相变存储材料Ge_xTe_(1-x)非晶结构的解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从S. R. Ovshinsky在硫系薄膜中发现有序-无序排列的记忆效应后,相变材料就引起了世界各国的广泛重视。随后,人们利用相变材料的这个特性发展出相变存储器,它是依靠相变材料在晶态和非晶态之间快速相互转化时所表现出来的导电性(光反射率)差异来存储数据。由于其优良的性能,相变存储器被认为是最具有发展潜力的下一代非挥发性存储设备。然而,人们目前对于相变存储材料的理解,尤其是从原子层次上理解相变机制,还不够深入。这严重阻碍了新材料的发展与应用。
     结构问题,尤其是非晶结构,是深入理解相变机制的前提和关键。然而,由于非晶结构的多样性和复杂性,当前对于非晶结构的研究还存在着许多问题。本论文综合利用透射电子显微学分析方法(明场像、选区电子衍射、X射线能量色散谱和电子能量损失谱等),结合逆蒙特卡洛模拟,对二元相变存储材料Ge_xTe_(1-x)非晶体系的原子结构,结构随成分的演化,以及相变机制进行了系统的研究,具体内容如下:
     首先,研究了剂量比GeTe薄膜的非晶结构。短程序:研究表明四面体Ge和八面体Ge构型共同存在于非晶结构中。其中19%的Ge原子采取四面体构型,其构型中的四个键基本上都是短键;而其余的Ge原子为八面体构型(缺陷八面体),可以用3+n来表示,其中包括3个短键和n个长键。中程序:研究表明Ge-(GekTen)配位多面体通过Ge-Ge同极键形成以Ge原子为核心,Te原子为壳层的“团簇”结构。偏对分布函数表明,这些“团簇”结构正是GeTe非晶结构的中程序起源。它们彼此之间通过共享Te原子连接形成非晶网络,并且留下了大量的(9.0%)“空位”,这些“空位”在相变过程中起了非常重要的作用。
     然后,研究了非剂量比GexTe1-x薄膜的非晶结构。研究表明Ge原子含量对非晶结构具有很强的调制作用,这些结构的变化直接影响到材料的结晶行为,对我们寻找合适的相变材料有重要的指导意义。1、它能够调制非晶的局部构型。随着Ge原子含量的减少,Ge-Ge同极键越来越少,而Te-Te同极键越来越多,且非晶中四面体Ge构型越来越多。当Ge原子含量从50%减少到30%时,四面体Ge构型的比例从19%增加到38%。2、它能够调制非晶的中程序结构,即“团簇”结构。随着Ge原子含量的减少,各类“团簇”的比例和连接方式都发生了变化,即第一类“团簇”越来越多,第四类“团簇”越来越少,而其它两类“团簇”变化相对较小。它们之间的连接方式也逐渐从单纯的共享外层Te原子连接变成共享外层Te原子和/或Te-Te键连接。3、它能够调制Te原子的分布。随着Ge原子含量的减少,只与Te原子成键的Te原子越来越多,且当Ge原子含量从40%减少到30%时,它们从弥散分布变成扎堆聚集分布,而剂量比GeTe没有这种Te原子。4、它能够调制“空位”的大小和体积。随着Ge原子含量的减少,“总的空位体积”和“大空位(体积大于353)”的数量相应增加,当Ge原子含量从50%减少到30%时,“总的空位体积”从9.0%增加到17.5%。
     最后,基于非晶态和晶态的结构比较,我们探讨了以“同极键”和“空位”为主导的相变机制。结晶过程:当相变材料被加热到结晶温度时,非晶中的“同极键”被打断,同时,“空位”给它们的重新排列提供了活动空间。非晶化过程:当相变材料被加热到熔化状态时,晶体的长程有序结构被打乱,同时产生很多“同极键”;在紧接下来的淬火过程中,这些“同极键”被保存下来,并产生一定数量的“空位”。从这个机制我们可以发现,非晶结构中“同极键”和“空位”的数量直接影响它的相变过程。
The phase cha nge materia ls have attracted world-wide interest s ince theStanford R. Ovshinsk y found the rapid a nd revers ib le e lectrica l s witc h phe no menain c ha lcoge nide materia ls, whic h can be applied in the modern informatio n me moryfie ld. The princ ip le o f p hase cha nge me mory (PCM) is s imp ly based on theremarkab le contrast o f the optica l/e lectrica l properties between the amorp hous (a-)and crysta lline phase (c-). However, because of structura l p lura lity and co mp lexity,the structure of the amorpho us for PCM is still a mystery at present. Moreover, thestructure, especia l the amorpho us structure is critica l and important for theunderstand ing o f phase cha nge mecha nis m o f PCM.
     Here, the amorp hous struc tures of as-deposited Ge_xTe_(1-x)thin films ha ve beenstud ied by advanced trans miss ion e lectro n microscopy (TEM), inc lud ing the brightfie ld ima ge, selected area electro n diffractio n, energy d ispers ive X-ray spectroscopyand Electro n Energy-Loss Spectroscopy techniq ue, comb ined with reverseMonte-Carlo s imulatio ns (RMC).
