁阻随机存取存储器(MRAM)的原理与研究进展.信息记录材料,2009,2:52~57
    [12]钟维烈.铁电体物理学:北京:科学出版社,1996
    [13] Dawber M, Rabe K M, Scott J F. Physics of thin-film ferroelectric oxides. REVIEWSOF MODERN PHYSICS,2005,77:1083~1130
    [14] Scott J F. Ferroelectric memories: Berlin: Springer-Verlag,2000
    [15]刘敬松,张树人,李言荣.铁电存储技术.物理与工程,2002,2:37~40
    [16]洪晓菁,俞承芳,虞惠华,等.铁电存储单元的设计和测试.固体电子学研究与进展,1999,1:45~53
    [17]新型铁电存储器件的原理及应用.电子元器件应用,2006,3:28~30
    [18] Schmid H. Multi-ferroic magnetoelectrics. Ferroelectrics,1994,162:317~338
    [19] Schmid H. Some symmetry aspects of ferroics and single phase multiferroics.JOURNAL OF PHYSICS-CONDENSED MATTER,2008,20:43420143
    [20] Spaldin N A, Fiebig M. The renaissance of magnetoelectric multiferroics. SCIENCE,2005,309:391~392
    [21] Tokura Y. Multiferroics-toward strong coupling between magnetization andpolarization in a solid. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,2007,310:1145~1150
    [22] Wang K F, Liu J M, Ren Z F. Multiferroicity: the coupling between magnetic andpolarization orders. ADVANCES IN PHYSICS,2009,58:321~448
    [23] Spaldin N A, Cheong S W, Ramesh R. Multiferroics: Past, present, and future.PHYSICS TODAY,2010,63:38~43
    [24] Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials.NATURE,2006,442:759~765
    [25] Ramesh R, Spaldin N A. Multiferroics: progress and prospects in thin films. NATUREMATERIALS,2007,6:21~29
    [26] Ascher E, Rieder H, Schmid H, et al. Some Properties Of FerromagnetoelectricNickel-Iodine Boracite Ni3B7O13I. JOURNAL OF APPLIED PHYSICS,1966,37:1404
    [27] Scott J F. Mechanisms Of Dielectric Anomalies In BaMnF4. PHYSICAL REVIEW B,1977,16:2329~2331
    [28] Watanabe T, Kohn K. Magnetoelectric Effect and Low-Temperature Transition ofPbFe0.5Nb0.5O3Single-Crystal. PHASE TRANSITIONS,1989,15:57~68
    [29] Hill N A. Why are there so few magnetic ferroelectrics? JOURNAL OF PHYSICALCHEMISTRY B,2000,104:6694~6709
    [30] Fiebig M. Revival of the magnetoelectric effect. JOURNAL OF PHYSICS D-APPLIEDPHYSICS,2005,38: R123~R152
    [31] Prellier W, Singh M P, Murugavel P. The single-phase multiferroic oxides: from bulk tothin film. JOURNAL OF PHYSICS-CONDENSED MATTER,2005,17: R803~R832
    [32]迟振华,靳常青.单相磁电多铁性体研究进展.物理学进展,2007,2:225~238
    [33]王克锋,刘俊明,王雨.单相多铁性材料——极化和磁性序参量的耦合与调控.科学通报,2008,53:1098~1135
    [34] Kimura T, Kawamoto S, Yamada I, et al. Magnetocapacitance effect in multiferroicBiMnO3. PHYSICAL REVIEW B,2003,67:180401
    [35] Zhao T, Scholl A, Zavaliche F, et al. Electrical control of antiferromagnetic domains inmultiferroic BiFeO3films at room temperature. NATURE MATERIALS,2006,5:823~829
    [36] Baek S H, Jang H W, Folkman C M, et al. Ferroelastic switching for nanoscalenon-volatile magnetoelectric devices. NATURE MATERIALS,2010,9:309~314
    [37] Ederer C, Spaldin N A. Weak ferromagnetism and magnetoelectric coupling in bismuthferrite. PHYSICAL REVIEW B,2005,71:060401
