发电过程控制系统的综合性能评价策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力关乎国计民生,是社会经济发展的动力之源。无论是传统的发电方式还是新型能源发电方式,在一次能源向电能的转换过程中都要经历复杂的物理、化学过程,而这些过程往往包含着众多的设备和部件。
     在现代化的电厂中,控制系统遍布于整个生产流程,指挥着各设备和部件按照既定技术指标和运行规程自动、协同地运行。随着能源危机和环境问题的日益突显,控制系统又进一步担负起除安全稳定运行之外的更多职能。在这种情况下,控制系统的性能将直接影响发电机组的运行品质及其输出电能的质量。
     本文针对发电过程控制系统的性能评价问题展开研究,主要工作及取得创新性成果体现在如下三个方面:
     针对影响控制系统性能及评价结果的重要影响因素——非线性度,提出了基于最小方差下界比的非线性度量指标。该度量指标基于Hammerstein结构定义,同时适用于Winner结构和Winner-Hammerstein结构。针对该指标,给出了基于闭环操作数的指标估计算法,并应用统计推断原理给出了非线性度强弱的判定区间。通过仿真对比,验证了该非线性度量指标及其估计算法的有效性,并以磨煤机出口温度控制系统的非线性度量为例进行了实例仿真研究。
     提出了评价线性高斯系统控制性能的最小信息熵基准,并将该基准推广到非线性非高斯系统。基于该基准定义了非线性非高斯系统的性能评价指标,进而给出非线性非高斯系统的性能评价方法。仿真对比验证了所提出性能指标和评价方法的有效性,并以磨煤机出口温度控制系统为例,研究了发电过程单回路控制系统的性能评价问题。
     提出了一种基于线性解耦滤波的多变量控制系统性能评价方法。该方法可通过解耦滤波将多输入多输出系统转化多个单输入单输出系统进行评价,并给出各个回路对于系统整体性能的影响程度。在该评价方法的基础上,应用自举重采样方法实现了回路级的性能诊断。以火电机组汽轮机负荷转速多变量控制系统为例,对该方法的有效性进行了仿真验证。
Electric power relates the national economy and people's livelihood and is the source of social economy development. No matter traditional or new ways of generating energy power generation, the process of energy conversion to electrical energy goes through complex physical and chemical processes, and these processes often contain a large number of equipment and components.
     In modern power plants, the control system is throughout the entire production process, and commands various equipment and components running automatically, and cooperatively in accordance with established specifications and operating procedures. With the increasing energy crisis and environmental problems, the control system further shoulders more functions in addition to the safe and stable operation. In this case, the performance of the control system will directly affect not only the running quality of the units but also the quality of output power.
     This paper studies the control system performance evaluation in power generation process., the main contributions of this dissertation are given as following:
     Nonlinearity is an important factor that affecting the control performance and the evaluation results. A nonlinearity measure based on minimum variance lower bound ratio is presented in this paper to qualify the nonlinear degree of closed loop systems. This measure is deduced from Hammerstein structure, but it also can be applied to Wiener structure and Wiener-Hammerstein structure. Besides, this measure can be estimated from the routine operating data. The threshold to judging whether nonlinearity is strong or weak is given by the principle of statistic interval. The effectiveness and consistency of this measure are illustrated by four simulations. The nonlinearity measure of coal mill outlet temperature control is given as an application example.
     A minimum information entropy benchmark is proposed for assessing linear Guassian system and is extented to nonlinear non-Gaussian system. Then, a minimum information entropy based performance index is defined and the control performance assessment procedures are developed. Simulation tests and an industrial case study of coal mill outlet temperature control system are utilized to verify the effectiveness of the proposed procedures.
     A new MIMO control system method based on output filtering is presented. This method can transform MIMO control performance assessment into multiple SISO control performance assessment by output filtering. The importance of every loop is obtained. With this CPA framework, a performance diagnosis method is presented with respect to the bootstrap resampling. The turbine load/speed control system is selected to test the effectiveness of the proposed procedures
引文
[1]Swanda AP, Seborg DE. Controller performance assessment based on setpoint response data[C], Proceedings of the American Control Conference, San Diego, USA,1999,3863-3867.