     The ato mic struc ture o f stoic hio metric Ge Te thin films was stud ied. RMC mode lrevea led that tetrahedra l and octahedral Ge coexists in the a-GeTe. Tetra hedral Geaccounts about19%of total Ge, with four s hort bonds. The defective octahedral Gewith the3+n conifguration (three short bonds, n long bonds) accounts about81%.The Ge-centered polyhedrons are connected together by Ge-Ge bonds, formingGemTenclusters. Partia l pair d istrib utio n functio ns revea l that these clusters are theorigin of med ium range order in a-GeTe. The clusters rando mly d istrib utio n in thethree-dime ns ion a morpho us network by sharing Te, leaving9%free vo lumes asvo ids whic h is very importa nt in the p hase change process.
     The ato mic structure o f GexTe1-xthin films was studied. The res ults s how thatthe atomic structure of GexTe1-xthin films was tuned by the amo unt of Ge (x). Firstly,it can tune the loca l co nfigura tion. As Ge co ntent decreases, the number o f Ge-Gebonds decreases while the Te-Te bonds increase, as well as the percentagetetrahedra l Ge. The percentage o f tetrhedra l Ge increases fro m19%to38%whe n xdecreases fro m0.5to0.3. Second ly, it can tune the a mo unt o f cluster a nd itsconnectio n. Reduc ing Ge conte nt increases the amo unt of first type cluster, butdecreases the fo urth type c luster. As Ge content decreases, the connectio n of c lusterschange fro m only s haring Te ato ms to sharing Te ato ms and/or Te-Te bonds. Thirdly, it ca n tune the d istrib utio n of Te ato ms. Red uc ing Ge content increased the free Teatoms tha t do not bond with Ge atoms. These Te atoms are absent in a-GeTe, anddiscrete ly mixed in a-Ge0.4Te0.6, but severe ly clustered in a-Ge0.3Te0.7. Fina lly, thevo ids also exhib it syste matic cha nge with the variation o f Ge conte nts. The vo idvo lume increases fro m9.0%to17.5%whe n x decreases fro m0.5to0.3. The fractio nof larger vo ids (vo lume larger tha n353) a lso increases with decreas ing Gecontents. All these cha nges are close ly tied to the dra matic c hange o f crysta llizatio nbehavio ur in a-GexTe1-xand ma y guide us to find new PCMs.
     The p hase-cha nge mec hanis m was d iscussed based on the ho mopo lar bonds andvo ids. In crys ta llizatio n process, the ho mopo lar bonds whic h are absent incrysta lline are broken when the te mperature increases to crysta llizatio n te mperature.In the meantime, the vo ids provide e nough space for the ato mic rearra nge me nt toform order struc ture. In a morphizatio n process, the crysta lline structure is disorderedand ho mopolar bonds are easily formed when the te mperature increase to me lt point.In the ne xt que nching process, the ho mopo lar bonds are preserved and vo ids areformed. The a mount of ho mopolar bonds and voids are very importa nt for phasechange process.
引文
[1]宋志棠.相变存储器.北京:科学出版社,2010,1-14
    [2] Masuoka F, Semiconductor me mory device and method for manufacturing the same.US patent,1985:4531203
    [3] Moodera J S, Kinder L R, Wong T M, et al. Large ma gnetoresistance at roomtemperature in ferromagnetic thin film tunne l junctio ns. Phys ical Re view Letters,1995,74:3273-3276
    [4] Scott J C. Is there an immortal me mory? Science,2004,304:62-63
    [5] Service R F. Molecular electronics: next-generation techno logy hits and earlymid lifcrisis. Scie nce,2003,302:556-559
    [6] Liu Z, Yasseri A A, Lindsey J S, et al. Molecular memories that survive Silicondevice processing and real-world operation. Science,2003,302:1543-1545
    [7] Jujiwara A, Takahashi Y. Manipulation of ele mentary charge in a siliconcharge-coupled device. Nature,2001,410:560-562
    [8] Arimoto Y, Ishiwara H. Current status of ferroelectric random-access memory.MRS Bulletin,2004,29:823-828
    [9] Spanier J E, Kolpak A M, Urban J J. Ferrelectric phase trans ition in ind ividua lsingle-crystalline BaTiO3nanowires. Nano Letters,2006,6(4):735-739
    [10] Lim D G, Kwak D J, Yi J S. Improved interface properties of yttrium oxide bufferlayer on s ilicon substrate for ferroelectric random access me mory applications.Thin Solid Films,2002,422(1-2):150-154
    [11] Moert M, Mikolaj ick T, Schindler G, et al. Inte gration o f stacked capac itormodule with ultra-thin ferroelectric SrBi2Ta2O9film for high dens ity ferroelectricrandom access memory applications at low volta ge operation. Thin Solid Films,2005,473(2)