    [38] Zeches R J, Rossell M D, Zhang J X, et al. A Strain-Driven Morphotropic PhaseBoundary in BiFeO3. SCIENCE,2009,326:977~980
    [39] Choi T, Lee S, Choi Y J, et al. Switchable Ferroelectric Diode and Photovoltaic Effect inBiFeO3. SCIENCE,2009,324:63~66
    [40] Lottermoser T, Lonkai T, Amann U, et al. Magnetic phase control by an electric field.NATURE,2004,430:541~544
    [41] Choi T, Horibe Y, Yi H T, et al. Insulating interlocked ferroelectric and structuralantiphase domain walls in multiferroic YMnO3. NATURE MATERIALS,2010,9:253~258
    [42] Kimura T, Goto T, Shintani H, et al. Magnetic control of ferroelectric polarization.NATURE,2003,426:55~58
    [43] Hur N, Park S, Sharma P A, et al. Electric polarization reversal and memory in amultiferroic material induced by magnetic fields. NATURE,2004,429:392~395
    [44] Tokura Y, Seki S. Multiferroics with Spiral Spin Orders. ADVANCED MATERIALS,2010,22:1554~1565
    [45] Cheong S W, Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity.NATURE MATERIALS,2007,6:13~20
    [46] Brown Jr W F, Hornreich R M, Shtrikman S. Upper bound on the magnetoelectricsusceptibility. Physical Review,1968,168:574
    [47] Nan C W, Bichurin M I, Dong S X, et al. Multiferroic magnetoelectric composites:Historical perspective, status, and future directions. JOURNAL OF APPLIED PHYSICS,2008,103:031101
    [48] Martin L, Crane S P, Chu Y H, et al. Multiferroics and magnetoelectrics: thin films andnanostructures. JOURNAL OF PHYSICS-CONDENSED MATTER,2008,20:434220
    [49] Velev J P, Jaswal S S, Tsymbal E Y. Multi-ferroic and magnetoelectric materials andinterfaces. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETYA-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES,2011,369:3069~3097
    [50] Ma J, Hu J M, Li Z, et al. Recent Progress in Multiferroic Magnetoelectric Composites:from Bulk to Thin Films. ADVANCED MATERIALS,2011,23:1062~1087
    [51]何泓材,林元华,南策文.多铁性磁电复合薄膜.科学通报,2008,10:1136~1148
    [52] Wan J G, Wang X W, Wu Y J, et al. Magnetoelectric CoFe2O4-Pb(Zr,Ti)O3compositethin films derived by a sol-gel process. APPLIED PHYSICS LETTERS,2005,86:122501
    [53] Ryu H, Murugavel P, Lee J H, et al. Magnetoelectric effects of nanoparticulatePb(Zr0.52Ti0.48)O3-NiFe2O4composite films. APPLIED PHYSICS LETTERS,2006,89:102907
    [54] Zheng H, Wang J, Lofland S E, et al. Multiferroic BaTiO3-CoFe2O4nanostructures.SCIENCE,2004,303:661~663
    [55] Zavaliche F, Zheng H, Mohaddes-Ardabili L, et al. Electric field-induced magnetizationswitching in epitaxial columnar nanostructures. NANO LETTERS,2005,5:1793~1796
    [56] He H C, Wang J, Zhou B P, et al. Ferroelectric and ferromagnetic behavior ofPb(Zr0.52Ti0.48)O3-Co0.9Zn0.1Fe2O4multilayered thin films prepared via solutionprocessing. ADVANCED FUNCTIONAL MATERIALS,2007,17:1333~1338
    [57] Murugavel P, Padhan P, Prellier W. Enhanced magnetoresistance in ferromagneticPr0.85Ca0.15MnO3/ferroelectric Ba0.6Sr0.4TiO3superlattice films. APPLIED PHYSICSLETTERS,2004,85:4992~4994
