布雷顿循环和布朗马达的优化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有限时间热力学是现代热力学的一个重要分支,主要研究非平衡系统在有限时间中的能流和熵流的规律。它在开发新能源,发展新技术,保护生态环境等方面都具有重要意义。有限时间热力学可以被应用到许多研究领域,特别在热力学循环的优化设计方面已取得大量研究成果。而布雷顿循环是当今能源转换领域里的支柱型循环系统,具有重要的实际应用价值。
     本论文分为两个部分,第一部分运用有限时间热力学理论,围绕布雷顿循环的几种不同模型进行分析研究,所得结果为布雷顿循环的优化设计提供了理论依据。第二部分,对两种典型的布朗马达模型作了分析研究,得出了一些有意义的结果。
     在第一部分,研究了以理想气体为工质的布雷顿制冷循环和动力循环的性能特性,考虑绝热过程和各换热过程中的不可逆因素,对无回热和回热式布雷顿循环的性能进行分析比较,阐明了采用回热过程的优越性,确定了回热器参数适用的范围。建立了以量子费米气体3He为工质的回热式量子不可逆布雷顿制冷循环。对循环的回热特征和性能特性进行了研究,综合分析了绝热过程不可逆性和量子简并性对循环性能的影响,确定了费米布雷顿制冷循环正常运行的压强比界限。对几种有趣的情况做了详细讨论。建立了以顺磁盐为工质的二级磁化布雷顿制冷模型,从顺磁盐的热力学性质出发,导出了重要性能参数的表达式,如输入功,制冷量,性能系数等。分析了中间磁化过程,回热过程以及不可逆绝热过程对循环性能的影响,对循环的制冷率和制冷系数进行了优化分析,确定了循环的优化工作区域以及工质的最优状态参数。建立了一类太阳能驱动热机的广义循环模型,它涵盖了太阳能驱动卡诺,布雷顿,布雷森等热机系统。详细分析了各种不可逆因素对循环性能的影响,包括有限时间热传递,不同传热规律,热漏,热机内部不可逆性等因素。在给定太阳能供热率情况下,以总效率为目标函数对太阳能热机系统的性能进行了优化分析,确定了太阳能热机系统的最佳工作状态。
     在第二部分,介绍了布朗马达(布朗微热机)的背景知识与研究现状。分析了两种典型布朗马达模型的运行机制。在第一个模型中,热驱动的布朗微热机的空间不对称周期势场可以和不同的热源接触,计算结果表明由动能引起的布朗微热机和热源之间的热交换是不可逆的,效率不能达到卡诺效率。在第二个模型中,布朗马达的不对称周期性势场的温度随时振荡,振荡的时间结构影响粒子定向输运,所得结果表明方形波的振荡结构并不总是最利于粒子的定向输运。
Finite-time thermodynamics is a new important branch of the modern thermodynamics. It is mainly used to investigate the laws of energy and entropy flows of non-equilibrium systems in finite time. It is of very important significance for exploiting new energy resources, developing new technologies, protecting natural resources and so on. Finite-time thermodynamics has been applied in many research fields. Especially, a lot of important achievements in the optimal design of thermodynamic cycles have been obtained. The Brayton cycle is the backbone of power cycle systems in the present energy conversion fields, and consequently, has important value in the practical applications.
     This thesis is composed by two parts. In the first part, the performance of the several models of the Brayton cycle is investigated by using Finite-time thermodynamics and the results obtained here may provide some theoretical basis for the optimal design of the Brayton cycle. In the second part, the two typical models of the Brownian motor are studied and some significant results are obtained.