    [2]Jelali M. Control System Performance Monitoring:Assessment, Diagnosis and Improvement of Control Loop Performence in Industrial Automation [D]. Germany; The University of Duisburg-Essen,2010.
    [3]Hagglund T. Automatic detection of sluggish control loops [J]. Control engineering practice,1999,7(12):1505-1511.
    [4]Hagglund T. Industrial implementation of on-line performance monitoring tools [J]. Control engineering practice,2005,13(11):1383-1390.
    [5]Kuehl P, Horch A. Detection of sluggish control loops-experiences and improvements [J]. Control Engineering Practice,2005,13(8):1019-1025.
    [6]Visioli A. Assessment of tuning of PI controllers for self-regulating processes[C], Proceedings of the Proc IF AC world congress, Czech Republic,2005,1615-1616.
    [7]Shinskey FG. Process-control systems; application, design and tuning [M]. Prentice-Hall,1996.
    [8]Yu Z, Wang J, Huang B, et al. Performance assessment of PID control loops subject to setpoint changes [J]. Journal of Process Control,2011,21(8): 1164-1171.
    [9]Harris TJ. Assessment of control loop performance [J]. The Canadian Journal of Chemical Engineering,1989,67(5):856-861.
    [10]Shinskey F. How good are our controllers in absolute performance and robustness [J]. Measurement and Control,1990,23(1):114-121.
    [11]Ender DB. Process control performance:Not as good as you think [J]. Control Engineering,1993,40(10):180-190.
    [12]Bialkowski W. Dreams versus reality:a view from both sides of the gap: manufacturing excellence with come only through engineering excellence [J]. Pulp & Paper Canada,1993,94(11):19-27.
    [13]Kammer LC, Anderson BDO, Bitmead RR. On the performance assessment of scalar nonminimum-phase plants[C], Proceedings of the American Control Conference, Denver, CO,2006,5270-5273
    [14]Tyler ML, Morari M. Performance monitoring of control systems using likelihood methods* 1 [J]. Automatica,1996,32(8):1145-1162.
    [15]Lynch C, Dumont G. Control loop performance monitoring [J]. Control Systems Technology, IEEE Transactions on,1996,4(2):185-192.
    [16]Huang B, Shah SL, Fujii H. The unitary interactor matrix and its estimation using closed-loop data [J]. Journal of Process Control,1997,7(3):195-207.
    [17]Li Z, Evans RJ. Generalised minimum variance control of linear time-varying systems[C], Proceedings of the IEE Control Theory and Applications,2002, 111-116.
    [18]Chen J, Kong C-K. Performance assessment for iterative learning control of batch units [J]. Journal of Process Control,2009,19(6):1043-1053.
    [19]Desborough L, Harris T. Performance assessment measures for univariate feedforward/feedback control [J]. The Canadian Journal of Chemical Engineering, 1993,71(4):605-616.
    [20]Stanfelj N, Marlin TE, MacGregor JF. Monitoring and diagnosing process-control performance:the single-loop case [J]. Industrial & engineering chemistry research,1993,32(2):301-314.
    [21]Ko BS, Edgar TF. Performance assessment of cascade control loops [J]. AIChE journal,2000,46(2):281-291.
    [22]Eriksson PG, Isaksson AJ. Some aspects of control loop performance monitoring[C], Proceedings of the 3rd IEEE Conference on Control Applications, Glasgow, Scotland,1994,1029-1034.
    [23]Ko BS, Edgar T. Assessment of achievable PI control performance for linear processes with dead time[C],1998,1548-1552 vol.1543.
    [24]Horton E, Foley M, Kwok K. Performance assessment of level controllers [J]. International Journal of Adaptive Control and Signal Processing,2003,17(7-9): 663-684.
    [25]Huang B. A pragmatic approach towards assessment of control loop performance [J]. International Journal of Adaptive Control and Signal Processing,2003,17(7-9):589-608.
    [26]Julien RH, Foley MW, Cluett WR. Performance assessment using a model predictive control benchmark [J]. Journal of Process Control,2004,14(4): 441-456.
    [27]Ohnishi Y, Shah SL. Performance-driven adaptive PID controller design:theory and experimental evaluation[C], Proceedings of the Proc of 8th International Symposium on Dynamics and Control of Process Systems, Cancun,2007, 433-438
    [28]Yamamoto T, Kawada K, Kugemoto H, et al. A unified approach of control performance evaluation and PID controller design in industrial process systems[C], Proceedings of the SICE Annual Conference,2008 Tokyo 2008, 1409-1414.