    [58] Singh M P, Prellier W, Simon C, et al. Magnetocapacitance effect inperovskite-superlattice based multiferroics. APPLIED PHYSICS LETTERS,2005,87:022505
    [59] Deng C Y, Zhang Y, Ma J, et al. Magnetic-electric properties of epitaxial multiferroicNiFe2O4-BaTiO3heterostructure. JOURNAL OF APPLIED PHYSICS,2007,102:074114
    [60] Al Ahmad M, Coccetti R, Plana R. The Effect of Substrate Clamping on PiezoelectricThin-Film Parameters:2007ASIA PACIFIC MICROWAVE CONFERENCE, VOLS1-5. NEW YORK: IEEE,2007:946~949
    [61] Nan C W, Liu G, Lin Y H, et al. Magnetic-field-induced electric polarization inmultiferroic nanostructures. PHYSICAL REVIEW LETTERS,2005,94:197203
    [62] Zhang J X, Li Y L, Schlom D G, et al. Phase-field model for epitaxial ferroelectric andmagnetic nanocomposite thin films. APPLIED PHYSICS LETTERS,2007,90:052909
    [63]段纯刚.磁电效应研究进展.物理学进展,2009,3:215~238
    [64] Wang Y, Hu J M, Lin Y H, et al. Multiferroic magnetoelectric composite nanostructures.NPG ASIA MATERIALS,2010,2:61~68
    [65] Nogues J, Schuller I K. Exchange bias. JOURNAL OF MAGNETISM ANDMAGNETIC MATERIALS,1999,192:203~232
    [66] Chu Y H, Martin L W, Holcomb M B, et al. Electric-field control of localferromagnetism using a magnetoelectric multiferroic. NATURE MATERIALS,2008,7:478
    [67] Kiwi M. Exchange bias theory. JOURNAL OF MAGNETISM AND MAGNETICMATERIALS,2001,234:584~595
    [68] Laukhin V, Skumryev V, Marti X, et al. Electric-field control of exchange bias inmultiferroic epitaxial heterostructures. PHYSICAL REVIEW LETTERS,2006,97:227201
    [69] Molegraaf H, Hoffman J, Vaz C, et al. Magnetoelectric Effects in Complex Oxides withCompeting Ground States. ADVANCED MATERIALS,2009,21:3470
    [70] Chiba D, Sawicki M, Nishitani Y, et al. Magnetization vector manipulation by electricfields. NATURE,2008,455:515~518
    [71] Bihler C, Althammer M, Brandlmaier A, et al. Ga(1-x)Mn(x)As/piezoelectric actuatorhybrids: A model system for magnetoelastic magnetization manipulation. PHYSICALREVIEW B,2008,78:045203
    [72] Maruyama T, Shiota Y, Nozaki T, et al. Large voltage-induced magnetic anisotropychange in a few atomic layers of iron. NATURE NANOTECHNOLOGY,2009,4:158~161
    [73] Duan C G, Jaswal S S, Tsymbal E Y. Predicted magnetoelectric effect in Fe/BaTiO3multilayers: Ferroelectric control of magnetism. PHYSICAL REVIEW LETTERS,2006,97:047201
    [74] Duan C G, Velev J P, Sabirianov R F, et al. Surface magnetoelectric effect inferromagnetic metal films. PHYSICAL REVIEW LETTERS,2008,101:137201
    [75] Nan C W. Magnetoelectric effect in composites of piezoelectric and piezomagneticphases. PHYSICAL REVIEW B,1994,50:6082~6088
    [76] Eerenstein W, Wiora M, Prieto J L, et al. Giant sharp and persistent conversemagnetoelectric effects in multiferroic epitaxial heterostructures. NATUREMATERIALS,2007,6:348~351