     In the first part, the performance characteristics of the Brayton refrigerator and heat engine using the ideal gas as the working substance are investigated, in which the irreversible effects in the adiabatic and other heat-transfer processes are considered. The performance of the Brayton cycle with regeneration and without regeneration is compared. The advantages of using the regenerator are expounded. The reasonable ranges of the parameters in the regenerator are determined. An irreversible model of the Brayton refrigeration cycle working with an ideal Fermi gas 3He is established. The characteristics of regeneration and performance of the cycle are revealed. The influence of quantum degeneracy of the gas and the irreversibility in the adiabatic processes on its performance is analyzed comprehensively. The minimum pressure ratio of the cycle is determined. Some special cases are discussed. A cycle model of two-stage magnetization Brayton refrigerators using a paramagnetic material as the working substance is established. On the basis of the thermodynamic properties of a paramagnetic material, the expressions of some important parameters such as the work input, the refrigeration load and the coefficient of performance (COP) are derived. The influence of the inter-magnetization processes, regeneration processes and the irreversibility in the adiabatic processes on the performance of the cycle is discussed. The refrigeration load and the COP of the cycle are optimized, and the optimally operating region of the cycle and the optimal working parameters are determined. The unified cycle model of a class of solar-driven heat engines is presented. This model may include Carnot cycle, Brayton cycle, Braysson cycle,and so on. Several irreversible effects on the performance of the cycle system are taken into account, which include finite time heat transfer, different heat transfer laws, the heat loss, the internal irreversibilities of the heat engine, and so on. When the heat-supplying rate of the system is given, the performance of the cycle model is optimized by using the overall efficiency of the system as the object function, and consequently, the optimally working states of the solar-driven heat engine system are determined.
     In second part, the background and research status of Brownian motors are introduced and the operating mechanisms of two typical Brownian motor models are investigated. In the first model, a thermal Brownian micro heat engine is set up, in which the periodic potential is spatially asymmetric and contacted with the alternately changed hot and cold reservoirs. The results obtained show that the heat flow via the kinetic energy of the particles is always irreversible and its efficiency cannot approach the Carnot efficiency. In the second model, the temperature of periodic potential is periodically oscillating and the time structure of oscillation will affect the directed transport of Brownian particles. It is found that the temporal symmetric temperature oscillation may not be the best choice for the directed transport.
引文
[1] Carnot S, Reflexions sur la puissance motrice du feu et sur les machines propres a developper cette puissance [M]. Bachelier, Paris, 1824.
    [2] Novikov I I. The efficiency of atomic power stations [J]. Atommaya Energiya, 1957, 3: 409-413.
    [3] Chambadal P. Les Centrales Nucleaires [M]. Paris: Armand Colin, 1957, 41-58.
    [4] Curzon F, Ahlborn B. Efficiency of a Carnot engine at maximum power output [J]. Am. J. Phys., 1975, 43: 22-24.
    [5] 严子浚. 卡诺热机的最佳效率和功率间的关系[J]. 工程热物理学报, 1985, 6: 1-6.
    [6] 严子浚. 热源机的输出功率和效率间的关系[J]. 内燃机学报, 1987, 5: 34-41.
    [7] Andresen B, Salamon P, Berry R S. Thermodynamics in finite time [J]. Phys. Today, 1984, 9: 62-70.
    [8] Andresen B. Finite time Thermodynamics [M]. Physics Laboratory, University of Copenhagen, 1983.
    [9] Denton J C. Thermal cycles in classical thermodynamics and nonequilibrium thermodynamics in contrast with finite time thermodynamics [J]. Energy Conv. & Mgmt., 2002, 43: 1583–1617.
    [10] Rubin M H. Optimal configuration of a class of irreversible heat engines [J]. Phys. Rev. A, 1979, 19: 1272-1276.
    [11] Rubin M H, Andresen B. Optimal staging of endoreversible heat engines [J]. J. Appl. Phys., 1982, 53: 1-7.
    [12] Salamon P, Nitzan A, Andresen B, Berry R. Minimum entropy production and the optimization of heat engines [J]. Phys. Rev. A, 1980, 21: 2115-2129.
    [13] Salamon P, Nitzan A. Finite time optimizations of a Newton’s law Carnot cycle [J]. J. Chem. Phys., 1981, 74: 3546-3560.
    [14] Ondrechen M J, Rubin M H, Band Y B. The generalized Carnot cycle: A working fluid operating in finite time between finite heat sources and sinks [J]. J. Chem. Phys., 1983, 78: 4721-4727.
    [15] Chen J, Yan Z. Unified description of endoreversible cycles [J]. Phys. Rev. A, 1989, 39: 4140-4146.