    [29]Sendjaja AY, Kariwala V. Achievable PID performance using sums of squares programming [J]. Journal of Process Control,2009,19(6):1061-1065.
    [30]Veronesi M, Visioli A. Performance assessment and retuning of PID controllers for integral processes [J]. Journal of Process Control,2010,20(3):261-269.
    [31]Shahni F, Malwatkar GM. Assessment minimum output variance with PID controllers [J]. Journal of Process Control,2011,21(4):678-681.
    [32]Kozub DJ, Garcia CE. Monitoring and diagnosis of automated controllers in the chemical process industries[C], Proceedings of the AIChE Annual Meeting, St. Louis, MO,USA,1993,
    [33]Horch A, Isaksson AJ. A modified index for control performance assessment [J]. Journal of Process Control,1999,9(6):475-483.
    [34]Patwardhan R, Shah S, Emoto G, et al. Performance analysis of model-based predictive controllers:An industrial case study [C], Proceedings of the AICHE annual meeting, Miami,1998,15-19.
    [35]Gao J, Patwardhan R, Akamatsu K, et al. Performance evaluation of two industrial M P C controllers [J]. Control engineering practice,2003,11(12): 1371-1387.
    [36]Bezergianni S, Georgakis C. Controller performance assessment based on minimum and open-loop output variance [J]. Control Engineering Practice,2000, 8(7):791-797.
    [37]Grimble M, Uduehi D. Process control loop benchmarking and revenue optimization[C], Proceedings of the American Control Conference,2001, Arlington, VA 2001,4313-4327.
    [38]Grimble M. Restricted structure control loop performance assessment for state-space systems[C], Proceedings of the American Control Conference,2002, Anchorage, Alaska,2002,1633-1638.
    [39]Grimble M. Controller performance benchmarking and tuning using generalised minimum variance control* 1 [J]. Automatica,2002,38(12):2111-2119.
    [40]Grimble MJ. Restricted structure controller tuning and performance assessment[C], Proceedings of the IEE Control Theory Applications,2002,8-16.
    [41]Grimble M. Restricted Structure Control Loop Performance Assessment For Pid Controllers And State\Space Systems [J]. Asian Journal of Control,2003,5(1): 39-57.
    [42]Grimble M. Integral minimum variance control and benchmarking [J]. Journal of Process Control,2004,14(2):177-191.
    [43]Kadali R, Huang B. Controller performance analysis with LQG benchmark obtained under closed loop conditions [J]. ISA transactions,2002,41(4): 521-537.
    [44]Zhao C, Zhao Y, Su H, et al. Economic performance assessment of advanced process control with LQG benchmarking [J]. Journal of Process Control,2009, 19(4):557-569.
    [45]Danesh Pour N, Huang B, Shah S. Performance assessment of advanced supervisory-regulatory control systems with subspace LQG benchmark [J]. Automatica,2010,46(8):1363-1368.
    [46]Harris T, Yu W. Controller assessment for a class of non-linear systems [J]. Journal of Process Control,2007,17(7):607-619.
    [47]Yu W, Wilson D, Young B. Eliminating valve stiction nonlinearities for control performance assessment[C], Proceedings of the International Symposium on Advanced Control of Chemical Processes ADCHEM, Istanbul, Turkey,2009, 506-511.
    [48]Yu W, Wilson DI, Young BR. Nonlinear control performance assessment in the presence of valve stiction [J]. Journal of Process Control,2010,20(6):754-761.
    [49]Harris TJ, Yu W. Variance decompositions of nonlinear-dynamic stochastic systems [J]. Journal of Process Control,2010,20(2):195-205.
    [50]Yu W, Wilson D, Young B. Control performance assessment for block-oriented nonlinear systems[C], Proceedings of the 8th IEEE International Conference on Control and Automation (ICCA), Xiamen, China 2010,1151-1156.
    [51]Yu W, Wilson D, Harris T, et al. Control Performance Assessment for Hammerstein-Wiener Models*[C], Proceedings of the the 9th International Symposium on Dynamics and Control of Process Systems, Leuven, Belgium, 2010,665-670.