    [12] Yoon D S, Roh J S, Lee S M, et al. Alteration for a diffus ion barrier designconcept in future high-dens ity dynamic and ferroelectric random access me morydevices. Progress in Materia ls Scie nce,2003,48(4):275-371
    [13] Arrott A S. Magnetic random access memories, Brown's paradox and hysterons.Journa l of Magnetis m and Magnetic Materia ls,2003,258-259:25-28
    [14] Sousa R C, Prejbeanu I L. Non-volatile magnetic random access me mories(MRAM). Comptes Rendus Phys ique,2005,6(9):1013-1021
    [15] Kim K S, Shin K H, Lim S H. Effects of induced anisotropy on the bit stabilityand switching fie ld in magnetic random access memory. Journa l of Magnetis mand Magnetic Materia ls,2007,309(2):326-332
    [16] Min S R, Cho H N, Kim K W, et al. Etch characteristics of magnetic tunne ljunction stack with nano meter-sized patterns for magnetic random access me mory.Thin Solid Films,2008,516(11):3507-3511
    [17] Ovshinsky S R. Reversible electrical swithc ing pheno mena in disorderedstructures. Physica l Review Letters,1968,21:1450-1453
    [18] Feinleib J, deNeufville J, Moss S C, et al. Papid reversib le light-inducedcrystallization of a morphous semiconductors. Applied Phys ics Letters,1971,18(6):254-257
    [19] Yamada N, Ohno E, Akahira N. High speed overwritable phase change opticaldisk material: media. Japanese Journa l of Applied Phys ics,1987,26:61-66
    [20] Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. NatureMateria ls,2007,6:824-832
    [21] Wuttig M. Towards a universal me mory? Nature Materials,2005,4:265-266
    [22] Kolobov A V. Around the phase-change cycle. Nature Materia ls,2008,7:351-353
    [23] Oh J H, Park J H, Lim Y S, et al. Full interation o f highly manufacturable512MbPRAM based on90nm techno logy. Tech Dig-Int Electron Devices Meet,2006
    [24] Lankhorst M H R, Ketelaars B, Wolters R. Low-cost and nanoscale no n-vo latileme mory concept for future silicon chips. Nature Materia ls,2005,4:347-352
    [25] Chen Y C, Rettner C T, Raoux S, et al. Ultra-thin phase-change brid ge me morydevice using GeSb. Tech Dig-Int Electron Devices Meet,2006
    [26] Waterman A. The electrica l conductivity of molybdenite. Physica l Review,1923,21:540-560
    [27]刘波,宋志棠,封松林.相变存储器材料和结构设计最新进展.半导体技术,2008,33(9):737-742
    [28] Jung M-C, Shina H J, Kim K, et al. High-resolution x-ray photoelectronspectroscopy on oxyge n-free amorphous Ge2Sb2Te5. Applied Phys ics Letters,2006,89(4):043503(3)
    [29] Kim R-Y, Kim H-G, Yoon S-G. Structural properties of Ge2Sb2Te5thin films bymetal organic che mical vapor deposition for phase change memory applications.Applied Physics Letters,2006,89(10):102107(3)
    [30] Kim Y, Hwang U, Cho Y J, et al. Change in electrical resistance and therma lstability of nitrogen incorporated Ge2Sb2Te5films. Applied Physics Letters,2007,90(2):021908(3)
    [31] Suh D-S, Lee E, Kim K H P, et al. Nonvo latile switching characteristics oflaser-ablated Ge2Sb2Te5nanoparticles for phase-change me mory applications.Applied Physics Letters,2007,90(2):023101(3)
    [32] Jr C C, Chen K N, Krusin-Elbaum L, et al. Irreversib le modification of Ge2Sb2Te5phase change material by nanometer-thin Ti adhesion la yers in adevice-compatib le stack. Applied Phys ics Letters,2007,90(5):051908(3)
    [33] Song W D, Shi L P, Miao X S, et al. Phase change behaviors of Sn-dopedGe–Sb–Te material. Applied Phys ics Letters,2007,90(9):091904(3)
    [34] Hosokawa S, Ozaki T, Hayashi K. Existence of tetrahedral site symmetry aboutGe atoms in a single-crystal film o f Ge2Sb2Te5found by x-ray fluorescenceholography. Applied Phys ics Letters,2007,90(13):131913(3)
    [35] Lyeo H-K, Cahill D G, Lee B-S, et al. Therma l conductivity of phase-changemateria l Ge2Sb2Te5. Applied Phys ics Letters,2006,89(15):151904(3)
    [36] Ie S Y, Bea B T, Ahn Y-k, et al. Texture formation o f GeSbTe thin films preparedby multilayer deposition of modulating constitue nt elements. Applied Phys icsLetters,2007,90(25):251917(3)
    [37] Jung M-C, Lee Y M, Kim H-D, et al. Ge nitride formation in N-doped amorphousGe2Sb2Te5. Applied Phys ics Letters,2007,91(8):083514(3)
    [38] Kim Y, Jang M H, Jeong K, et al. Investigation of phase trans ition of Ge2Sb2Te5and N-incorporated Ge2Sb2Te5films us ing x-ray absorption spectroscopy. AppliedPhysics Letters,2008,92(6):061910(3)
    [39] Zhang T, Song Z, Gong Y, et al. Phase change memory based on Ge2Sb2Te5capped between polygermanium layers. Applied Phys ics Letters,2008,92(11):113503(3)