    [16] Chen L, Yan Z. The effect of heat-transfer law on performance of a two-heat-source endoreversible cycle [J]. J. Chem. Phys., 1989, 90: 3740-3743.
    [17] De Vos A. Reversible and endoreversible computing [J]. Int. J. Theor. Phys., 1995, 34: 2251-2266.
    [18] Verhas J, De Vos A. How endoreversible thermodynamics relates to Onsager's nonequilibrium thermody namics [J]. J. Appl. Phys., 1997, 82: 40-42.
    [19] Andresen B, Salamon P, Berry R S. Thermodynamics in finite time: extremals for imperfect heat engines [J]. J. Chem. Phys., 1977, 66: 1571-1577.
    [20] Fairen V, Ross J. On the efficiency of thermal engines with power output [J]. J. Chem. Phys., 1981, 75: 5485-5496.
    [21] Richter P H, Ross J. The efficiency of engines operating around a steady state at finite frequency [J]. J. Chem. Phys., 1978, 69: 5521-5531.
    [22] 严子浚. 有限时间热力学中不可逆卡诺热机[J]. 热能动力工程, 1994, 9: 369-373.
    [23] Chen J. The maximum power output and maximum efficiency of an heat irreversible Carnot heat engine [J]. J. Phys. D: Appl. Phys., 1994, 27: 1144-1149.
    [24] Yan Z, Chen L. The fundamental optimal relation and the bounds of power output and efficiency for an irreversible Carnot heat engine [J]. J. Phys. A: Math. Gen., 1995, 28: 5167-6175.
    [25] Chen J, Wu C, Kiang R L. Maximum special power output of an irreversible radiant heat engine [J]. Energy Convers. Mgmt., 1996, 37: 17-22.
    [26] Gordon J M. On optimized solar-driven heat engines [J]. Sol. Energy, 1988, 40: 457-461.
    [27] Chen J. Optimization of a solar-driven heat engine [J]. J. Appl. Phys., 1992, 72: 3778-3780.
    [28] De Vos A, Van der Wel P. The efficiency of the conversion of solar energy into wind energy by means of Hadley cells [J]. Theor. Appl. Climatol., 1993, 46: 193-202.
    [29] Yan Z, Chen J. The maximum overall coefficient of performance of a solar-driven heat pump system [J]. J. Appl. Phys., 1994, 76: 8129-8134.
    [30] Chen J. Thermodynamic analysis of a solar-driven thermoelectric generator [J]. J. Appl. Phys., 1996, 79: 2717-2721.
    [31] Goktun S. On optimized solar-pond-driven irreversible heat engines [J]. Renewable Energy, 1996, 7: 67-69.
    [32] Yan Z, Chen J. Optimal performance of a solar-driven heat engine system at maximum overall efficiency [J]. Int. J. Power & Energy Syst., 1997, 17: 103-106.
    [33] Chen J, Yan Z, Chen L, Andresen B. Efficiency bound of a solar-driven stirling heat engine system [J]. Int. J. Energy Res., 1998, 22: 805-812.
    [34] Salah El-Din M. Thermodynamic optimization of irreversible solar heat engines [J]. Renewable Energy, 1999, 17: 183-190.
    [35] Yan Z, Chen J. Optimal performance of a solar-driven heat engine system at maximum overall efficiency [J]. J. Phys. D: Appl. Phys., 1999, 32: 94-98.
    [36] Lin G, Yan Z. The optimal operating temperature of the collector of an irreversible solar-driven refrigerator [J]. J. Phys. D: Appl. Phys., 1999, 32: 94-98.
    [37] Salah El-Din M. On the optimization of solar-driven refrigerators [J]. Renewable Energy, 2000, 20: 87-93.
    [38] Sahin A Z. Optimum operating conditions of solar driven heat engines [J]. Energy Convers. Mgmt., 2000, 41: 1335-1343.
    [39] Zheng S, Chen J, Lin G. Performance characteristics of an irreversible solar-driven Braysson heat engine at maximum efficiency [J]. Renewable Energy, 2005, 30: 601-610.
    [40] Zhang Y, Lin B H, Chen J C. The unified cycle model of a class of solar-driven heat engines and their optimum performance characteristics [J]. J. Appl. Phys., 2005, 97: 084905.