    [52]Grimble MJ. Design of generalized minimum variance controllers for nonlinear multivariable systems [J]. International Journal of Control, Automation and Systems,2006,4(3):281-292.
    [53]Grimble MJ, Naz SA. Nonlinear minimum variance estimation for discrete-time multi-channel systems [J]. Signal Processing, IEEE Transactions on,2009,57(7): 2437-2444.
    [54]Huang B, Shah SL, Kwok EK. On-line control performance monitoring of MIMO processes[C],1995,1250-1254 vol.1252.
    [55]Huang B, Shah SL, Miller R. Feedforward plus feedback controller performance assessment of MIMO systems [J]. Control Systems Technology, IEEE Transactions on,2000,8(3):580-587.
    [56]Silva E, Salgado M. Performance bounds for feedback control of non-minimum phase MIMO systems with arbitrary delay structure[C], Proceedings of the IEE Control Theory and Applications,2005,211-219.
    [57]Yuan Q, Lennox B. Control performance assessment for multivariable systems based on a modified relative variance technique [J]. Journal of Process Control, 2009,19(3):489-497.
    [58]Zhao Y, Su H, Chu J, et al. Multivariable Control Performance Assessment Based on Generalized Minimum Variance Benchmark [J]. Chinese Journal of Chemical Engineering,2010,18(1):86-94.
    [59]Rogozinski M, Paplinski A, Gibbard M. An algorithm for the calculation of a nilpotent interactor matrix for linear multivariable systems [J]. Automatic Control IEEE Transactions on,1987,32(3):234-237.
    [60]Fernandez B, Himmelblau DM. MIMO control performance monitoring based on subspace projections [D]; The University of Texas at Austin,2002.
    [61]Kadali R, Huang B. Multivariate controller performance assessment without interactor matrix-a subspace approach[C], Proceedings of the IFAC Advanced Control of Chemical Processes,2003,61-66.
    [62]Misra M, Yue HH, Qin SJ, et al. Multivariate process monitoring and fault diagnosis by multi-scale PCA [J]. Computers & chemical engineering,2002, 26(9):1281-1293.
    [63]Huang B, Ding SX, Thornhill N. Practical solutions to multivariate feedback control performance assessment problem:reduced a priori knowledge of interactor matrices [J]. Journal of Process Control,2005,15(5):573-583.
    [64]Yu J, Qin SJ. Statistical MIMO controller performance monitoring. Part II: Performance diagnosis [J]. Journal of Process Control,2008,18(3-4):297-319.
    [65]Yu J, Qin SJ. Statistical MIMO controller performance monitoring. Part I: Data-driven covariance benchmark [J]. Journal of Process Control,2008,18(3): 277-296.
    [66]Xia H, Majecki P, Ordys A, et al. Performance assessment of MIMO systems based on I/O delay information [J]. Journal of Process Control,2006,16(4): 373-383.
    [67]Wang X, Huang B, Chen T. Multirate minimum variance control design and control performance assessment:A data-driven subspace approach [J]. Control Systems Technology, IEEE Transactions on,2007,15(1):65-74.
    [68]Yu J, Qin SJ. MIMO control performance monitoring using left/right diagonal interactors [J]. Journal of Process Control,2009,19(8):1267-1276.
    [69]Chen J, Wang W-Y. Performance monitoring of MPCA-based control for multivariable batch control processes [J]. Journal of the Taiwan Institute of Chemical Engineers,2010,41(4):465-474.
    [70]Zhang Y, Henson MA. A performance measure for constrained model predictive controllers [J]. Proc Europ control confer, Karlsruhe, Germany,1999,
    [71]Ko BS, Edgar TF. Performance assessment of multivariable feedback control systems* 1 [J]. Automatica,2001,37(6):899-905.
    [72]Schafer J, Cinar A. Multivariable MPC system performance assessment, monitoring, and diagnosis [J]. Journal of Process Control,2004,14(2):113-129.
    [73]Lee KH, Ren Z, Huang B. Novel closed-loop stiction detection and quantification method via system identification[J], Proceedings of the International Symposium on Advanced Control of Industial Processes (ADCONIP), Jasper, Canada,2008, 283-288.
