Sigma-Delta分数频率合成器研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
频率合成器是无线通信中射频前端的主要构件模块之一,性能直接决定射频接收机的频率选择性。本文以3G通信为应用目标,研究了基于Sigma-Delta调制技术的分数频率合成器的相关问题。
     论文首先阐明了采用Sigma-Delta调制技术实现分数频率合成器的意义,介绍了常用来刻画合成器性能的规格参数,以及不同表述形式的具有相同意义的规格参数之间的联系和转换方法。
     Sigma-Delta调制器内置的非线性使得其理论研究存在困难。在研究一般Sigma-Delta调制器的极限环特征和稳定性基础之上,主要研究了适合分数频率合成器应用的三阶Sigma-Delta调制器的极限环特征和稳定性。合成器环路的非线性会将Sigma-Delta调制器的输出高频噪声折叠到低频,降低合成器输出带内相位噪声,文中所提出了加权熵分析方法,能够简单有效判断Sigma-Delta调制器对环路非线性的灵敏程度。
     环路滤波器是单片集成频率合成器的面积瓶颈,在研究双路径滤波器和电容值倍乘技术的基础上,结合二者优点提出了隐式双路径滤波器结构,在减少面积基础上改善了环路滤波器性能。此外,由于采用跨导增强技术,使得滤波器低频输出噪声性能和可适用频率范围大大改善。
     通过研究相位切换双模预分频器的结构,提出了对相位切换双模预分频器进行改造直接实现多模分频的方法,采用反向开关策略,消除了分频器的输出毛刺问题,使得多模分频器更为简单、可靠。
     压控振荡器是频率合成器中的关键模块,其相位噪声直接影响合成器的输出相位噪声。相/频检测器和电荷泵存在许多非理想因素如死区、电流失配等,影响合成器输出带内噪声,需要对众多改善技术进行比较研究,选择适合本文应用的技术。
     为了分析和验证合成器整体性能,需要建立分析模型。文中分别为合成器建立独立的频域和时域模型。频域模型以M.H.Perrott模型为基础,通过扩展使其更具开放性,除了能分析相位噪声还能分析其它非理想特性的影响,同时还能接受其它仿真器的部分仿真结果,用以验证整个合成器性能。时域模型采用事件驱动方式建立,破除了仿真精度和仿真时间之间的矛盾。
     为了验证文中研究结论,采用TSMC 0.18μm MM/RF 1P6M Salicide 1.8V/3.3V工艺设计了验证电路。合成器相位噪声为-86dBc@10KHz、-102.5dBc@100KHz和-125.2dBc@1MHz,除了在100KHz处稍微偏大外,其它满足要求。频率切换时间大约为100μS。芯片面积为2000μm×2400μm,功耗大约20mW。
The frequency synthesizer is a key building block of radio frequency front-end for wireless communications and its performance determines the frequency selectivity of radio frequency receivers. The fractional frequency synthesizer, which is based on Sigma-Delta modulation and targeted for 3G communications, is researched in this thesis.
     The thesis first illustrates the significance of the application of Sigma-Delta modulation in the implementation of the fractional frequency synthesizer. Then the general specification parameters are introduced and the difference and conversion methods among different definition forms for the same parameter are clarified.
     The intrinsic non-linearity of the Sigma-Delta modulator makes its theory research very hard. Based on the research on the limit cycle and stability of general Sigma-Delta modulator, more research is focused on the limit cycle and stability of the third order Sigma-Delta modulator which is eligible for the application of the fractional frequency synthesizer. The non-linearity resulting from the frequency synthesizer loop folds the high frequency noise of the Sigma-Delta modulator into low frequency and degrades the output in-band phase noise of the frequency synthesizer. A simple weighted entropy method is proposed to figure the sensitivity of the Sigma-Delta modulator to non-linearity.
     The loop filter is an area bottleneck of the monolithic integrating frequency synthesizer. Based on the research on the dual-path filter and the capacitance multiplication technique, an implicit dual-path filter is proposed in the thesis. The implicit dual-path filter combines the advantage of both dual-path filter and capacitance multiplication technique and improves its performance without sacrificing the area. Furthermore, the performance of low frequency output noise and the applicable frequency range of the filter are improved by employing trans-conductor enhanceing technique.