    [40] Sun Z, Zho u J, Blomqvist A, et al. Fast crystallization o f cha lcogenide glass forrewritable me mories. Applied Phys ics Letters,2008,93(6):061913(3)
    [41] Weidenhof V, Friedrich I, Zie gler S, et al. Atomic force microscopy study of laserinduced phase transitions in Ge2Sb2Te5. Journa l of Applied Phys ics,1999,86(10):5879-5887
    [42] Friedrich I, Weidenhof V, Njoroge W, et al. Structura l transformations ofGe2Sb2Te5films studied by electrical resistance measurements. Journa l of AppliedPhysics,2000,87(9):4130-4134
    [43] Yamada N, Matsunaga T. Structure of laser-crystallized Ge2Sb2+xTe5sputteredthin films for use in optica l memory. Journal of App lied Physics,2000,88(12):7072-7028
    [44] Weidenhof V, Friedrich I, Ziegler S, et al. Laser induced crystallization ofamorphous Ge2Sb2Te5films. Journa l of Applied Phys ics,2001,89(6):3168-3176
    [45] Ruitenberg G, Petford-Long A K, Doole R C. Determination of the isotherma lnuc leation and growth parameters for the crystallization of thin Ge2Sb2Te5films.Journa l of Applied Phys ics,2002,92(6):3116-3123
    [46] Privitera S, Rimini E, Bongiorno C, et al. Crystallization and phase separation inGe2+xSb2Te5thin films. Journa l of Applied Phys ics,2003,94(7):4409-4413
    [47] Kooi B J, Groot W M G, Hosson J T M D. In situ transmiss ion electronmicroscopy study of the crystallization of Ge2Sb2Te5. Journa l of Applied Phys ics,2004,95(3):924-932
    [48] Naito M, Ishimaru M, Hirotsu Y. Local structure analysis of Ge-Sb-Te phasechange materials us ing high-resolution electron microscopy and nanobeamdiffraction. Journa l of App lied Phys ics,2004,95(12):8130-8135
    [49] Lee B-S, Abelson J R, Bis hop S G. Investigation of the optica l and electronicproperties of Ge2Sb2Te5phase change materia l in its amorphous, cub ic, andhexagona l phases. Journa l of Applied Phys ics,2005,97(9):093509(8)
    [50] Privitera S, Lombardo S, Bongiorno C, et al. Phase change mecha nisms inGe2Sb2Te5. Journa l of Applied Phys ics,2007,102(1):013516(5)
    [51] SHAMOTO S-i, KODAMA K, IIKUBO S, et al. Local Crystal Structures ofGe2Sb2Te5Revealed by the Atomic Pair Distribution Function Ana lys is. JapaneseJourna l of Applied Phys ics,2006,45(11):8789-8794
    [52] H. Li T J, Taylor P C. Optical and e lectronic p roperties of Ge–Sb–Te films.Journa l of Non-Crystalline Solids,2006,352:1567-1569
    [53] Baker D A, Paesler M A, Lucovsky G, et al. EXAFS study of amorphousGe2Sb2Te5. Journa l of Non-Crystalline Solids,2006,352:1621-1623
    [54] Nonaka T, Ohbayashi G, Toriumi Y, et al. Crystal structure of GeTe and Ge2Sb2Te5meta-stable phase. Thin Solid Films,2000,370:258-261
    [55] Zha ng T, Song Z, Rao F, et al. High Speed Chalcogenide Random Access MemoryBased on Si2Sb2Te5. Japanese Journa l of Applied Phys ics,2007,46(11): L247-249
    [56] Cheng Y, Han X D, Liu X Q, et al. Self-extrus ion of Te nanowire from Si–Sb–Tethin films. Applied Phys ics Letters,2008,93(18):183113(3)
    [57] Qiao B, Feng J, Lai Y, et al. Si–Sb–Te films for phase-change random accessme mory. Semiconductor Science and Techno logy,2006,21:1073-1076
    [58] Zhang T, Song Z, Liu B, et al. Investigation o f phase change Si2Sb2Te5materia land its application in chalcogenide random access me mory. Solid-StateElectronics,2007,51:950-954
    [59] Feng J, Zhang Z F, Zhang Y, et al. Crystallization process and amorphous statestability of Si-Sb-Te films for phase change memory. Journa l of Applied Phys ics,2007,101(7):074502(5)
    [60] Qiao B, Feng J, Lai Y, et al. Phase-Change Memory Device Using Si-Sb-Te Filmfor Low Power Operation and Multibit Storage. Journa l of E lectronic Materials,2007,36:88-91
    [61] Zhang T, Cheng Y, Song Z, et al. Comparison of the crystallization of Ge–Sb–Teand Si–Sb–Te in a constant-temperature annealing process. Scripta Materia lia,2008,58:977-980
    [62]张祖发,张胤,冯洁, et al.基于Si掺杂Sb2Te3薄膜的相变存储器研究.物理学报,2007:4224-4228
    [63] Cheng Y, Yan N, Han X D, et al. Thermally induced phase separation of Si–Sb–Tealloy. Journa l of Non-Crystalline Solids,2010,356:884-888
    [64] Chopra K L, Bahl S K. Amorphous versus Crystalline GeTe Films. I. Growth andStructura l Behavior. Journa l of Applied Phys ics,1969,40:4171-4178
    [65] Chopra K L, Bahl S K. Amorphous versus Crystalline GeTe Films. II. OpticalProperties. Journa l of Applied Phys ics,1969,40:4940-4946
    [66] Chopra K L, Bahl S K. Amorphous versus Crystalline GeTe Films. III. ElectricalProperties and Band Structure. Journa l of Applied Phys ics,1970,41:2196-2212