    [74]Harrison CA, Qin SJ. Minimum variance performance map for constrained model predictive control [J]. Journal of Process Control,2009,19(7):1199-1204.
    [75]Kendra SJ, Cinar A. Controller performance assessment by frequency domain techniques [J]. Journal of Process Control,1997,7(3):181-194.
    [76]Huang B, Shah SL. Practical issues in nultivariable feedback control performance assessment [J]. Journal of Process Control,1998,8(5-6):421-430.
    [77]Gustafsson F, Graebe SF. Closed-loop performance monitoring in the presence of system changes and disturbances [J]. Automatica,1998,34(11):1311-1326.
    [78]Shah. S. L, R. P, B H. Multivariate controller performance analysis:method, application and challenge[C], Proceedings of the Chemical Process Control-CPC VI, CACHE, Tuscon, AZ,2001,580-587.
    [79]Harris T, Seppala C, Jofriet P, et al. Plant-wide feedback control performance assessment using an expert-system framework [J]. Control engineering practice, 1996,4(9):1297-1303.
    [80]Jelali M. An overview of control performance assessment technology and industrial applications [J]. Control engineering practice,2006,14(5):441-466.
    [81]Joe Qin S. Control performance monitoring-a review and assessment [J]. Computers and Chemical Engineering,1998,23(2):173-186.
    [82]Foley M, Buckley P, Huang B, et al. Application of control loop performance assessment to an industrial acid leaching process [J]. Control and optimization in minerals, metals and materials processing, METSOC,1999,3-16.
    [83]Li Q, Whiteley J, Rhinehart R. A relative performance monitor for process controllers [J]. International Journal of Adaptive Control and Signal Processing, 2003,17(7-9):685-708.
    [84]Bonavita N, Bovero JC, Martini R. Control loops:performance and diagnostics[C], Proceedings of the Presented at:48th ANIPLA Conference, Milano, Italy,2004,15-29.
    [85]Eker SA, Nikolaou M. Linear control of nonlinear systems:Interplay between nonlinearity and feedback [J]. AIChE journal,2002,48(9):1957-1980.
    [86]Guay M, McLellan P, Bacon D. Measurement of nonlinearity in chemical process control systems:the steady state map [J]. The Canadian Journal of Chemical Engineering,1995,73(6):868-882.
    [87]Stack AJ, Doyle Iii FJ. The optimal control structure:an approach to measuring control-law nonlinearity [J]. Computers & amp; Chemical Engineering,1997, 21(9):1009-1019.
    [88]Guay M, Dier R, Hahn J, et al. Effect of process nonlinearity on linear quadratic regulator performance [J]. Journal of Process Control,2005,15(1):113-124.
    [89]Desoer C, Yung-Terng W. Foundations of feedback theory for nonlinear dynamical systems [J]. Circuits and Systems, IEEE Transactions on,1980,27(2): 104-123.
    [90]Sun D, Kosanovich KA. Nonlinearity measures for a class of SISO nonlinear systems[C], Proceedings of the American Control Conference,1998, Philadelphia, PA 1998,2544-2548.
    [91]Sun D, Hoo KA. Non-linearity measures for a class of SISO non-linear systems [J]. International Journal of Control,2000,73(1):29-37.
    [92]Du J, Song C, Li P. A gap metric based nonlinearity measure for chemical processes[C], Proceedings of the American Control Conference, St. Louis, MO 2009,4440-4445.
    [93]Shoukat Choudhury M, Shah SL, Thornhill NF. Diagnosis of poor control-loop performance using higher-order statistics [J]. Automatica,2004,40(10): 1719-1728.
    [94]孟庆伟,房方,刘吉臻.一种热工控制系统综合性能的评价方法[J].中国电机工程学报,2011,31(23):101-107.
    [95]Wilson DI. The Black Art of Smoothing [J]. Electrical & Automation Technology, 2006,35-36.
    [96]Charbonnier S, Garcia-Beltan C, Cadet C, et al. Trends extraction and analysis for complex system monitoring and decision support [J]. Engineering Applications of Artificial Intelligence,2005,18(1):21-36.
    [97]Bianchi M, Boyle M, Hollingsworth D. A comparison of methods for trend estimation [J]. Applied Economics Letters,1999,6(2):103-109.