    [41] Zhang Y, Chen J. The thermodynamic performance analysis of an irreversible space solar dynamic power Brayton cycle [J]. Journal of Solar Energy Engineering, 2006, 128: 409-413.
    [42] Zhang Y, Lin B H, Chen J C. Optimum performance characteristics of an irreversible solar-driven Brayton heat engine at the maximum overall efficiency [J]. Renewable Energy, 2007, 32: 856-867.
    [43] 林国星,严子浚.铁磁质斯特林制冷循环的优化性能[J].工程热物理学报,1994,15:357-360.
    [44] 严子浚.顺磁质埃里克森制冷循环的优化性能[J].低温与超导,1996, 24:56-60.
    [45] Chen J, Yan Z. The effect of thermal resistances and regenerative losses on the performance characteristics of a magnetic Ericsson refrigeration cycle [J]. J. Appl. Phys., 1998, 84:1 791-1 795.
    [46] Xia Z R, Ye X M, Lin G X, Bruck E. Optimization of the performance characteristics in an irreversible magnetic Ericsson refrigeration cycle [J]. physica B, 2006, 381: 246-255.
    [47] Geva E, Kosloff R. Three-level quantum amplifier as a heat engine: A study in finite-time thermody namics [J]. Phys. Rev. E, 1994, 49: 903-918.
    [48] Geva E, Kosloff R. The quantum heat engine and heat pump: An irreversible thermodynamicanalysis of the three-level amplifier [J]. J. Chem. Phys., 1996, 104: 681-699.
    [49]Yan Z, Chen J. Comment on "Generalized power versus efficiency characteristics of heat engines: The thermoelectric generator as an instructive illustration" [J]. Am. J. Phys., 1993, 61: 380.
    [50]Chen J. Thermodynamic analysis of a solar-driven thermoelectric generator [J]. J. Appl. Phys., 1996, 79: 717- 721.
    [51]Chen J, Andresen B. The maximum coefficient of performance of thermoelectric heat pumps [J]. Int. J. Ambient Energy, 1996, 17: 22-28.
    [52] Tsirlin A M. Optimal control of irreversible thermal and mass-transfer processes [J]. Sov. J. Comput. Syst. Sci., 1992, 30: 23-31.
    [53] Bejan A. Maximum power from fluid flow [J]. Int. J. Heat Mass Transfer, 1996, 39: 175-181.
    [53] Hu W Q, Chen J C. General performance characteristics and optimum criteria of an irreversible fluid flow system [J]. J. Phys. D: Appl. Phys., 2006, 39: 993-997.
    [55] Ondrechen M J, Berry R S, Andresen B, Thermodynamics in finite time: A chemically driven engine [J]. Chem. Phys., 1980, 72: 5118-5124.
    [56] Gordon J M. Maximum work from isothermal chemical engines [J]. J. Appl Phys., 1993, 73: 8-11.
    [57] Angulo-Brown F. An ecological optimization criterion for finite-time heat engines [J]. J. Appl. Phys., 1991, 69: 465-469.
    [58] Chen T, Yan Z. An ecological optimization criterion for a class of irreversible absorption heat transformers [J]. J. Phys. D: Appl. Phys., 1998, 31: 1078-1082.
    [59] Cheng C Y, Chen C K. Ecological optimization of an irreversible Brayton heat engine [J]. J. Phys. D: Appl. Phys., 1999, 32: 350-357.
    [60] Yan Z, Lin G. Ecological optimization criterion for an irreversible three-heat-source refrigerator [J]. Appl. Energy, 2000, 66: 213-224.
    [61] Yan Z. Comment on 'A general property of non-endoreversible thermal cycles' [J]. J. Phys. D: Appl. Phys., 2000, 33: 876-876.
    [62] De Vos A. Reversible and endoreversible computing [J]. Int. J. Theor. Phys., 1995, 34: 251-266.
    [63] Bejan A. Theory of heat transfer irreversible power plants II: The optimal allocation of heat exchange equipment [J]. Int. J. Heat Mass Transfer, 1995, 38: 433-444.