    [67] Chen M, Rub in K A, Barton R W. Compound materials for reversib le,phase-change optiacal data storage. Applied Physics Letters,1986,49(9):502-504
    [68] Raoux S, Cheng H-Y, Caldwe ll M A, et al. Crystallization times of Ge–Te phasechange materia ls as a function of compositio n. Applied Phys ics Letters,2009,95(7):071910(3)
    [69] Raoux S, Mu oz B, Cheng H Y, et al. Phase trans itions in Ge–Te phase changemateria ls studied by time-resolved x-ray diffraction. Applied Phys ics Letters,2009,95(14):143118(3)
    [70] Yamada N, Ohno E, Nishiuchi K, et al. Rapid-phase trans itions of GeTe-Sb2Te3pseudobinary a morphous thin films for an optical d isk me mory. Journal o fApplied Physics,1991,69(5):2849-2856
    [71] Miao X S, Shi L P, Lee H K, et al. Te mperature Dependence of Phase-ChangeRandom Access Memory Cell. Japanese Journa l of Applied Physics,2006,45:3955-3958
    [72] Rajesh R, Philip J. Memory switc hing in In-Te glasses: results of heat-transportmeasurements. Semiconductor Science and Techno logy,2003,18:133
    [73] Lee T-Y, Kim C, Kang Y, et al. Rapid crystallization of GeTe–Bi2Te3mixed layer.Applied Physics Letters,2008,92(10):101908(3)
    [74] Tsendin K D. Characteristics of information recording on chalcogenide glassysemiconductors. Semiconductor Scie nce and Techno logy,2001,16:394
    [75] Bunton G V, Quilliam R M. Switc hing and me mory effects in amorphouschalcogenide thin film. IEEE Trans Elect,1973,11(20):140
    [76] Ramesh K. Electrical switching in germa nium telluride glassed doped with Cu andAg. Applied Physics Letters,1999,69(4):421-423
    [77] Lee T-Y, Kim K-B, Cheong B-k, et al. Thin film alloy mixtures for high speedphase change optical storage:A study on (Ge1Sb2Te4)1-x(Sn1Bi2Te4)x. AppliedPhysics Letters,2002,80(18):3313-3315
    [78] Detemple R. Identification of Te alloys with suitable phase change characteristics.Applied Physics Letters,2003,83:2572-2574
    [79] Matsunaga T, Yamada N, Kubota Y. Structures of stable and metastableGe2Sb2Te5, an intermeta llic compound in GeTe±Sb2Te3pseudo-binary systems.Acta Crystallographica Section B,2004,60:685-691
    [80] Matsunaga T, Kojima R, Yamada N, et al. Single Structure Widely Distributed in aGeTe-Sb2Te3Pseudobinary System: A Rock Salt Structure is Retained byIntrins ically Containing an Enormous Number of Vacancies within its Crystal.Inorganic Chemistry,2006,45(5):2235-2241
    [81] Liu Bo Z T, Xia Jilin, Song Zhitang, Feng Songlin, Chen Bo my. Nitrogen-imp lanted Ge2Sb2Te5film used as multileve l storage media for phase changerandom access me mory. Institute of Physics Publishing:Se miconductor Scienceand Technology,2004,19: L61-L64
    [82] Privitera S, Rimini E, Zonca R. Amorphous-to-crystal trans ition of nitrogen-andoxygen-doped Ge2Sb2Te5films stud ied by in s itu resistance measurements.Applied Physics Letters,2004,85(15):3044-3046
    [83] Ha Y H, Yi J H, Horii H, et al. An edge contact type cell for phase change RAMfeaturing very low power consumption. Symposium on VLSI Techno logy Digestof Technica l Papers,2003:175-176
    [84] Simpson R E, Fons P, Kolobov A V, et al. Interfacia l phase-change memory.Nature nanotechno logy,2011,6:501-505
    [85] Shi L P, Chong T C, Li J M, et al. Thermal modeling and simulatio n of nonvo latileand non-rotating phase change memory cell. IEEE,2004:83-87
    [86] Zha ng T, Song Z, Wang F, et al. Advantages of SiSb phase-change material and itsapplications in phase-change me mory. Applied Phys ics Letters,2007,91(22):222102(3)
    [87] Krusin-Elbaum L, Jr C C, Chen K N, et al. Evidence for segregation o f Te inGe2Sb2Te5films: Effect on the “phase-change” stress. Applied Physics Letters,2007,90(14):141902(3)
    [88] Nam S-W, Kim C, Kwon M-H, et al. Phase separatio n behavior of Ge2Sb2Te5linestructure during electrical stress biasing. Applied Physics Letters,2008,92(11):111913(3)
    [89] Kim C, Kang D, Lee T-Y, et al. Direct evidence of phase separation in Ge2Sb2Te5in phase change memory devices. Applied Phys ics Letters,2009,94(19):193504(3)
    [90] Kolobov A V, Fons P, Frenkel A I, et al. Understanding the phase-changemechanis m of rewritable optical media. Nature Materia ls,2004,3:703-708
    [91] Kolobov A V, Fons P, Tomina ga J. Phase-change optica l recording: Past, present,future. Thin Solid Films,2007,515:7534-7537
    [92] Kolobov A V, Fons P, Tominaga J, et al. Why DVDs work the way they do: Thenanometer-scale mechanis m of phase change in Ge–Sb–Te alloys. Journal o fNon-Crystalline Solids,2006,352:1612-1615