     Based on the research on the phase switching dual-modulus prescaler, a direct multi-modulus frequency divider is brought out by modifying the phase switching dual-modulus prescaler. The output spike of the frequency divider is eliminated by adopting the inverse switching strategy, which makes the multi-modulus frequency divider simpler and more robust.
     The voltage controlled oscillator is one of the key building blocks in the frequency synthesizer and its phase noise directly affects the output phase noise of the whole frequency synthesizer. The non-ideality of the phase/frequency detector and the charge pump, such as dead zone and current mismatch, affects the output in-band phase noise of the frequency synthesizer. The most eligible one is selected for the target application by comparing several methods of rejecting non-ideality.
     In order to analyze and validate the performance of the frequency synthesizer, it is necessary to make models for the whole frequency synthesizer. An independent frequency domain model and an independent time domain model are made for the Sigma-Delta fractional frequency synthesizer. The frequency domain model, based on the model proposed by M. H. Perrott turns to be more open through extension and is able to analyze phase noise as well as the influence of other non-ideality. Moreover, the frequency domain model can receive parts of results from other simulator to verify the performance of the whole frequency synthesizer. The time domain model is driven by events, which eliminates the conflict between simulation accuracy and simulation time
     A Sigma-Delta fractional frequency synthesizer is designed with TSMC 0.18μm MM/RF 1P6M Salicide 1.8V/3.3V process to validate the research conclusion of the thesis. The achievable phase noise is–86dBc@10KHz, -102.5dBc@100KHz and–125.2dBc@1MHz which meets the specification except for a little violation at 100KHz. The frequency switching time is rough 100μS. The chip occupies an area of 2.0×2.4 mm2 with power consumption 20mW from 1.8V power supply.
引文
[1] B.Razavi. Challenges in the design of frequency synthesizers for wireless application. in: Proceedings of IEEE Custom Integrated Circuits Conference, 1997:395~402
    [2] Z.Galani, R.A.Campbell. An overview of frequency synthesizers for radars. IEEE Transactions on Microwave Theory and Techniques,1991,39(5):782~790
    [3] J.Tierney, C.Rader, B.Gold. A direct digital synthesizer. IEEE Transactions on Audio and Electroacoustics,1971,19(1):48~57
    [4] A.M.Sodagar, G.R.Lahiji. Mapping from phase to sine-amplitude in direct digital frequency synthesizers using parabolic approximation. IEEE Transactions on Circuits System,2000,47(2):1452~1457
    [5] S.Liao and L.G.Chen. A low-power low-voltage direct digital frequency synthesizer. In: Proc Int Symp, VLSI Technology, Systems, and Applications, 1997:265~269
    [6] J.M.P.Langlois, D.Al-Khalili. ROM size reduction with low processing cost for direct digital frequency synthesis. in :Proc IEEE Pacific Rim Conf, Communications, Computers and Signal Processing,2001:287~290
    [7] B.D.Yang, L.S.Kim. A direct digital frequency synthesizer using a new ROM compression method. in: Proc Eur Solid-State Circuits Conf, 2001:288~291
    [8]毕查德·拉扎维.射频微电子(影印版).北京:清华大学出版社, 2003:273~274
    [9] T.K.K.Kan, H.C.Luong. A 2-V 1.8-GHz fully-integrated CMOS dual-loop frequency synthesizer. In: Digest of Technical Papers, Symposium on VLSI Circuits,2000:234~237