    [77] Thiele C, Dorr K, Bilani O, et al. Influence of strain on the magnetization andmagnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001)(A=Sr,Ca). PHYSICALREVIEW B,2007,75:054408
    [78] Sahoo S, Polisetty S, Duan C G, et al. Ferroelectric control of magnetism in BaTiO3/Feheterostructures via interface strain coupling. PHYSICAL REVIEW B,2007,76:092108
    [79] Brivio S, Petti D, Bertacco R, et al. Electric field control of magnetic anisotropies andmagnetic coercivity in Fe/BaTiO3(001) heterostructures. APPLIED PHYSICSLETTERS,2011,98:92505
    [80] Chen Y J, Gao J S, Fitchorov T, et al. Large converse magnetoelectric coupling inFeCoV/lead zinc niobate-lead titanate heterostructure. APPLIED PHYSICS LETTERS,2009,94:082504
    [81] Yang J J, Zhao Y G, Tian H F, et al. Electric field manipulation of magnetization atroom temperature in multiferroic CoFe2O4/Pb(Mg1/3Nb2/3)0.7Ti0.3O3heterostructures.APPLIED PHYSICS LETTERS,2009,94:212504
    [82] Lou J, Liu M, Reed D, et al. Giant Electric Field Tuning of Magnetism in NovelMultiferroic FeGaB/Lead Zinc Niobate-Lead Titanate (PZN-PT) Heterostructures.ADVANCED MATERIALS,2009,21:4711
    [83] Liu M, Obi O, Lou J, et al. Giant Electric Field Tuning of Magnetic Properties inMultiferroic Ferrite/Ferroelectric Heterostructures. ADVANCED FUNCTIONALMATERIALS,2009,19:1826~1831
    [84] Liu M, Obi O, Lou J, et al. Strong magnetoelectric coupling in ferrite/ferroelectricmultiferroic heterostructures derived by low temperature spin-spray deposition.JOURNAL OF PHYSICS D-APPLIED PHYSICS,2009,42:045007
    [85] Ma J, Lin Y H, Nan C W. Anomalous electric field-induced switching of localmagnetization vector in a simple FeBSiC-on-Pb(Zr,Ti)O3multiferroic bilayer.JOURNAL OF PHYSICS D-APPLIED PHYSICS,2010,43:012001
    [86] Geprags S, Brandlmaier A, Opel M, et al. Electric field controlled manipulation of themagnetization in Ni/BaTiO3hybrid structures. APPLIED PHYSICS LETTERS,2010,96:142509
    [87] Wang J, Ma J, Li Z, et al. Switchable voltage control of the magnetic coercive field viamagnetoelectric effect. JOURNAL OF APPLIED PHYSICS,2011,110:043919
    [88] Xuan H C, Wang L Y, Zheng Y X, et al. Electric field control of magnetism withoutmagnetic bias field in the Ni/Pb(Mg1/3Nb2/3)O3-PbTiO3/Ni composite. APPLIEDPHYSICS LETTERS,2011,99:032509
    [89] Hu J M, Nan C W. Electric-field-induced magnetic easy-axis reorientation inferromagnetic/ferroelectric layered heterostructures. PHYSICAL REVIEW B,2009,80:224416
    [90] Hu J M, Nan C W, Chen L Q. Size-dependent electric voltage controlled magneticanisotropy in multiferroic heterostructures: Interface-charge and strain comediatedmagnetoelectric coupling. PHYSICAL REVIEW B,2011,83:134408
    [91] Wu T, Bur A, Zhao P, et al. Giant electric-field-induced reversible and permanentmagnetization reorientation on magnetoelectric Ni/(011)[Pb(Mg1/3Nb2/3)O3](1-x)-
    [PbTiO3]x heterostructure. APPLIED PHYSICS LETTERS,2011,98:012504