    [64] Perez-Grande I, Leo T J. Optimization of a commercial aircraft environmental control system [J]. Appl. Thermal Eng., 2002, 22: 1885-1904.
    [65] Huang Y C, Hung C I, Chen C K. An ecological exergy analysis for an irreversible-Brayton engine with an external heat source [J]. Proc. Inst. Mech. Eng., Part A-J. Power and Energy, 2000, 214: 413-421.
    [66] Kao C L, Wu C. Power performance of naval shipboard gas turbine [J]. Int. J. power Energy Syst., 1991, 17: 107-110.
    [67] Wu C, Kiang R L. Power performance of a nonisentropic Brayton cycle [J]. J. Energy. Gas Turbines power, 1991, 113: 501-504.
    [68] 陈林根,孙丰瑞.不可逆闭式布雷顿循环有限时间热力学性能的解析公式[J].电站系统工程,1995,11,12-16.
    [69] Chen L, Sun F, Wu C. Performance analysis of an irreversible Brayton heat engine [J]. Int. Institute Energy, 1997, 70: 2-8.
    [70] Cheng C Y, Chen C K. Power optimization of an irreversible Brayton heat engine [J]. Energy Source, 1997, 19: 461-467.
    [71] Cheng C Y, Chen C K. Efficiency optimizations of an irreversible Brayton heat engine [J]. Trans. ASME, J. Energy Res. Tech., 1998, 120: 143-148.
    [72] Calvo A H, Medina A, Roco J M M. Power and efficiency in a regenerative gas turbine [J]. J. Phys. D: Appl. Phys., 1995, 28: 2020-2023.
    [73] 陈林根,孙丰瑞.具有等熵压缩、膨胀过程的闭式燃气轮机回热循环有限时间热力学性能[J].燃气轮机技术,1995,8,29-35.
    [74] Medina A, Rocco J M M, Hernandez C. Regenerative gas turbine at maximum power density conditions [J]. J. Phys. D: Appl. Phys., 1996, 29: 2802-2805.
    [75] Rocco J M M, Velasco S, Medina A, Calvo A H. Optimum performance of a regenerative Brayton thermal cycle [J]. J. Appl. Phys., 1997, 82: 2735-2741.
    [76] Chen L, Ni N, Cheng G, Sun F, Wu C. Performance analysis for a real closed regenerated Brayton cycle via methods of finite time thermodynamics [J]. Int. J. Ambient Energy, 1999, 20: 95-104.
    [77] Sisman A, Saygin H. J. On the power cycles working with ideal quantum gas: I. The Ericsson cycle [J]. Phys. D: Appl. Phys., 1999, 32: 664-670.
    [78] Bender C M, Brody D C, Meister B K. Quantum mechanics Carnot engine [J]. J. Phys. A: Math. Gen., 2000, 33: 4427-4436.
    [79] He J Z, Chen J C, Hua B. Influence of quantum degeneracy on the performance of a Stirling refrigerator working with an ideal Fermi gas [J]. Appl. Energy, 2002, 72: 541-554.
    [80] Lin B H, Chen J C. The performance analysis of a quantum Brayton refrigeration cycle with an ideal Bose gas [J]. Open Sys. & Information Dyn., 2003, 10: 147-157.
    [81] Yang Y L, Lin B H, Chen J C, Influence of regeneration on the performance of a Brayton refrigeration-cycle working with an ideal Bose-gas [J]. Applied Energy, 2006, 83: 99-112.
    [82] Zhang Y, Lin B H, Chen J C. The influence of quantum degeneracy and irreversibility on the performance of a Fermi quantum refrigeration cycle [J]. J. Phys. A: Math. Gen., 2004, 37: 7485-7497.
    [83] Zhang Y, Lin B H, Chen J C. The performance characteristics of an irreversible regenerative quantum refrigeration cycle [J], Physica Scripta, 2006, 73: 48-55.
    [84] 孙烨,侯予,黑丽民,陈纯正.空间逆布雷顿循环制冷机浅析[J]. 低温与超导,2004,32: 48-51.
    [85] Lin G X, Tegus O, Zhang L, Brück E. General performance characteristics of an irreversible ferromagnetic Stirling refrigeration cycle [J]. Physica B, 2004, 344: 147-156.