    [10] W.S.T.Yan, H.C.Luong. A 2-V 900-MHz monolithic CMOS dual-loop frequency synthesizer for GSM receivers. IEEE Journal of Solid-State Circuits,2001,36(2):204~216
    [11] C.A.Kingsforf-Smith. Device for Synthesizing Frequencies which are Rational Multiples of a Fundamental Frequency. USA: Patent 3928813,1975:1~10
    [12] G.C.Gillette. The digiphase synthesizer. in: Proceeding of 23rd Annual Frequency Control Symposim,1969:25~29
    [13]郭仿军.小数分频锁相环的杂散分析.重庆邮电学院学报,2002,14(2):84~87
    [14]孙璐.Σ-△调制式小数分频锁相频率合成器的研究:[硕士学位论文],西安电子科技大学图书馆, 2003:30~35
    [15] W.Rhee. Multi-bit delta-sigma modulation technique for fractional-N frequency synthesizers:[PhD Dissertation], University of Illinois at Urbana-Champign, USA, 2001:67~72
    [16] W.Rhee, A.Ali. An on-chip phase-compensation technique in fractional-N frequency synthesis. in: IEEE Proceeding of ISCAS3,1999:363~366
    [17] T.A.D.Riley, M.A.Copeland, T.A.Kwasniewsky. Sigma-Delta Modulation in Fractional-N Frequency Synthesis. IEEE Journal of Solid-State Circuits, 1993, 28(5):553~559
    [18] W.Rhee. Design of low-jitter 1-GHz phase-locked loops for digital clock generation. in: Proceeding of IEEE ISCAS3,1999:520~523
    [19] A.Zanchi, A.Bonfanti, S. Levantino et al. General SSCR vs. Cycle-to-Cycle Jitter Relationship with Application to the Phase Noise in PLL. in: Proc of 2001 Southwest Symposium on Mixed Signal Design, 2001:32~37
    [20] B.Miller, R.J.Conley. A multiple modulator fractional divider. IEEE Transaction on Instrumentation and Measurement, 1991, 40(3): 578~583
    [21] L.Sun, T.Lepley, F.Nozahic et al. Reduced complexity, high performance digital delta-sigma modulator for fractional-N frequency synthesis. in: IEEE Proceedings of ISCAS2,1999:152~155
    [22] W.Rhee, B.S.Song, A.Ali. A 1.1-GHz CMOS fractional-N frequency synthesizer with a 3-b third-order sigma-delta modulator. IEEE Journal of Solid-state Circuits,2000,35(10):1453~1460
    [23] K.Shu, E.Sanchez-Sinencio, F.Maloberti et al. A comparative study of digital sigma-delta modulators for fractional-N synthesis. in: IEEE Proc ICECS01, 2001:1391~1394
    [24] K.S.Lee, B.H.Park. A 3-bit 4th-order sigma–delta modulator with metal- connected multipliers for fractional-n frequency synthesizer.in: IEEE RFIC Symposium,2003:177~180
    [25] J.Craninckx, M.S.J Steyert. A fully integrated CMOS DCS-1800 frequency synthesizer. IEEE Journal of Solid-state Circuits,1998, 33(12):2054~2065
    [26] Y.Koo, H.Hun, Y.Cho et al. A fully integrated CMOS frequency synthesizer with charge-averaging charge pump and dual-path loop filter for PCS and cellular CDMA wireless systems. IEEE Journal of Solid-state Circuits, 2002,37(5): 536~542
    [27] Chi-Wa Lo, Howard Cam Luong. A 1.5-V 900-MHz Monolithic CMOS Fast Switching Frequency Synthesizer for Wireless Applications. IEEE Journal of Solid-state Circuits,2002,37(4):459~470
    [28] K.Shu, E.Sanchez-Sinencio, J.Silva-Martinez et al. A 2.4-GHz monolithic fractional-N frequency synthesizer with robust phase-switching prescalar and loop capacitance multiplier. IEEE Journal of Solid-state Circuits,2003, 38(6): 866~874
    [29] N.-H.Sheng, R.L.Pierson, K.-C.Wang et al. A High-speed Multimodulus HBT Prescaler for Frequency Synthesizer Applications. IEEE Journal of Solid-State Circuits,1991,26(10):1362~1367
