高速铁路车辆—道岔—桥梁耦合振动理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路对线路的平顺性要求严,高架桥、长大桥多为其主要特征,车站咽喉区位于桥梁上的可能性较普通铁路大得多。作为限速关键设备的高速道岔铺设于桥梁上,岔桥结构发生剧烈的动力相互作用,从而降低高速列车桥上过岔时的安全性与平稳性。随着我国客运专线和高速铁路的建设,快速及高速行车条件下车辆与桥上道岔的动态相互作用问题成为亟需开展的基础性课题之一。本文在参考国内外车桥振动理论与道岔动力学研究资料的基础上,将机车车辆、道岔区轨道与桥梁视为一个整体大系统,以车辆动力学、道岔动力学、桥梁动力有限元方法为基础,以岔区轮轨关系、岔桥关系为联系纽带,应用数值仿真的方法来研究高速行车条件下道岔区轨道及桥梁结构的动力特性、行车的安全性和平稳性,为高速铁路桥上无缝道岔的设计方案评估和参数优化提供理论支撑。主要研究工作如下:
     1.建立车辆-道岔-桥梁耦合振动系统模型
     将机车车辆视为一个由悬挂弹簧和阻尼联系起来的7刚体(1个车体、2个构架、4个轮对)振动系统,每个刚体具有点头、摇头、侧滚、沉浮和横移5个自由度,整个车辆系统共有35个自由度。在综合高速道岔结构特点的基础上,建立起包含转辙器、连接部分和辙叉三部分的完整道岔动力学模型,模型中考虑钢轨截面型式变化、顶铁接触传力、间隔铁高强联结、滑床台非线性支承等因素;将轨枕或支承块视为刚体并考虑其垂向、横向及转动自由度,无砟轨道板的垂向振动按弹性地基上的等厚度矩形薄板考虑,而横向视为刚体运动。运用动力有限元方法将桥梁结构离散化。
     2.详细论述车辆-道岔-桥梁动态相互作用原理并建立相应分析理论、编制通用计算程序DATTB
     综合应用道岔区多变的轮/岔接触几何关系、轮轨Hertz非线性弹性接触理论、轮轨蠕滑理论、岔桥相互作用关系,详细论述了车辆-道岔-桥梁动态相互作用原理。以高速道岔结构及状态不平顺作为系统的主要激振源,根据离散系统动力问题的Hamilton变分原理和“对号入座”法则建立起车-岔-桥耦合振动分析理论,并编制出相应动力学仿真通用程序DATTB。
     3.高速铁路岔桥结构运用安全性以及行车平稳性评估标准探析
     提出以列车桥上过岔的安全性及平稳性、道岔与桥梁的强度和稳定性作为桥上道岔的动力评估准则,对国内外有关机车车辆、道岔及桥梁的动力学性能评价指标,如轮轨垂、横向力、轮轴横向力、尖轨及心轨开口量、尖轨及心轨动应力、脱轨系数、轮重减载率、车体振动加速度、平稳性指标、桥梁挠度、桥梁自振频率、桥梁横向振幅、桥梁振动加速度等进行了归纳整理。
     4.车-岔-桥耦合振动试验研究
     应用DATTB对浙赣线湄池特大桥上200km/h提速改进型60kg/m钢轨12号有砟道岔进行动力学评估,通过仿真结果与实测结果的对比分析,验证了DATTB的可靠性。同时,桥上道岔与路基上道岔的动测结果对比分析表明,桥上道岔区轮轨动力相互作用远较普通路基上道岔区强烈。
     5.高速车辆与桥上道岔的动态相互作用规律研究
     系统研究车辆、道岔和桥梁的各种可变因素对车-岔-桥耦合振动的影响,揭示出高速车辆与桥上道岔的动态相互作用规律,并提出了高速铁路桥上无缝道岔动力设计指导原则。优化的道岔区轮轨关系和轨道刚度、合理的桥梁竖向刚度和岔桥相对位置是保证高速列车桥上过岔安全性与平稳性的关键。
     6.车辆-道岔-桥梁耦合振动理论的工程应用
     以郑西客运专线无砟轨道多种跨度布置连续梁桥上铺设法国COGIFER时速350公里18号道岔和厦深客货混跑铁路有砟轨道(48+2×80+88+48)m连续梁桥上铺设中国自主研发的时速250公里30号道岔的动力学评估为例阐述了车辆-道岔-桥梁耦合振动理论的实际应用。
High speed railway is characterized by more viaducts and long bridges than existing railway line, and throat area of railway station is more possible to be set on a bridge, because there are strict requirements for regularity of high speed railway. High speed railway turnout as a key speed-limit equipment is set on bridge, and it results in violent dynamic interaction between turnout and bridge structure, so the safety and comfort of a train passing a turnout on bridge are decreased. With the construction of Passenger Dedicated Lines (PDLs) and high speed railway in China, it is one of basic issues to study the dynamic interactions between vehicle and turnout on bridge under the high speed running condition. According to the reference research data of vehicle-bridge vibration theory and turnout dynamics at home and abroad, vehicle, track of turnout zone and bridge are viewed as an integrated system. Based on vehicle dynamics, turnout dynamics and bridge finite element method, with wheel/rail relation and turnout/bridge relation as connection links, a numerical simulation method is applied to study the dynamic characteristics of track in turnout zone and bridge structure, running safety and comfort under high speed running condition, so as to provide theoretical support for design scheme estimation and parameter optimization of welded turnout on bridge of high speed railway. Main research works are as follows:
     (1) Vehicle-turnout-bridge coupling vibration system model
     A vehicle is viewed as a 7 rigid-body (1 car-body,2 bogies, and 4 wheel-sets) vibration system connected by suspension spring and damper. Each rigid-body has 5 degrees of freedom (DOFs), i.e. yaw, pitch, rolling, shaking and vertical vibration, and total DOFs of the whole vehicle amounts to 35. A complete turnout dynamic model, which contains switch proper, linking parts and frog, is established by integrating structure characteristics of high-speed turnout. Such factors as rail section variation, jacking block contact force, spacer block high strength connection, and sliding platform nonlinear support are also taken into account. Sleeper or support block are viewed as a rigid-body which considers its vertical, transverse and rotation DOFs; vertical vibration of ballastless track slab is considered as an equi-thickness rectangular thin plate on elastic subgrade, while its transverse vibration is viewed as rigid-body movement. Dynamic finite element method is applied to the discretization of bridge structure.