    [93] Andrikopoulos K S, Yannopoulos S N, Kolobov A V, et al. Raman scattering studyof GeTe and Ge2Sb2Te5phase-change materia ls. Journa l of Phys ics and Chemistryof Solids,2007,68:1074-1078
    [94] Kolobov A V, Fons P, To minaga J, et al. Why Phase-Change Media Are Fast andStable: A New Approach to an Old Problem. Japanese Journa l of Applied Physics,2005,44:3345-3349
    [95] Kolobov A V, Mishchenko A S, Fons P, et al. A possible mechanism o f ultra fastamorphization in phase-change me mory alloys: an ion s lingshot fro m thecrystalline to amorphous position. Journa l of Phys ics: Condens Matter,2007,19:455209(7)
    [96] Andrikopoulos K S, Yannopoulos S N, Voyiatzis G A, et al. Ra man scatteringstudy of the a-GeTe structure and possible mechanis m for the amorphous tocrystal transition. Journal of Physics: Condens Matter,2006,18:965-979
    [97] Kolobov A V, Fons P, Tominaga J, et al. Crystallization-induced short-range orderchanges in a morphous GeTe. Journa l of Physics: Condens Matter,2004,16:S5103-S5108
    [98] Krbal M, Kolobov A V, Fons P, et al. Intrins ic comp lexity o f the melt-quenchedamorphous Ge2Sb2Te5memory a lloy. Phys ica l Review B,2011,83(5):054203(8)
    [99] Kohara S, Kato K, Kimura S, et al. Structural basis for the fast phase change ofGe2Sb2Te5: Ring statistics analo gy between the crystal and amorphous states.Applied Physics Letters,2006,89(20):201910(3)
    [100] Akola J, Jones R O. Density functional study of amorphous, liquid andcrystalline Ge2Sb2Te5: ho mopolar bonds and/or AB alternation? Journa l ofPhysics: Condens Matter,2008,20:465103(10)
    [101] Akola J, Jones R O. Structural phase transitions on the nanoscale: The crucia lpattern in the phase-change materials Ge2Sb2Te5and GeTe. Physica l Review B,2007,76(23):235201(10)
    [102] Akola J, Jones R O. Structure of a morphous Ge8Sb2Te11: GeTe-Sb2Te3alloys andoptical storage. Phys ical Review B,2009,79(13):134118(8)
    [103] Akola J, Jones R O, Kohara S, et al. Experime ntally constraineddens ity-functiona l calc ulations of the amorphous structure of the prototypicalphase-change material Ge2Sb2Te5. Phys ical Review B,2009,80(2):020201(R4).
    [104] Akola J, Jones R O, Kohara S, et al. Density variatio ns in liquid tellurium: Ro lesof rings, chains, and cavities. Phys ical Review B,2010,81(9):094202(7)
    [105] Akola J, Larrucea J, Jones R O. Polymorphis m in phase-change materia ls:me lt-quenched and as-deposited amorphous structures in Ge2Sb2Te5fro m dens ityfunctional calc ulations. Phys ical Review B,2011,83(9):094113(7)
    [106] Akola J, Jones R O. Binary Alloys of Ge and Te: Order, Voids, and the EutecticComposition. Physica l Review Letters,2008,100(20):205502(4)
    [107] Liu X Q, Li X B, Zhang L, et al. New Structural P icture of the Ge2Sb2Te5Phase-Change Alloy. Phys ical Review Letters,2011,106(2):025501(4)
    [108] Raty J Y, Godlevsky V V, Gaspard J P, et al. Local structure of liq uid GeTe vianeutron scattering and ab initio simulations. Phys ical Review B,2002,65(11):115201(9)
    [109] Williams D B, Carter C B. Trans miss ion Electron Microscopy: A Textbook forMateria ls Science. New York: Ple num Press,2009
    [110]刘文西,黄孝瑛,陈玉如.材料结构电子显微分析.天津:天津大学出版社,1989
    [111]黄孝瑛,刘文西.透射电子显微学.上海:上海科技出版社,1987
    [112]进藤大辅,及川哲夫.材料评价的分析电子显微方法.北京:冶金工业出版,2001
    [113]进藤大辅,平贺贤二.材料评价的高分辨电子显微方法.北京:冶金工业出版社,2001
    [114] Malis T, Cheng S C, Egerton R F. EELS lo g-ratio technique forspecimen-thickness measurement in the TEM. Journal o f electron microscopytechniq ue,1988,8:193-200
    [115] Iakoubovskii K, Mitsuishi K, Nakayama Y, et al. Thickness measure ments withelectron energy loss spectroscopy. Microscopy research and technique,2008,71:626-631
    [116]黄胜涛.非晶材料的结构和结构分析.北京:科学出版社,1987
    [117] Ohkubo T, Hirotsu Y. Electron diffraction and high-resolution e lectronmicroscopy study of an a morphous Pd82Si18alloy with na noscale phaseseparation. Phys ical Review B,2003,67(9):094201(9)
    [118] Wright A C. Neutron scattering from vitreous silica. V.The structure of vitreoussilica: What have we learned from60years of diffraction stud ies? Journa l ofNon-Crystalline Solids,1994,179:84-115
    [119] Ohkubo T, Hiroshima T, Hirotsu Y, et al. In-situ e lectron diffraction stud y ofbulk amorphous La55Al25Ni20in the supercooled liquid region. MaterialsTransactions, JIM,2000,40:1385-1391