    [30] C.S.Vaucher, I.Ferencic, M.Locher et al. A Family of Low-Power Truly Modular Programmable Dividers in Standard 0.35μm CMOS Technology. IEEE Journal of Solid-State Circuits,2000,35(7):1039~1045
    [31] B.Chang, J.Park, W.Kim. A 1.2 GHz CMOS Dual-Modulus Prescaler Using New Dynamic D-Type Flip-Flops. IEEE Journal of Solid-state Circuits, 1996, 31(5): 749~752
    [32] A.B.Ajjikuttira, W.L.Chan, Y.Lian. A 5.5-GHz prescaler in 0.18-μm CMOS technology.in: IEEE Asia-Pacific Conference on ASIC,2002:69~72
    [33] F.Dulger, E.Sanchez-Sinencio, A.Bellaouar. Design considerations in a BiCMOS dual-modulus prescaler. In: IEEE Radio Frequency Integrated Circuits Symposium,2002:177~180
    [34] N.Foroudi, T.A.Kwasniewski. CMOS high-speed dual-modulus frequency divider for RF frequency synthesis. IEEE Journal of Solid-State Circuits, 1995,30(2):93~100
    [35] J.Yuan, C.Svensson. High-speed CMOS circuit technique. IEEE Journal of Solid-State Circuits,1989,24(2):62~70
    [36] S.Pellerano, S.Levantino, C.Samori et al. A 13.5-mW 5-GHz Frequency Synthesizer With Dynamic-Logic Frequency Divider. IEEE Journal of Solid-State Circuits, 2004, 39(2):378~383
    [37] B.Chang, J.Park, W.Kim. A 1.2 GHz CMOS Dual-Modulus Prescaler Using New Dynamic D-Type Flip-Flops.IEEE Journal of Solid-State Circuits, 1996, 31(5): 749~752
    [38] J.Craninckx, M.Steyaert. A 1.75-gHz/3-V dual-modulus divided- by-128/129 prescaler in 0.7-μm CMOS, IEEE Journal of Solid-State Circuits,1996,31(7): 890~897
    [39] K.Shu, E.Sanchez-Sinencio. CMOS PLL Synthesizers: Analysis and Design. Boston: Spring Science & Bussiness Media,Inc,2005:108~123
    [40] M.H.Perrott, M.D.Trott, C.G.Sodini. A Modeling Approach for∑-ΔFractional-N Frequency Synthesizers Allowing Straightforward Noise Analysis. IEEE Journal of Solid-State Circuits, 2002, 37(8):1028~1038
    [41] M.cassia, P.Shah, E.Bruun. Analytical Model and Behavioral Simulation Approach for a Sigma-Delta Fractional-N Synthesizer Employing a Sample-Hold Element. IEEE Transaction on Circuits and System-Ⅱ:analog and digital signal processing,2003,50(11):850~859
    [42] H.Arora, N.Klemmer, J.C.Morizio et al. Enhanced phase noise modeling of fractional-N frequency synthesizers. IEEE Transaction on Circuits and System-Ⅰ: Regular Papers,2005,52(2):379~394
    [43] J.C.Candy, O.J.Benjamin. The structure of quantization noise from Sigma- Delta modulation. IEEE Transaction on Communications, 1981,COM-29(9): 1316~1323
    [44] R.M.Gray. Spectral analysis of quantization noise in a single-loop sigma-delta modulator with dc input. IEEE Transaction on Communications, 1989, COM-37(6):588~599
    [45] A.Hussein. Design and Analysis of Fractional-N Frequency Synthesizers for Wireless Communications:[PhD Dissertation], University of Waterloo, Canada, 2002:102~110
    [46] P.W.Wong, R.M.Gray. Two stage sigma-delta modulation. IEEE Transactions on Acoust, Speech, Signal Processing,1990,38(11):1937~1952
    [47] W.Chou, P.W.Wong, R.M.Gray. Multi-stage sigma-delta modulation. IEEE Transaction on Information Theory,1989, 35(4):784~796
    [48] M.Kozak, I.Kale. Rigorous analysis of delta-sigma modulators for fractional-N PLL frequency synthesis. IEEE Transactions on Circuits and Systems I: Regular Papers,2004,51(6):1148~1162
    [49] S.Hein, A.Zakhor.On the stability of interpolative sigma delta modulators. In:IEEE International Symposium on Circuits and Systems, 1991:1621~1624
    [50] N.He, F.Kulhmann, A.Buzo. Double-loop sigma-delta modulation with dc input. IEEE Transaction on Communications,1990,38(4):487~495