     (2) Dynamic interaction principle, coupling vibration analysis theory and corresponding all-purpose program DATTB
     With comprehensive application of following theories, such as wheel/turnout multi-point dynamic contact relation, wheel/rail Hertz nonlinear contact theory, wheel/rail creep theory, turnout/bridge interaction, the principle of vehicle-turnout-bridge dynamic interaction is discussed in detail. Viewing high speed turnout structure and state irregularity as main excitation, a vehicle-turnout-bridge coupling vibration analysis theory is established by using Hamilton Variation Principle and'Numbered Seat Principle'. Related dynamics simulation all-purpose program DATTB is completed.
     (3) Analysis on evaluation standard for high speed turnout/bridge structure application safety and running comfort
     The safety and stationarity when train passing turnout on bridge, strength and stability of turnout and bridge are viewed as the dynamic evaluation guide line of turnout on bridge. Dynamic performance evaluation indexes of vehicle-turnout-bridge at home and abroad are all concluded, i.e. wheel/rail vertical and transverse force, wheel axle transverse force, opening of switch and nose rail, dynamic stress of switch and nose rail, derailment coefficient, rate of wheel load reduction, car-body vibration acceleration, ride index, bridge deflection, bridge natural frequency, bridge transverse amplitude and bridge vibration acceleration.
     (4) Experimental study on Vehicle-turnout-bridge coupling vibration
     Aiming at 200km/h speed 60kg/m rail 12# ballasted turnout on Meichi large bridge of Zhe-Gan line, dynamics assessment is explored by applying DATTB, whose reliability is testified through comparison between simulation results and experimental results. Meanwhile, comparison analysis of dynamic tests between turnout on bridge and turnout on subgrade shows that wheel/rail dynamic interaction of turnout zone on bridge is more violent than that of ordinary turnout on subgrade.
     (5) Research on laws of dynamic interaction between high speed vehicle and turnout on bridge
     By studying influences of variable factors on vehicle-turnout-bridge coupling system, the laws of dynamic interaction between high speed vehicle and turnout on bridge are revealed and guide principle for dynamic design of welded turnout on bridge of high speed railway is suggested. Optimized wheel/rail relation of turnout zone and track stiffness, reasonable bridge vertical flexural stiffness and ideal relative position between turnout and bridge are the keys to maintain the safety and comfort of high speed train passing turnouts on bridge.
     (6) Engineering application of vehicle-turnout-bridge coupling vibration theory
     Practical application of vehicle-turnout-bridge coupling vibration theory is discussed on the basis of dynamics evaluations of 350km/h 18# ballastless turnout (French COGIFER) on multi-collocation continuous beam bridges of Zhengzhou-Sian PDL and 250km/h 30# ballasted turnout (China Independent R & D) on (48+2×80+88+48) m continuous beam bridge of Xiamen-Shenzhen mixed passenger and freight railway line.
引文
[1]钱仲侯.高速铁路概论.第三版[M].北京:中国铁道出版社,2006.
    [2]钱立新.世界高速铁路技术[M].北京:中国铁道出版社,2003.
    [3]铁道科学研究院高速铁路技术研究总体组.高速铁路技术[M].北京:中国铁道出版社,2005.
    [4]华茂崑.中国铁路提速之路[M].北京:中国铁道出版社,2002.
    [5]何华武.无砟轨道技术[M].北京:中国铁道出版社,2005.
    [6]郑健.中国高速铁路桥梁[M].北京:高等教育出版社,2008.