    [120] Angert I, Burmester C, Dinges C, et al. Elastic and inelastic scatteringcross-sections of a morphous la yers of carbon and vitrified ice. Ultramicroscopy,1996,63:181-192
    [121] Matsushita M, Hirotsu Y, Anazawa K, et al. Electron diffraction inte nsityanalys is of a morphous Pd75Si25allo y thin film with ima ging-plate technique.Materia ls Transactions, JIM,1995,36:822-827
    [122] Natio M, IShimaru M, Hirotsu Y, et al. Electron Microscopy Study onAmorphous Ge-Sb-Te Thin Film for Phase Change Optica l Recording. JapaneseJourna l of Applied Phys ics,2003,42: L1158-L1160
    [123] Wang W-H, Wei Q, Friedrich S. Microstructure, decomposition, andcrystallization in Zr41Ti14Cu12.5Ni10Be22.5bulk metallic glass. Phys ical Review B,1998,57(14):8211-8217
    [124] Ichikawa T. Study of metastable structure of Pb-Sb films condensed at lowtemperature. Japanese Journa l of Applied Phys ics,1970,9:748-760
    [125] Konnert J H, Karle J. The computation of radia l distribution functions for glassymateria ls. Acta Crystallographica Section A,1973,29:702-708
    [126] D'Antonio P, George C, Lowrey A H. Electron diffraction investigation ofdimethyl d iselenide. Journa l of Che mical Phys ics,1971,55:1071-1075
    [127] Prince E. International tables for crystallography. Dordrecht/Boston/London:Kluwer Acadamic Pub lisher,2004
    [128] McGreevy R L, P.Zetterstrom. To RMC or not to RMC? The use of reverseMonte Carlo modelling. Current Opinion in Solid State and Materia ls Science,2003,7:41-47
    [129] McGreevy R L. Reverse Monte Carlo modelling. Journa l of Phys ics: CondensMatter,2001,13: R877-913
    [130] McGreevy R L, Puszta i L. Reverse Monte Carlo Simulation: A New Techniquefor the Determination of Disordered Structures. Molecular Simulation,1988,1:359-367
    [131] McGreevy R L. RMC: progress, proble ms and prospects. Nuclear Instrumentsand Methods in Physics Research A,1995,354:1-16
    [132] Evrard G, Puszta i L. Reverse Monte Carlo modelling o f the structure ofdisordered materials with RMC++: a new imp le mentation of the algorithm inC++. Journa l of Phys ics: Condens Matter,2005,17: S1-S13
    [133] Chen M W, Hirata A, Guan P f, et al. Direct observation o f local atomic order ina meta llic glass. Nature Materia ls,2010,10:28-33
    [134] Ramachandran K I, Deepa G, Namboori K. Comp utationa l Chemistry andMolecular Modeling Princip les and Applications. Berlin: Springer-Verla g GmbH,2008
    [135]陈舜麟.计算材料科学.北京:化学工业出版社,2005
    [136]惠希东,陈国良.块体非晶合金..北京:化学工业出版社,2007
    [137] Elliott S R. Medium-range structura l order in cova lent amorphous solids. Nature,1991,354:445-452
    [138] Elliot S R. Phys ics of Amorphous Materials. London: Longman,1990
    [139] Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing andshort-to-mediumrange order in meta llic glasses. Nature Materia ls,2006,439:419-425
    [140] Hui X, Gao R, Chen G L, et al. Short-to-medium-range order in Mg65Cu25Y10metallic glass. Phys ics Letters A,2008,372:3078-3084
    [141] Mazzarello R, Caravati S, Uberti S A, et al. Signature of Tetrahedral Ge in theRaman Spectrum of Amorphous Phase-Change Materia ls. Phys ical ReviewLetters,2010,104(8):085503(4)
    [142] Maeda Y, Wakagi M. Ge K-edge extended x-ray absorption fine structure studyof the local structure of amorphous GeTe and the crystallization. JapaneseJourna l of Applied Phys ics,1991,30(1):101-106
    [143] Hirota K, Nagino K, Ohbayashi G. Local structure of amorphous GeTe andPdGeSbTe alloy for phase change optical recording. Journa l of App lied Phys ics,1997,82(1):69-70
    [144] Baker D A, Paesler M A, Lucovsky G, et al. Applicatio n of Bond ConstraintTheory to the Switchable Optical Me mory Material Ge2Sb2Te5. Phys ical ReviewLetters,2006,96(25):255501(1-3)
    [145] Jóvári P, Kaban I, Steiner J, et al. Local order in amorphous Ge2Sb2Te5andGeSb2Te4. Phys ical Review B,2008(3):035202(1-6)
    [146] Xu M, Cheng Y Q, Sheng H W, et al. Nature of Atomic Bonding and AtomicStructure in the Phase-Change Ge2Sb2Te5Glass. Phys ical Review Letters,2009,103(19):195502(1-4)
    [147] Errington J R, Debenedetti P G. Relatio nship between structural order and theanomalies of liquid water. Nature,2001,409:318-321
    [148] Gaskell P H. Medium-range structure in glasses and low-Q structure in nertronand x-ray scattering data. Journal of Non-Crystalline Solids,2005,351:1003-1013
    [149] Hoyer W, Jodicke R. Sort-range and medium-range order in liq uid Au-Ge allo ys.Journa l of Non-Crystalline Solids,1995,192&193:102-105.