    [51] S.Rangan, B.Leung. Quantization noise spectrum of double-loop sigma-delta converter with sinusoidal input. IEEE Transaction on Circuits and Systems-Ⅱ:Analog and digital signal processing, 1994,41(2):168~173
    [52] T.Ritoniemi, T.Karema, H.Tenhunen.Design of stable high order 1-bit sigma- delta modulator.in: IEEE International Symposium on Circuits and Systems, 1990:3267~3270
    [53] P.Steiner, W.Yang. A framework for analysis of high-order sigma-delta modulators. IEEE Transaction on Circuits and Systems -II: Analog and Digital Signal Processing,1997,44(1):1~10
    [54] N.He, K.Federico, B.Andres. Multiloop sigma-delta quantization. IEEE Transaction on Information Theory, 1992,38(3):1015~1028
    [55] R.T.Baird, T.S.Fiez. Stability analysis of high-order delta-sigma modulation for ADCs. In: IEEE International Symposium on Circuits and Systems, 1993:1361~1364
    [56] W.Rhee, B.S.Song, A.Ali. A 1.1-GHz CMOS fractional-N frequency synthesizer with a 3-b third-order sigma-delta modulator. IEEE Journal of Solid-state Circuits,2000, 35(10):1453~1460
    [57] K.S.Lee, B.H.Park. A 3-bit 4th-order sigma–delta modulator with metal- connected multipliers for fractional-n frequency synthesizer. In: IEEE RFIC Symposium,2003: 177~180
    [58] K.Shu, E.Sanchez-Sinencio, F.Maloberti et al. A comparative study of digital sigma-delta modulators for fractional-N synthesis. in: IEEE Proc.ICECS01, 2001:1391~1394
    [59] B.Miller, R.J.Conley. A multiple modulator fractional divider. IEEE Transaction on Instrumentation and Measurement, 1991, 40(3): 578~583
    [60] S.M.Wu, W.L.Chen. A 5-GHz delta-sigma pll frequency synthesizer for WLAN applications. in: Proc of International Symposium on Circuits and Systems,2004:249~252
    [61] K.Shu, E.Sanchez-Sinencio, J.Silva-Martinez et al. A 2.4-GHz monolithic fractional-N frequency synthesizer with robust phase-switching prescalar and loop capacitance multiplier. IEEE Journal of Solid-state Circuits,2003, 38(6): 866~874
    [62] B.De Muer, M.S.J.Steyaert. A CMOS monolithic Sigma-Delta controlledfractional-N frequency synthesizer for DCS-1800.IEEE Journal of Solid-state Circuits, 2002, 37(7):835~844
    [63] A.Marques, V.Peluso, M.Steyaert et al. Optimal parameters for a modulator topologies. IEEE Transaction on Circuits Systems-Ⅱ: Analog and Digital Signal Processing,1998,45(9):1232~1241
    [64] T.A.D Riley, N.M.Filiol, D.Qinghong et al. Techniques for In-band phase noise reduction in delta-sigma synthesizers. IEEE Transaction on Circuits and System-Ⅱ:Analog and Digital Signal Processing, 2003,50(11):794~803
    [65]石峰,莫忠息著.信息论基础.第一版.武汉:武汉大学出版社,2002:18~19
    [66] R.Schreier. On the use of chaos to reduce idle-channel tones in delta-sigma modulator. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and applications, 1994, 41(8):539~547
    [67] L.C.Wa. A 1.5-v 900-MHz monolithic CMOS fast-switching frequency synthesizer for wireless application:[Master Thesis],Hong Kong University of Science and Technology, Hong Kong ,2000:78~82
    [68] K.Shu. Design of 2.4-GHz CMOS monolithic fractional-N frequency synthesizer:[PhD Dissertation],Texas A&M University,USA,2003:106~110
    [69] D.Reefman, J.Reiss, E.Janssen et al. Description of limit cycles in sigma-delta modulators. IEEE Transaction on Circuits and Systems-Ⅰ:Regular Papers, 2005, 52(6): 1211~1223
    [70] S.R.Norsworthy. Effective dithering of sigma-delta modulators. In: Proceeding of Custom Integrated Circuits Conference, 1988:1304~1307