    [7]Timoshenko S P.工程中的振动问题.胡人礼译[M].北京:人民铁道出版社,1978.
    [8]Krylov A N. Uber die erzwungenen Schwingungen von gleichformigen elastischen Staben[J]. Mathematische Annalen, Peterburg,1905,61:211-234.
    [9]Timoshenko S P. On the forced vibration of bridges [J]. Philosophical Magazine,1922,43(6):1018-1019.
    [10]Schallenkamp A. Schwingungen Von Tragern bei Bewegten Lasten[J]. Ingenieur Archiv 8,1937:182-198.
    [11]Chu K H, Garg V K. Railway-bridge impact:simplified train and bridge model [J].Journal of the Structural Division, ASCE.1979,105, No. ST9.
    [12]Chu K H, Garg V K, Wiriyachai A. Dynamic interaction of railway train and bridges [J].Vehicle System Dynamics.1980,9(4):207-236.
    [13]M H Bhatti. Vertical and lateral dynamic response of railway b ridges due to nonlinear vehicle and track irregularities [D].Illinois Institute of Technology, Chicago, Illinois,1982.
    [14]#12
    [15]松浦章夫.新干线铁路の桥梁竖向允许挠度[R].铁道技术研究报告,1974,31(10):445-449.
    [16]阿部英彦,谷口纪久.钢铁道设计标准の改订[R].日本土木学会论文报告集.1984,(4):27-37.
    [17]松浦章夫.高速铁路桥梁の动力问题の研究[R].日本土木学会论文报告集.1976,12(256):35-47.
    [18]Tanabe M, Wakui H, Matsumoto N, et al. Computational model of a Shinkansen train running on the railway structure and the industrial applications [J]. Journal of Materials Processing Technology.2003,140(1-3 SPEC.):705-710.
    [19]Tanabe M, Wakui H, Matsumoto N. The finite element analysis of dynamic interactions of high-speed shinkansen, rail, and bridge [J].ASME Computers in Engineering, No. G0813A,1993:17-22.
    [20]Jiro Tajima, Ohashi M, Matsuura A.铁路斜拉桥和吊桥(上、下)[J].张锻译.铁道建筑.1991,(4):33-36;(5):34-35.
    [21]Makoto Tanabe, Hajime Wakui, Nobuyuki Matsumoto. Dynamic interactions of Shinkansen train, track and bridge [J].Structures for High-Speed Railway Transportation IABSE Symposium, Antwerp, Belgium, August 27-29,2003
    [22]Fryba L. Vibration of Solids and Structures under Moving Loads [M]. Noordhoff International Publishing, Groningen, the Netherlands,1972.
    [23]Fryba L. Dynamics of Railway Bridges [M].London:Thomas, Telford,1996.
    [24]M Olsson. Finite element, modal co-ordinate analysis of structures subjected to moving loads [J].Journal of Sound and Vibration.1985.99 (1):1-12.
    [25]M Olsson. On the fundamental moving load problem [J]. Journal of Sound and Vibration.1991,145(2):299-307.
    [26]Diana G, Cheli F. Dynamic Interaction of Railway Systems with Large Bridges [J]. Vehicle System Dynamics.1989,18(1-3):71-106.
    [27]Van Bogaert. Dynamic response of trains crossing large span double-track bridges [J].Journal of Constructional Steel Research.1993,24(1):57-74.
    [28]Green M F, Cebon D. Dynamic response of highway bridges to heavy vehicle loads:Theory and experimental validation [J]. Journal of Sound and Vibration.1994,170 (1):51-78.
    [29]Green M F, Cebon D. Dynamic interaction between heavy vehicles and highway bridges [J].Computers and Structures.1997,62 (2):253-264.
    [30]European Standard, Final Draft, prEN 1991-2[S]. July 2002.
    [31]Yang Y B, et al. Vehicle-Bridges Interaction Element for Dynamic Analysis [J]. Journal of Structure Engineering, ASCE,1997,123(11):1512-1518.
    [32]Manfred Zacher.铁路桥梁动力学及其对线路上部建筑的影响[J].铁路工 程师,2001,7(2):29-33.
    [33]李小珍.高速铁路列车-桥梁系统耦合振动理论及应用研究[D].成都:西南交通大学博士学位论文,2000.
    [34]郝超,强士中,马栋君.移动荷载作用下桥梁的振动控制[J].国外桥梁,1999(3):38-42.
    [35]黄维平,强士中.大跨度悬索桥环境振动的双向TMD控制[J].地震工程与工程振动,1999,19(1):100-103.
    [36]李永乐.风-车-桥系统非线性空间耦合振动研究[D].成都:西南交通大学博士学位论文,2003.
    [37]宁晓骏.高速铁路列车-桥梁-基础空间耦合振动研究[D].成都:西南交通大学,1998.
    [38]晋智斌.车-线-桥耦合系统及车-桥随机振动[D].成都:西南交通大学博士学位论文,2007.