    [150] Il’inskii A, Slyusarenko S, Slukhovskii O, et al. Structure of liquid Fe–Al alloys.Materia ls Science and Engineering A,2002,325:98-102
    [151] Roik O S, Samsonnikov O V, Kazimirov V P, et al. Short and medium-rangeorder in liquid binary Al-Ni and Al-Co alloys. Journa l of Molecular Liquids,2009,145:129-134
    [152] Fawcett R W, Wagner C N J, Cargill G S. Radia l distribution stud ies ofamorphous GexSe1-xalloy films. Journa l of Non-Crystalline Solids,1972,8:369-375
    [153] Betts F, bienenstock A, Ovshinsky. S R. Radia l distributio n studies of amorphousGexTe1-xalloys. Journa l of Non-Crystalline Solids,1970,4:554-563
    [154] Betts F, Bienenstock A, Keating D T, et al. Neutron and X-ray diffraction radia ldistributio n studies of amorphous Ge0.17Te0.83. Journal of Non-Crystalline Solids,1972,7:417-432
    [155] Dove D B, Herita ge M E. Short-range order in amorphous GeTe films. AppliedPhysics Letters,1970,16:138-140
    [156] Dove D B, Chang J, Molnar B. Local order and microstructure of germaniumchalcogenide films. Journa l of Non-Crystalline Solids. Journa l ofNon-Crystalline Solids,1972,8:376-380
    [157] Pickart S J, Sharma Y P, Deneufvifle J P. Structural ana lysis o f amorphousGe0.5Te0.5by neutron d iffractio n. Journa l of Non-Crystalline Solids,1979,34:183-190
    [158] Uemura O, Sagara Y, Tsushima M, et al. The neutron diffraction study of liquidGeTe and As2Te3. Journa l of Non-Crystalline Solids. Journa l of Non-CrystallineSolids,1979,33:71-81
    [159] Ichikawa K, Kameda Y, Xu Q, et al. Neutron diffraction of As-quenchedGe20Te80glass near the glass-undercooled liquid trans ition. Journa l ofNon-Crystalline Solids,1987,95-96
    [160] Raty J Y, Gaspard J P, Bionducc i M. On the structure of liquid IV-VIsemiconductors. Journal of Non-Crystalline Solids,1999,250:227-280
    [161] Betts F, Bienenstock A, Jr C W B. Structure and bond ing in amorphousGexTe1-x allo ys. Journa l of Non-Crystalline Solids,1972,8:364-368
    [162] Uemura O, Hayasaka N, Tokairin S, et al. Local atomic arrange ment in Ge-Teand Ge-S-Te glasses. Journal o f Non-Crystalline Solids. Journa l ofNon-Crystalline Solids,1996,205:189-193
    [163] Kaban I, Halm T, Hoyer W, et al. Short-range order in amorphousgermanium-tellurium alloys. Journa l of Non-Crystalline Solids,2003,326:120-124
    [164] Hoyer W, Kaban I, Jóvári P. Crystallization behavior and structure of amorphousGe15Te85and Ge20Te80alloys. Journal o f Non-Crystalline Solids,2004,338-340:565-568
    [165] Jóvári P, Kaban I, Hoyer W, et al. Local ato mic environment in amorphousGe15Te85. Journal of Physics: Condens Matter,2005,17:1529-1536
    [166] Kaban I, Jóvári P, Hoyer W, et al. Determination o f partia l pair distributionfunctions in amorphous Ge15Te85by simultaneous RMC simulation of diffractionand EXAFS data. Journal of Non-Crystalline Solids,2007,353:2474-2478
    [167] Kaban I, Jóvári P, Hoyer W, et al. Structural studies on Te-rich Ge–Te me lts.Journa l of Phys ics: Condens Matter,2006,18:2749-2760
    [168] Coulet M-V, Testema le D, Haze mann J-L, et al. Reverse Monte Carlo ana lys is ofthe local order in liquid Ge0.15Te0.85allo ys comb ining neutron scattering andx-ray absorption spectroscopy. Phys ical Review B,2005,72(6):174209(1-6)
    [169] Raty J Y, Godlevsky V, Ghosez P, et al. Evidence of a Reentrant PeierlsDistortio n in Liquid GeTe. Phys ical Review Letters,2000,85(9):1950-1953
    [170] Bichara C, Johnson M, Raty J Y. Temperature-Induced Density Anoma ly inTe-Rich Liq uid Germanium Tellurides: p versus sp3Bond ing? Phys ical ReviewLetters,2005,95(26):267801(1-4)
    [171] Bergman C, Bichara C, Gaspard J P, et al. Experime ntal investigation of thewaterlike density anoma ly in the liquid Ge15Te85eutectic a lloy. Phys ical ReviewB,2003,67(10):104202(1-5)
    [172] Okabe T, Nakagawa M. Crystallization behavior and local order of amorphousGexTe1-xfilms. Journa l of Non-Crystalline Solids,1986,88:182-195.
    [173] Gourvest E, Lhostis S, Kreisel J, et al. Evidence of Germa nium pre cipitation inphase-change Ge1xTexthin films by Raman scattering. Applied Phys ics Letters,2009,95(3):031908(1-3).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700