    [71] D.Reefman, J.Reiss, E.Janssen et al. Description of limit cycles in feedback Sigma–Delta modulators. In: Proc AES 117th Convention 2004, 2004:28~31
    [72]付生猛,陈朝阳,周亚安.基于混沌映射的随机数产生器.计算机研究与发展.2004,41(4):749~754
    [73] C.Dunn, M.Sandler. Linearising sigma-delta modulators using dither and chaos. In: IEEE International Symposium on Circuits and Systems,1995:625~628
    [74] E.F.Stikvoort. Some remarks on the stability and performance of the noise shaper or sigma-delta modulator. IEEE Transaction on Communnications, 1988,36(10):1157~1162
    [75] R.T.Baird, T.S.Fiez. Stability analysis of high-order delta-sigma modulation forADC’s. IEEE Transactions on Circuits and Systems-Ⅱ:Analog and Digital Signal Processing, 1994,41(1):59~62
    [76] HongMo Wang. On the stability of third-order sigma-delta modulation. In:IEEE International Symposium on Circuits and Systems,1993:1377~1380
    [77] R.E.Best.锁相环设计、仿真与应用(影印版).北京:清华大学出版社,2003:158~160
    [78] Y.Tang, M.Ismail, S.Bibyk. Adaptive Miller capacitor multiplier for compact on-chip PLL filter. Electrics Letters,2003,39(1):43~45
    [79] W.F.Egan. Frequency Synthesis by Phase Lock. New York: John Wiley & Sons, 1981:185~187
    [80] D.Mijuskovic, M.Bayer, T.Chomicz et al. Cell-based fully integrated CMOS frequency synthesizers. IEEE Journal of Solid-State Circuits, 1994,29(3): 271~279
    [81] M.Soyuer, R.G.Meyer. Frequency Limitations of Conventional Phase Frequency Detector. IEEE Journal of Solid-State Circuits,1990, 25(4):1019~1022
    [82] Won-Hyo Lee, Jun-Dong Cho, Sung-Dae Lee. A high speed and low power phase-frequency detector and charge-pump. in: Proceedings of the ASP-DAC, 1999:269~272
    [83] K.Arshak, O.Abubaker, E.Jafer. Design and simulation difference types CMOS phase frequency detector for high speed and low jitter PLL. in: Proceedings of the Fifth IEEE International Caracas Conference on Devices, Circuits and Systems,2004:188~191
    [84] Chung-Yu Wu, Chih-Yuan Hsieh, Wei-Ming Chen. A 1-V 2.4-GHz CMOS frequency synthesizer with current-match charge pump. In:IEEE Asia-Pacific Conference on Circuits and Systems,2004:433~436
    [85] L.Dai, R.Harjani. CMOS switched-OP-AMP-Based sample-and-Hold circuits. IEEE Journal of Solid-state Circuits,2000,35(1):109~113
    [86] M.G.Johnson, E.L.Hudson. A variable delay line PLL for CPU_coprocessor synchronization, IEEE Journal of Solid-state Circuits,1988,20(5):1218~12233
    [87] A. ElSayed, A. Ali, W.I. Elmasry. Differential PLL for wireless applications using differential CMOS LC-VCO and differential charge pump.in:International Symposium on Low Power Electronics and Design, 1999:243~248
    [88] B.Terlernez, J.P.Uyemura. The design of a differential CMOS charge pump for highperformance phase-locked loops. in: Proceedings of the International Symposium on Circuits and Systems,2004:561~564
    [89] M.Ei-Hage, Fei Yuan. Architectures and design considerations of CMOS charge pumps for phase-locked loops. In:IEEE Conference on Electrical and Computer Engineering, 2003:223~226
    [90] B.Razavi, Design of analog CMOS integrated circuits. Boston:McGraw Hill,2003: 482~484
    [91] C.P.Yue, S.S. Wong. On-chip spiral inductors with patterned ground shields for Si-based RF Ics. IEEE Journal of Solid-State Circuits, 1998,33(5):743~752