    [39]沈锐利.列车过桥时桁梁桥的空间振动分析[D].成都:西南交通大学硕士学位论文,1987.
    [40]沈锐利.高速铁路桥梁与车辆耦合振动研究[D].成都:西南交通大学博士学位论文,1998.
    [41]何发礼.高速铁路中小跨度曲线梁桥耦合振动研究[D].成都:西南交通大学博士学位论文,1999.
    [42]单德山.高速铁路曲线梁桥车桥耦合振动分析及大跨度曲线梁桥设计研究[D].成都:西南交通大学博士学位论文,1999.
    [43]蔡成标.高速铁路列车-线路-桥梁耦合振动理论及应用研究[D].成都:西南交通大学博士学位论文,2004.
    [44]杨岳民,潘家英,程庆国.大跨度铁路桥梁车桥动力响应理论分析及试验研究[J].中国铁道科学,1995,16(4):1-16.
    [45]王贵春,潘家英,程庆国.铁路桥梁在列车荷载作用下的动力分析[J].中国铁道科学,1996,17(4):80-89.
    [46]杨岳民,潘家英,程庆国.车桥耦合振动方程的分组迭代求解[J].中国铁道科学,1996,17(4):69-79.
    [47]许慰平,程庆国.大跨度铁路桥梁车桥空间耦合振动研究[J].中国铁道科学,1989,10(2):12-26.
    [48]高芒芒.高速铁路列车-线路-桥梁耦合振动及列车走行性研究[D].北京:铁道部科学研究院博士学位论文,2001.
    [49]张煅,柯在田,邓蓉,谢毅.既有线提速至160km/h桥梁评估的研究[J].中国铁道科学,1996,17(1):9-20.
    [50]刘汉夫,杨孚衡,张煅.对铁路上承式钢板梁横摆振动的剖析[J].中国铁路,1999(5):29-32.
    [51]高岩,张煅.高速铁路中小跨度桥梁竖、横向刚度限值及合理分布的研究[J].铁道建筑技术,2000(4):11-14.
    [52]高岩,沈锐利,柯在田,张煅.提速对桥梁振动与车辆过桥走行性的影响及其对策[J].中国铁道科学,2000,21(2):19-25.
    [53]夏禾,陈英俊.车-梁-墩体系动力相互作用分析[J].土木工程学报,1992,25(2):3-12.
    [54]夏禾,陈英俊.风和列车荷载同时作用下车桥系统的动力可靠度[J].土木工程学报,1994,27(2):14-21.
    [55]夏禾,陈英俊.列车提速情况下铁路双线简支钢桁梁动力响应分析[J].铁道学报,1996,18(5):75-82.
    [56]张楠,夏禾.高速铁路铰接式列车车桥系统动力响应分析[J].工程力学,2004,21(2):46-53.
    [57]郭薇薇.风荷载作用下大跨度桥梁的动力响应及行车安全性分析[D].北京:北京交通大学博士学位论文,2006.
    [58]韩艳,夏禾,郭薇薇.斜拉桥在地震与列车荷载同时作用下的动力响应分析[J].工程力学,2006,23(1):93-98.
    [59]夏禾.车辆与结构动力相互作用[M].北京:科学出版社,2002.
    [60]曾庆元,郭向荣.列车桥梁时变系统振动分析理论及应用[M].北京:中国铁道出版社,1999.
    [61]曾庆元.弹性系统动力学总势能不变值原理[J].华中理工大学学报,2000,28(1):1-3
    [62]张麒,曾庆元.钢桁梁桥横向刚度控制指标的探讨[J].桥梁建设,1998(1):1-4.
    [63]方淑君,李德建,曾庆元.三线铁路预应力连续梁桥列车-桥梁时变系统空间振动分析[J].中南大学学报,2008,39(2):394-399.
    [64]曹雪琴,陈晓.轮轨蛇行引起桥梁横向振动随机分析[J].铁道学报,1986,8(1):89-97.
    [65]王刚,曹雪琴.高速铁路大跨度斜拉桥车桥动力分析[J].上海铁道大学学报,2000,21(8):7-21.
    [66]Y. S. Cheng, F. T. K. Au, and Y. K. Cheung. Vibration of railway bridges under a moving train by using bridge-track-vehicle element [J].Engineering Structures.2001,23 (12):1597-1606.
    [67]曾志平.高速铁路桥上无缝道岔伸缩力及列车-道岔-桥梁系统空间振动研究[D].长沙:中南大学博士学位论文,2006.
    [68]西南交通大学,铁道科学研究院,北京交通大学,中南大学.列车-线路-桥梁动力学仿真通用软件的研究总报告[R].2005年12月.
    [69]Timoshenko S.:Method of Analysis Statical and Dynamical Stresses in Rail [J]. Proc. of the 2nd International Congress of Applied Mechanics, Zurich (1927).
    [70]Criner H E.& McCann, G.D.:Rails on Elastic Foundation under the Influence of High Speed Traveling Loads[R]. JAM 20-1(1953).