    [98]Bromba MUA, Ziegler H. Application hints for Savitzky-Golay digital smoothing filters [J]. Analytical Chemistry,1981,53(11):1583-1586.
    [99]Luo J, Ying K, Bai J. Savitzky-Golay smoothing and differentiation filter for even number data [J]. Signal processing,2005,85(7):1429-1434.
    [100]Maravall A, Del Rio A, de Espana B. Time aggregation and the Hodrick-Prescott filter [M]. Banco de Espana,2001.
    [101]Cleveland RB, Cleveland WS, McRae JE, et al. STL:A seasonal-trend decomposition procedure based on loess [J]. Journal of Official Statistics,1990, 6(1):3-73.
    [102]Reinsch CH. Smoothing by spline functions. II [J]. Numerische Mathematik, 1971,16(5):451-454.
    [103]Ko B-S, Edgar TF. Performance assessment of cascade control loops [J]. AIChE Journal,2000,46(2):281-291.
    [104]Tyler M, Morari.M. Performance assessment for unstable and nonminmum-phase systems [M]. In Preprints IFAC workshop on-line fault detection supervision chemical process industries. Newcastle upon Tyne,UK.1995.
    [105]Grimble MJ. Controller performance benchmarking and tuning using generalised minimum variance control [J]. Automatica,2002,38(12):2111-2119.
    [106]Ordys AW, Uduehi D, Johnson MA, et al. Process control performance assessment:from theory to implementation [M]. Springer Verlag,2007.
    [107]Hong Y, Hong W. Minimum entropy control of closed-loop tracking errors for dynamic stochastic systems [J]. Automatic Control, IEEE Transactions on,2003, 48(1):118-122.
    [108]Papoulis A, Pillai SU. Probability, random variables, and stochastic processes [M]. New York:Tata McGraw-Hill Education,2002.
    [109]Yue H, Wang H. Minimum entropy control of closed-loop tracking errors for dynamic stochastic systems [J]. Automatic Control, IEEE Transactions on,2003, 48(1):118-122.
    [110]Wang H. Bounded dynamic stochastic systems:modelling and control [M]. Springer Verlag,2000.
    [111]Principe JC. Information theoretic learning:Renyi's entropy and kernel perspectives [M]. Springer,2010.
    [112]Panzeri S, Senatore R, Montemurro MA, et al. Correcting for the sampling bias problem in spike train information measures [J]. Journal of neurophysiology, 2007,98(3):1064-1072.
    [113]Panzeri S, Treves A. Analytical estimates of limited sampling biases in different information measures [J].1995,
    [114]Goodwin GC, Sin. KS. Adaptive filtering, prediction and control [M]. Englewood Cliffs:Prentice-Hall,1984.
    [115]Huang B, Shah SL. Performance assessment of control loops:theory and applications [M]. Springer Verlag,1999.
    [116]Lynch C.B., Dumont G.A. Control loop performance monitoring [J]. IEEE transactions on control systems technology,1996,4(2):195-192.
    [117]Peng Y, Kinnaert M. Explicit solution to the singular LQ regulation problem [J]. Automatic Control, IEEE Transactions on,1992,37(5):633-636.
    [118]Paplinski AP, Rogozinski MW. Right Nilpotent Interactor Matrix and its Application to Multivariable Stochastic Control[C], Proceedings of the American Control Conference,1990,1990,494-495.
    [119]Goodwin G, Sin KS. Adaptive filtering, prediction and control [J]. Englewood Clifs:Prentice Ha 11,1984,
    [120]Huang B, Shah.S.L. Perofrmance assessment of control loops, Theory and Applications [M]. New York:Springer,1999.
    [121]Wang Y, Liu S, Zhang C. Recursive Estimation of Time Delay in Thermodynamic Process[C], Proceedings of the IEEE International Symposium on Industrial Electronics, Vigo 2007,1882-1886.
    [122]G. Ferretti, Maffezzon C, Scattolini R. Recursive estimation of time delay in sampled systems [J]. Automactic,1991,27(4):653-661.
    [123]薛亚丽.热力过程多变量控制系统的优化设计[D];清华大学,2005.
    [124]邓婧,李兴源,魏巍.汽轮机超速保护控制系统的性能优化及其对电网频率的影响分析[J].电网技术,2010,34(12):50-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700