    [92] C.P.Yue, S.S. Wong. A study on substrate effects of silicon-based RF passive components.in: IEEE MTT-S International Microwave Symposium Digest,1999:1625~1628
    [93] A.Hajimiri, T.H.Lee, A general theory of phase noise in electrical oscillators. IEEE Journal of Solid-state Circuits, 1998, 33(2) :179~194
    [94] E.Hegazi, H.Sjoland, A.A.Abidi. A Filtering Technique to Lower LC Oscillator Phase Noise. IEEE Journal of Solid-state Circuits, 2001,36(12): 1921~1930
    [95] D.B.Leeson. A simple model of feedback oscillator noise spectrum. In: Proceedings of IEEE,1966, 54(2):329~330
    [96] J.Craninckx, M.Steyaert. Low-noise voltage-controlled oscillator using enhanced LC-tanks. IEEE Tran on Circuits and Systems--II Analog and Digital Signal Processing,1995, 42(12):794~804
    [97] A.Hajimiri. Jitter and phase noise in electrical oscillators:[PhD Dissertation], Stanford University, USA, 1998:85~101
    [98] D.Ham, A.Hajimiri. Concepts and Methods in Optimization of Integrated LC VCOs. IEEE Journal of Solid-state Circuits, 2001,36(6):896~909
    [99] M.D.M.Hershenson, A.Hajimiri, S.S.Mohan et al. Design and optimization of LC oscillators.In:IEEE/ACM International Conference on Computer-Aided Design,1999:65~69
    [100] M.Kozak, E.G. Friedman. Design and simulation of Fractional-N PLL frequency synthesizers. in: Proceedings of the International Symposium on Circuits and Systems,2004:23~26
    [101] M.H.Perrott, M.D.Trott, C.G.Sodini. A Modeling Approach for∑-ΔFractional-NFrequency Synthesizers Allowing Straightforward Noise Analysis. IEEE Journal of Solid-State Circuits, 2002, 37(8):1028~1038
    [102] S.Brigati, F.Francesconi, A.Malvasi et al. Modeling of fractional-N division frequency synthesizers with SIMULINK and MATLAB. in:The 8th IEEE International Conference on Electronics, Circuits and Systems, 2001:1081~1084
    [103] E.A.Lee, D.G.Messerschmitt. Digital Communication. Norwell MA: Kluwer,1994:256~262
    [104] I.Thompson, P.V.Brennan. Phase noise contribution of the phase/frequency detector in a digital PLL frequency synthesizer. In: IEEE Proceedings of Circuits, Devices and Systems, 2003,150(1):1~5
    [105] K.Kundert. Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers. Available from www.desingers-guide.com, May, 2003:1~20
    [106] V.F.Kroupa, J. Pavlovec, L. Sojdr. Noise in standard frequency sources. in: Proceeding of CPEM,1980:147~151
    [107] W.Robins. Synthesizer phase jitter contributed by TTL & ECL components. in: Digest of the Colloquium on Low Noise Oscillators and Synthesizers,1986:711~717
    [108] V.F.Kroupa. Jitter and Phase Noise in Frequency Dividers. IEEE Transactions on Instrumentation and Measurement, 2001, 50(5):1241~1243
    [109] W.F.Egan. Modeling phase noise in frequency dividers. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,1990,37(4):307~315
    [110] H.Arora, N.Klemmer, J.C.Morizio et al. Enhanced phase noise modeling of fractional-N frequency synthesizers. IEEE Transaction on Circuits and System-Ⅰ: Regular Papers,2005,52(2):379~394
    [111] www.national.com/appinfo/wireless/files/DeansBook_4_01.pdf
    [112] W.Djen. SA8025 fractional-N synthesizer for 2GHz band application. Application Note, Philips Semiconductors, 1994:7~8
    [113] B.De Muer, M.S.J.Steyaert. On the analysis of sigma delta fractional-N frequency synthesizer for high-spectral purity. IEEE Transaction on Circuits and System-Ⅱ:analog and digital signal processing,2003,50(11):784~793

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700