    [71]Sauvage R.:La Flexion des Rails sous Charge Roulants [D]. Doctoral The ses (Universite de Paris)(1961).
    [72]Betzhold C.:Erhohung der Beanspruchchung des Eisenbahnoberbaues durch Wechselwwirkung zwischen Fahrzeug und Oerbau[J]. Glaser Annalen (1957.4).
    [73]Meier H.:Das Sicherheits problem beim Luckenlosen Gleis [J]. Verkehr und Technik/1963,8:8-16.
    [74]佐藤裕.轨道への车轴落下试验[R].铁道技术研究资料.1958,2.
    [75]佐藤裕,豊田昌義.高速列车による轨道の变形[R].铁研报告.1965,8.
    [76]Lyon D. The calculation of track forces due to dipped rail joints, wheel flats and rail welds[R]. The Second ORE Colloquium on Technical Computer Programs, May 1972.
    [77]Jenkins H H, et al. The effect of track and vehicle parameters on wheel/rail vertical dynamic forces [J]. Railway Engineering Journal,1974,3(1):2-16.
    [78]Newton S G, Clark R A. An investigation into the dynamic effects on the-track of wheel flats on railway vehicles [J]. Journal of Mechanical Engineering Science,1979,21(4):287-297.
    [79]Clark R A, Dean P A, Elkins J A & Newton S G. An investigation into the dynamic effects of railway vehicle running on corrugated rails [J]. Journal of Mechanical Engineering Science,1982,24(2):65-76.
    [80]Sato Y. Abnormal wheel load of test train [J]. Permanent Way (Tokyo), 1973(14):1-8.
    [81]Ahlbeck D R, et al. The development of analytical models for railroad track dynamics [J]. Railroad Track Mechanics & Technology, Pergamon Press 1978.
    [82]佐藤裕著,卢肇英译.轨道力学[M].北京:中国铁道出版社,1981.
    [83]李定清.轮轨垂向相互动力作用及其动力响应[J].铁道学报,1987,9(1):1-8.
    [84]许实儒,徐维杰,仲延禧.钢轨接头处轮轨冲击力的模拟分析[J].铁道学报,工务工程专集,1989.
    [85]王澜.轨道结构随机振动理论及其在轨道结构减振中的应用[D].北京:铁道科学研究院博士学位论文,1988.
    [86]李成辉.轨道结构振动理论及应用研究[D].成都:西南交通大学博士学位论文,1996.
    [87]翟婉明.车辆-轨道垂向系统的统一模型及其耦合动力学原理[J].铁道学报,1992,14(3):10-21.
    [88]Zhai Wanming, Sun Xiang. A Detailed Model for Investigating Vertical Interact ion between Railway Vehicle and Track [J]. Vehicle System Dynamics, 1994,23(Supplement):603-615.
    [89]翟婉明,蔡成标,史炎,王其昌.车辆-轨道相互作用统一模型及软件的试验验证[J].铁道学报,1996,18(4):42-46.
    [90]Zhai W M, Cai C B, Guo S Z. Coupling Model of Vertical and Lateral Vehicle/track Interactions [J]. Vehicle System Dynamics,1996,26(1):61-79.
    [91]Zhai W M, Cai Z. Dynamic Interaction between a Lumped Mass Vehicle and a Discretely Supported Continuous Rail Track [J]. Computers & Structures,1997, 63(5):987-997.
    [92]翟婉明.车辆-轨道耦合动力学[M].第三版,北京:科学出版社,2007.
    [93]Ripke B, KNothe K. Simulation of High Frequency Vehicle-track Interactions [J]. Vehicle System Dynamics,1995,24 (Supp 1.):72-85.
    [94]Oscarsson J, Dahlberg T. Dynamic Train/Track/Ballast Interaction Computer Models and Full-scale Experiments [J]. Vehicle System Dynamics,1998,28(Supp 1.):73-84.
    [95]Auersch L. Vehicle-track interaction and Soil Dynamics [J]. Vehicle System Dynamics,1998,28(Supp 1.):553-558.
    [96]Drozdziel J, Sowinski B, Groll W. The Effect of Railway Vehicle-track System Geometric Deviation on its Dynamics in the Turnout Zone [J]. Vehicle System Dynamics,1999,33(Supp 1.):641-652.
    [97]Gurule S, Wilson N. Simulation of Wheel/rail Interaction in Turnouts and Special Track work [J]. Vehicle System Dynamics,1999,33(Supp 1.):143-154.
    [98]Oscarsson J. Dynamic Train-track-ballast Interaction with Unevenly Distributed Track Properties [C].17th IAVSD Symposium on Dynamics of Vehicles on Roads and on Tracks, Lyngby, Denmark,2001.
    [99]李德建,曾庆元.列车-直线轨道空间耦合时变系统振动分析[J].铁道学报,1997,19(1):101-107.
    [100]金玉云.机车车辆/轨道系统垂向耦合动力学有限元分析的研究[D].北京:铁道部科学研究院博士学位论文,2000.