    [92] Weiler M, Brandlmaier A, Geprags S, et al. Voltage controlled inversion of magneticanisotropy in a ferromagnetic thin film at room temperature. NEW JOURNAL OFPHYSICS,2009,11:01302
    [93] Liu M, Obi O, Cai Z H, et al. Electrical tuning of magnetism in Fe3O4/PZN-PTmultiferroic heterostructures derived by reactive magnetron sputtering. JOURNAL OFAPPLIED PHYSICS,2010,107:073916
    [94] Chung T K, Carman G P, Mohanchandra K P. Reversible magnetic domain-wall motionunder an electric field in a magnetoelectric thin film. APPLIED PHYSICS LETTERS,2008,92:112509
    [95] Brintlinger T, Lim S H, Baloch K H, et al. In Situ Observation of ReversibleNanomagnetic Switching Induced by Electric Fields. NANO LETTERS,2010,10(4):1219~1223
    [96] Martin L W, Chu Y H, Ramesh R. Advances in the growth and characterization ofmagnetic, ferroelectric, and multiferroic oxide thin films. MATERIALS SCIENCE&ENGINEERING R-REPORTS,2010,68:133
    [97]施科,何泓材,王宁.多铁性磁电材料应用于存储技术的研究现状.硅酸盐学报,2011,11:1792~1799
    [98] Yang F Y, Liu K, Hong K M, et al. Large magnetoresistance of electrodepositedsingle-crystal bismuth thin films. SCIENCE,1999,284:1335~1337
    [99] Solin S A, Thio T, Hines D R, et al. Enhanced room-temperature geometricmagnetoresistance in inhomogeneous narrow-gap semiconductors. SCIENCE,2000,289:1530~1532
    [100] Jin S, Tiefel T H, Mccormack M, et al. Thousandfold change in resistivity inmagnetoresistive La-Ca-Mn-O films. SCIENCE,1994,264:413~415
    [101] Thomson W. On the Electro-Dynamic Qualities of Metals: Effects of Magnetization onthe Electric Conductivity of Nickel and of Iron. PROCEEDINGS OF THE ROYALSOCIETY,1857,8:546~550
    [102] McGuire T R, Potter R I. Anisotropic magnetoresistance in ferromagnetic3d alloys.IEEE TRANSACTIONS ON MAGNETICS,1975,11:1018~1038
    [103] Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001) Crmagnetic superlattices. PHYSICAL REVIEW LETTERS,1988,61:2472~2475
    [104] Prinz G A. Magnetoelectronics. SCIENCE,1998,282:1660~1663
    [105] Julliere M. Tunneling between ferromagnetic films. PHYSICS LETTERS A,1975,54:225~226
    [106] Ikeda S, Hayakawa J, Ashizawa Y, et al. Tunnel magnetoresistance of604%at300K bysuppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at hightemperature. APPLIED PHYSICS LETTERS,2008,93:082508
    [107] Zhu J, Park C D. Magnetic tunnel junctions. MATERIALS TODAY,2006,9:36~45
    [108] Tsymbal E Y, Kohlstedt H. Tunneling across a ferroelectric. SCIENCE,2006,313:181~183
    [109] Gajek M, Bibes M, Fusil S, et al. Tunnel junctions with multiferroic barriers. NATUREMATERIALS,2007,6:296~302
    [110] Garcia V, Bibes M, Bocher L, et al. Ferroelectric Control of Spin Polarization.SCIENCE,2010,327:1106~1110
    [111] Pantel D, Goetze S, Hesse D, et al. Reversible electrical switching of spin polarization inmultiferroic tunnel junctions. Nature Materials,2012,11:289-293
    [112] Wang W G, Li M G, Hageman S, et al. Electric-field-assisted switching in magnetictunnel junctions. NATURE MATERIALS,2012,11:64~68