    [101]刘学毅,印洪.钢轨波形磨耗的影响因素及减缓措施[J].西南交通大学学报,2002,37(5):483-487.
    [102]刘学毅.钢轨波形磨耗成因研究[D].成都:西南交通大学博士学位论文,1996.
    [103]杨卫平.法国高速铁路道岔技术特性[J].中国铁路,2006(8):40-41.
    [104]郭富安.国外高速铁路的道岔设计[J].中国铁路,2006(2):48-50.
    [105]李景东.欧洲铁路的曲线原理和道岔结构[J].铁道技术监督,2006,34(8):21-23.
    [106]涂荣昌.高速铁路道岔结构与材质[J].中国铁道科学,1999,19(1):95-108.
    [107]王树国,顾培雄.客专道岔技术研究[J].中国铁路,2007(8):21-25.
    [108]王树国.客运专线18号有砟道岔铺设及验收标准的研究[J].铁道建筑,2007(6):81-83.
    [109]杨西.客运专线铁路道岔的研制[J].铁道标准设计,2006(增刊):173-176.
    [110]卢祖文.我国铁路道岔的现状及发展[J].中国铁路,2004(5):11-14.
    [111]沈长耀.我国铁路道岔整体技术发展的新阶段[J].铁道工程学报,2005(1):51-60.
    [112]王树国.客运专线60kg/m钢轨18号有砟道岔研究进展[J].铁道建筑,2008(1):79-83.
    [113]顾经文.我国直向高速道岔的研究与设计[J].铁道建筑,1997(2):5-8.
    [114]李毅,董彦录.提速道岔试制[J].铁道标准设计,1997(3):37-39.
    [115]顾经文.重载可动心轨道岔的研究[J].中国铁道科学,1999,20(2):53-60.
    [116]纪晏宁.提速与道岔转换[J].铁道通信信号,1997,33(4):5-7.
    [117]铁道科学研究院.遂渝无砟轨道试验段综合实车试验-岔区无砟轨道结构和可动心轨道岔动力性能试验报告[R].铁道部科技发展计划项目研究报告,2007.
    [118]陈果.车辆-轨道耦合系统随机振动分析[D].成都:西南交通大学博士学位论文,2000.
    [119]王开云,翟婉明,蔡成标.车辆在弹性轨道结构上的横向稳定性分析[J].铁道车辆,2001(7):1-4.
    [120]王其昌,蔡成标,罗强,蔡英.高速铁路路桥过渡段轨道折角限值分析[J].,铁道学报,1998,20(3):109-113.
    [121]罗强,蔡英,翟婉明.高速铁路路桥过渡段的动力学性能分析[J].工程力学,1999,16(5):65-70.
    [122]王于,翟婉明,王其昌,林良明.一种确定轨道过渡段长度的新方法[J].铁道工程学报,1999(4):25-28.
    [123]蔡成标,翟婉明,王其昌.不同轨下基础轨道连接的动力特性分析[J],铁道学报,2002,24(2):79-82.
    [124]毛得军,雷晓燕,杜厚智.提速线路轨道过渡段动力响应分析[J].华东交通大学学报,2001,18(1):35-40.
    [125]罗强.高速铁路路桥过渡段动力学特性分析及工程试验研究[D].成都:西南交通大学博士学位论文,2003.
    [126]蔡成标,刘建新,翟婉明.客专道岔前后轨道刚度过渡段动力学研究[J].中国铁道科学,2007,28(3):18-22.
    [127]顾培雄,孙钧.50AT12 Ⅱ型单开道岔[J].铁道学报,1983,5(2):52-67.
    [128]顾培雄.60kg/m轨12号单开道岔的研究[M].铁道科学研究院铁道建筑研究所论文集.北京:中国铁道出版社,1990.
    [129]铁科院铁建所.广深准高速铁路用60kg/m轨12号可动心轨辙叉单开道岔的研究[R].北京:铁道科学研究院,1995.
    [130]铁科院铁建所.60AT12号单开道岔(固定式辙叉)测试报告[R].北京:铁道科学研究院,1995.
    [131]顾经文.高锰钢整铸辙叉的垂直不平顺及其与机车车辆的相互作用[D].北京:铁道科学研究院硕士论文,1982.
    [132]范佳.固定式辙叉竖向荷载的计算分析[J].北京:铁道科学研究院硕士论文,1985.
    [133]赵曦.固定式辙叉区轮轨动力有限元分析及其弹性值的优选[D].北京: 铁道科学研究院硕士论文,1988.
    [134]Yasuo S, et al. Characteristics of lateral force acting at guard rail on turnout [J]. Q Rep RTRI (Jpn),1988,29(2):62-66.
    [135]Cooperider N K, Law E H, Hull R, Kadala P S, Tuten J M. Analytical and Experimental Determination of Nonlinear Wheel/Rail Geometric Constraints [J]. Symposium on Railroad Equipment Dynamics, Trans. ASME, April 1976.
    [136]Hull R, Cooperider N K. Influence of Nonlinear Wheel/Rail Contact Geometry on Stability of Rail Vehicle [J]. Journal of Engineering for Industry, Trans. ASME,99(1),1977.
    [137]杨国桢.磨耗形踏面轮轨几何参数[J].铁道车辆,1980(10-12).
    [138]严隽耄.具有任意轮廓形状的轮轨空间几何约束的研究[J].西南交通大学学报,1983(3):40-48.
    [139]王开文.车轮接触点迹线及轮轨接触几何参数的计算[J].西南交通大学学报,1984(1):89-99.
    [140]严隽耄,尹作忠,郭宝立,王开文.轮轨接触几何关系实验研究[J].铁道车辆,1983(6):54-64.
    [141]金鼎昌.磨耗形踏面研究[J].西南交通大学学报,1984(1):81-88.
    [142]孙翔,金鼎昌.磨耗形踏面与钢轨的两点接触[J].西南交通大学学报,1985(2):45-57.
    [143]罗赞,金鼎昌.轮轨三维接触的快速算法[J].铁道学报,1989,11(3):109-117.
    [144]金学松,刘启跃.轮轨摩擦学[M].北京:中国铁道出版社,2004.
    [145]Kalker J J. Wheel-rail rolling contact theory [J]. Wear 144,1991:243-281.
    [146]Garg V K, Dukkipati R V.[加拿大]著.沈利人译.铁道车辆系统动力学[M].成都:西南交通大学出版社,1998.
    [147]Shen Z Y, Hedric J K, Elkins J A. A comparison of alternative creep-force models for rail vehicle dynamic analysis[C]. Proc.8th IAVSD Symp., Cambridge, MA,1984:591-605.
    [148]张远荣.可动心轨辙叉道岔对高速运行条件的适应性[D].北京:中国铁道科学研究院硕士学位而论文,1988.
    [149]Schmid R, et al. Computer simulation of the Dynamical Behavior of a Railway Bogie passing a switch [J]. Vehicle System Dynamics.1994, 23:481-499.
    [150]Andersson C, Dahlberg T. Wheel/rail impacts at a railway turnout crossing [J].Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,1998,212(2):123-134.
    [151]王平.道岔区轮轨系统动力学的研究[D].成都:西南交通大学博士学位论文,1997.
    [152]王平.道岔区轮轨系统空间耦合振动模型及其应用[J].西南交通大学学报,1998,33(3):284-289.
    [153]王平.道岔转辙器部分的力学特性分析[J].铁道学报,2000,22(1):79-82.
    [154]王平,刘学毅,万复光.列车-可动心轨式道岔空间耦合系统动力分析[J].铁道学报,1999,21(3):72-76.
    [155]王平,万复光.列车与可动心轨道岔的耦合振动及仿真分析研究[J].中国铁道科学,1999,20(3):20-30.
    [156]王平.列车在道岔中的运行稳定性分析[J].西南交通大学学报,2000,35(1):28-31.
    [157]赵国堂.高速铁路道岔区动力响应的模拟研究[J].中国铁道科学,1996,17(4):90-94.
    [158]任尊松.车辆-道岔系统动力学研究[D].成都:西南交通大学博士学位论文,2000.
    [159]任尊松,何小河.道岔区轮轨间隙动态变化特性研究[J].北京交通大学学报,2007,31(1):22-26.
    [160]任尊松,何小河.道岔区轮轨力转移与分配特性研究[J].中国铁道科学,2008,29(1):1-6.
    [161]任尊松,孙守光.道岔区轮轨接触几何关系研究[J].工程力学,2008,25(11):223-230.
    [162]Elias K, et al. Simulation of dynamic interaction between train and railway turnout [J]. Vehicle System Dynamics.2006,44(3):247-285.
    [163]Hiroyuki K, et al. Dynamic analysis of the vehicle running on turnout at high speed considering longitudinal variation of rail profiles [J]. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference-DETC2005,2005, 2149-2154.
    [164]Schupp G, et al. Modelling the Contact Between wheel and Rail Within Multibody System simulation[J].vehicle system dynamics,2004,41:349-364.
    [165]谭晓春,罗雁云.高速道岔辙叉区动力响应仿真分析[J].科学技术与工程,2007,7(23):6252-6256.
    [166]吴安伟,罗赞.变截面道岔振动特性研究[J].铁道建筑,2006(4):82-85.
    [167]罗赞,吴安伟.动车组与单节车侧向通过道岔动力学性能比较[J].机车电传动,2007(1):5-8.
    [168]陈小平.高速道岔轨道刚度理论及应用研究[D].成都:西南交通大学博士学位论文,2008.
    [169]陈小平,王平,陈嵘,郭利康.高速车辆与道岔空间耦合振动特性[J].西南交通大学学报,2008,43(4):453-458.
    [170]蔡成标,王其昌.30号无缝道岔钢轨温度力与位移计算分析[J].铁道学报,1999,21(4):51-53.