    [113]施展,王翠萍,刘兴军,等.基于磁电复合材料的四态存储器.科学通报,2008,10:1177~1179
    [114] Bibes M, Barthelemy A. Multiferroics: Towards a magnetoelectric memory. NATUREMATERIALS,2008,7:425~426
    [115] Pertsev N A, Kohlstedt H. Magnetic tunnel junction on a ferroelectric substrate.APPLIED PHYSICS LETTERS,2009,95:163503
    [116] Hu J M, Li Z, Wang J, et al. Electric-field control of strain-mediated magnetoelectricrandom access memory. JOURNAL OF APPLIED PHYSICS,2010,107:093912
    [117] Hu J M, Li Z, Chen L Q, et al. High-density magnetoresistive random access memoryoperating at ultralow voltage at room temperature. NATURE COMMUNICATIONS,2011,2:553
    [118] Wu S M, Cybart S A, Yu P, et al. Reversible electric control of exchange bias in amultiferroic field-effect device. NATURE MATERIALS,2010,9:756~761
    [119] Heron J T, Trassin M, Ashraf K, et al. Electric-Field-Induced Magnetization Reversal ina Ferromagnet-Multiferroic Heterostructure. PHYSICAL REVIEW LETTERS,2011,107:217202
    [120] Allibe J, Fusil S, Bouzehouane K, et al. Room Temperature Electrical Manipulation ofGiant Magnetoresistance in Spin Valves Exchange-Biased with BiFeO3. Nano Letters,2012,12:1141~1145
    [121] Cavaco C, van Kampen M, Lagae L, et al. A room-temperature electricalfield-controlled magnetic memory cell. JOURNAL OF MATERIALS RESEARCH,2007,22:2111~2115
    [122] Liu M, Li S D, Obi O, et al. Electric field modulation of magnetoresistance inmultiferroic heterostructures for ultralow power electronics. APPLIED PHYSICSLETTERS,2011,98:222509
    [123] Zhang Y, Li Z, Deng C Y, et al. Demonstration of magnetoelectric read head ofmultiferroic heterostructures. APPLIED PHYSICS LETTERS,2008,92:152510
    [124] Dijkkamp D, Venkatesan T, Wu X D, et al. Preparation of Y-Ba-Cu-O oxidesuperconductor thin films using pulsed laser evaporation from high Tc bulk material.APPLIED PHYSICS LETTERS,1987,51:619~621
    [125] Douglas B. Chrisey, G. K. Hubler. Pulsed Laser Deposition of Thin Films: NewYork:Wiley-Interscience,1994
    [126] Kanai M, Kawai T, Kawai S. Atomic layer and unit cell layer growth of (Ca,Sr)CuO2thin film by laser molecular beam epitaxy. APPLIED PHYSICS LETTERS,1991,58:771~773
    [127]徐万劲.磁控溅射技术进展及应用(上).现代仪器,2005,5:1~5
    [128]徐万劲.磁控溅射技术进展及应用(下).现代仪器,2005,6:9~14
    [129]张焱,高政祥,高进,等.磁性测量仪器(MPMS-XL)的原理及其应用.现代仪器,2003,5:36~39
    [130]陈林,李敬东,唐跃进,等.超导量子干涉仪发展和应用现状.低温物理学报,2005,S1:657~661
    [131]杨军杰.多铁异质结构电、磁特性的调控:[博士学位论文].清华大学,2010
    [132]宁伟.钙钛矿锰氧化物的电子自旋共振研究:[博士学位论文].中国科学院物理研究所,2008
    [133]周静,王选章,谢文广.磁光效应及其应用.现代物理知识,2005,5:45~47
    [134] Ornelas-Arciniega G, Reyes-Gomez J, Castellanos-Guzman A G. A new modification tothe Sawyer-Tower ferroelectric hysteresis loop tracer. JOURNAL OF THE KOREANPHYSICAL SOCIETY,1998,32S: S380~S381
    [135] Feng S M, Chai Y S, Zhu J L, et al. Determination of the intrinsic ferroelectricpolarization in orthorhombic HoMnO3. NEW JOURNAL OF PHYSICS,2010,12:073006