    [171]孙大新,高亮,刘衍峰.桥上无砟轨道无缝道岔力学特性分析[J].北京交通大学学报,2007,31(1):89-92.
    [172]杨荣山.桥上无缝道岔纵向力计算理论与试验研究[D].成都:西南交通大学博士学位论文,2008.
    [173]刘衍峰,高亮,冯雅薇.桥上无缝道岔受力与变形的有限元分析[J].北京交通大学学报,2006,30(1):66-70.
    [174]陈小平,王平.地铁道岔间隔铁式活接头螺栓强度及疲劳分析[J].铁道建筑,2006(6):66-68.
    [175]周文,刘学毅.高速道岔尖轨矫直的有限元分析[J].西南交通大学学报,2008,43(1):82-86.
    [176]汤奇志,马大炜,时颢.高速铁路对道岔侧向最高允许通过速度的要求[J].中国铁道科学,2004,25(3):109-114.
    [177]王平,刘学毅.无缝道岔计算理论与设计方法[M].成都:西南交通大学出版社,2007.
    [178]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [179]刘更.结构动力学有限元程序设计[M].北京:国防工业出版社,1993.
    [180]朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,1998.
    [181]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [182]张楠.高速铁路铰接式列车车桥动力耦合问题的理论分析与实验研究[D].北京:北方交通大学博士学位论文,2002.
    [183](美)巴斯.K.J著,傅子智译.工程分析中的有限元法[M].北京:机 械工业出版社,1991.
    [184]屈钧利,韩江水.工程结构的有限元方法[M].西安:西北工业大学出版社,2004.
    [185]俞展猷,李富达等.车轮脱轨及其评价[J].铁道学报,1999,21(3):33-38.
    [186]铁道科学研究院.铁路行车安全译文集[M].北京:铁道科学研究院,1998.
    [187]严隽耄.车辆工程[M].北京:中国铁道出版社,1999.
    [188]潘家英,高芒芒.铁路车-线-桥系统动力分析[M].北京:中国铁道出版社,2008.
    [189]GB 5599—85,铁道车辆动力学性能评定和试验鉴定规范[S],1985.
    [190]TB/T 2360—93,铁道机车动力学性能试验鉴定方法及评定标准[S],1993.
    [191]95J01—L,高速试验列车动力车强度及动力学性能规范[S],1995.
    [192]95J01—M,高速试验列车客车强度及动力学规范[S],1995.
    [193]中华人民共和国行业标准.新建时速200公里客货共线铁路设计暂行规定(铁建设[2005]285号)[S].北京:中国铁道出版社,2005.
    [194]中华人民共和国行业标准.新建时速300~350公里客运专线铁路设计暂行规定(铁建设[2007]47号)[S].北京:中国铁道出版社,2007.
    [195]ISO 2631(E)-1974, Guide for evaluation of human exposure to whole-body [S].
    [196]ISO 2631-2001, Mechanical vibration and shock-Evaluation of human exposure to whole-body, Part 4:Guidelines for the evaluation of the effects of vibration and rotational motion on passenger and crew comfort in fixed-guideway transport system[S].
    [197]王其昌,韩启孟编译.板式轨道设计与施工[M].成都:西南交通大学出版社,2002.
    [198]Prud'homm,A. La Resistance de la Voie aux Efforts Transversaux Exerces par le Materiel Roulant[R], RGCF (1967.1).
    [199]Eurocode 1:Basis of design and actions on structures[S]. DD ENV 1991-3:2000.
    [200]中华人民共和国铁道部.铁路桥涵设计基本规范(TB10002.1-2005)[S].北京:中国铁道出版社,2005.
    [201]中华人民共和国铁道部.铁路桥梁检定规范(铁运函[2004]120号)[S]. 北京:中国铁道出版社,2004.
    [202]王福天.车辆动力学[M].北京:中国铁道出版社,1981.
    [203]孙翔.确定轮轨接触椭圆的直接方法[J].西南交通大学学报,1985(4):8-21.
    [204]刘学毅.车辆-轨道-路基系统动力学[M].成都:西南交通大学出版社,2008.
    [205]罗林,张格明等.轮轨系统轨道平顺状态的控制[M].北京:中国铁道出版社,2006.
    [206]Kalker J J. On the Rolling Contact of Two Elastic Bodies in the Presence of Dry Friction [D]. Ph.D Dissertation, Delft University of Technology, Delft, Netherlands,1967.
    [207]Elias Kassa, Jens C.O. Nielsen. Dynamic train-turnout interaction in an extended frequency range using a detailed model of track dynamics [J]. Journal of Sound and Vibration,320(2009):893-914.
    [208]中华人民共和国行业标准.铁路轨道设计规范(TB 10082-2005)[S].北京:中国铁道出版社,2005.
    [209]中华人民共和国行业标准.客运专线无碴轨道铁路设计指南(铁建设[2005]754号)[S].北京:中国铁道出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700