    [136] Fukunaga M, Noda Y. New technique for measuring ferroelectric and antiferroelectrichysteresis loops. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN,2008,77:064706
    [137] Feng Z Y, Lin D, Luo H S, et al. Effect of uniaxial stress on the electromechanicalresponse of <001>-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3crystals. JOURNAL OFAPPLIED PHYSICS,2005,97:024103
    [138]韩立,陈皓明,王秀凤.扫描探针显微术在GaAs等半导体研究中的应用.功能材料,1999,2:32~35
    [139]蔡继业,曾洁铭,王煜,等.扫描探针显微术的应用(综述).暨南大学学报(自然科学与医学版),2001,3:91~95
    [140]钟海.磁性纳米结构的定量磁力显微研究:[博士学位论文].清华大学,2009
    [141]戴吉岩,王健新.利用压电力显微镜研究PMN-30%PT单晶体中铁电畴的结构及其演变(英文).物理学进展,2009,2:197~214
    [142]刘黎明,曾华荣,李国荣,等. PMN-PT单晶铁电畴的扫描探针显微术.人工晶体学报,2010, S1:85~89
    [143] Zavaliche F, Yang S Y, Zhao T, et al. Multiferroic BiFeO3films: domain structure andpolarization dynamics. PHASE TRANSITIONS,2006,79:991~1017
    [144] Anders S, Padmore H A, Duarte R M, et al. Photoemission electron microscope for thestudy of magnetic materials. REVIEW OF SCIENTIFIC INSTRUMENTS,1999,70:3973~3981
    [145] Birkholz M, Fewster P F, Genzel C. Thin Film Analysis by X-Ray Scattering.WILEY-VCH Verlag GmbH,2006.
    [146] Fewster P F. Reciprocal space mapping. CRITICAL REVIEWS IN SOLID STATEAND MATERIALS SCIENCES,1997,22:69~110
    [147] Liu H J, Yang P, Yao K, et al. Twinning rotation and ferroelectric behavior of epitaxialBiFeO3(001) thin film. APPLIED PHYSICS LETTERS,2010,96:012901
    [148] Gao G Y, Jin S W, Wu W B. Lattice-mismatch-strain induced inhomogeneities inepitaxial La0.7Ca0.3MnO3films. APPLIED PHYSICS LETTERS,2007,90:012509
    [149] Park S E, Shrout T R. Ultrahigh strain and piezoelectric behavior in relaxor basedferroelectric single crystals. JOURNAL OF APPLIED PHYSICS,1997,82:1804~1811
    [150] Fu H X, Cohen R E. Polarization rotation mechanism for ultrahigh electromechanicalresponse in single-crystal piezoelectrics. NATURE,2000,403:281~283
    [151] Noheda B, Cox D E, Shirane G, et al. Phase diagram of the ferroelectric relaxor(1-x)PbMg1/3Nb2/3O3-xPbTiO3. PHYSICAL REVIEW B,2002,66:054104
    [152] Jen S U, Yao Y D, Chen Y T, et al. Magnetic and electrical properties of amorphousCoFeB films. JOURNAL OF APPLIED PHYSICS,2006,99:053701
    [153] Kubota T, Daibou T, Oogane M, et al. Tunneling spin polarization and magneticproperties of Co-Fe-B alloys and their dependence on boron content. JAPANESEJOURNAL OF APPLIED PHYSICS,2007,46: L250~L252
    [154] Bokov A A, Ye Z G. Domain structure in the monoclinic Pm phase ofPb(Mg1/3Nb2/3)O3-PbTiO3single crystals. JOURNAL OF APPLIED PHYSICS,2004,95:6347~6359
    [155] Levin A A, Pommrich A I, Weissbach T, et al. Reversible tuning of lattice strain inepitaxial SrTiO3/La0.7Sr0.3MnO3thin films by converse piezoelectric effect of0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3substrate. JOURNAL OF APPLIED PHYSICS,2008,103:054102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700