    [86] Yayama H, Hatta Y, Tomokiyo A. Hybrid cryogenic refrigerator combining magnetic and gas cooling system [J], Physica B, 2000, 284: 2016-2017.
    [87] Rowe A M, Barclay J A. Ideal magnetocaloric effect for active magnetic regenerators [J]. J. Appl. Phys., 2003, 93: 1672-1676.
    [88] He J Z, Chen J C, Wu C. Optimization on the performance characteristics of a nagnetic ericsson refrigeration cycle affected by multi-irreversibilities [J]. J. Energy Res. Technol., 2003, 125: 318-324.
    [89] He J Z, Chen J C, Wu C. Heat-transfer effect on the performance of a magnetic Ericsson refrigerator [J]. J. Non-Equilib.Thermodyn., 2002, 27: 57-69.
    [90] Chen J C, Yan Z J. The effect of thermal resistances and regenerative losses on the performance characteristics of a magnetic Ericsson refrigeration cycle [J]. J. Appl. Phys., 1998, 84: 1791-1795.
    [91] Yayama H, Hatta Y, Makimoto Y, Tomokiyo A. Hybrid cryogenic refrigerator: Combiation of Brayton magnetic-cooling and Gifford-McMahon gas–cooling system [J]. Jpn. J. Appl. Phys., 2003, 39: 4220-4224.
    [92] Wu F, Chen L G, Sun F R. Optimizaton of irreversible magnetic Stirling cryocoolers [J]. Int. J. Eng. Sci., 2001, 39: 361-368.
    [93] Chen L X, Yan Z J. Main characteristics of a Brayton refrigeration cycle of paramagnetic salt [J]. J. Appl. Phys., 1994, 73: 1249-1253.
    [94] Wu C, Chen L X, Chen J C. Recent advances in finite-time thermodynamics [M]. Nova Sci. Publishers, New York, 1999.
    [95] Einstein A, Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen [J]. Ann. Phys. (Leipzig) 1905, 17: 549-560.
    [96] Langevin P. Sur la theorie du mouvement brownien [J]. Comptes Rendus, 1908, 146: 530–533.
    [97] Moss F, McClintock P V E. Noise in nonlinear dynamical systems [M], Cambridge University Press, 1989, Vo1.I-Vo1.III.
    [98] Svoboda K, Schmidt C F, Schnapp B J, Block S M. Direct observation of kinesin stepping by optical trapping interferometry [J]. Nature, 1993, 365: 721.
    [99] Magnasco M O, Forced thermal ratchets [J]. Phys. Rev. Lett., 1993, 71: 1477-1481.
    [100] Millonas M M, Dykman M I. Transport and current reversal in stochastically driven ratchets[J]. Phys. Lett., A, 1994, 185: 65-69.
    [101] Astumian R D, Bier M. Fluctuation driven ratchets: molecular motors [J]. Phys. Rev. Lett., 1994, 72: 1766-1769.
    [102] Prost J, Chauwin J F, Peliti L, Ajdari A. Asymmetric pumping of particles [J]. Phys. Rev. Lett., 1994, 72: 2652-2655.
    [103] Maddox J. More models of muscle contraction [J]. Nature, 1994, 368: 287.
    [104] Maddox J. Directed motion from random noise [J]. Nature, 1994, 369: 181.
    [105] Rousselet J, Salome L, Ajdari A, Prost J. Directional motion of Brownian particles induced by a periodic asymmetric potential [J]. Nature, 1994, 370: 446.
    [106] Doering C, Ermentrout B, Oster G, Rotary DNA motors [J]. Biophys. J, 1995, 69: 2256.
    [107] Gilbert S P, Webb M R, Brune M, Johnson K A. Pathway of processive ATP hydrolysis by kinesin [J]. Nature, 1995, 373: 671.
    [108] Jung P, Kissner J G, Hanggi P. Regular and chaotic transport in asymmetric periodic potentials: inertia ratchets [J]. Phys. Rev. Lett., 1996, 76: 3436-3439.
    [109] Chialvo D R, Millonas M M. Asymmetric unbiased fluctuations are sufficient for the operation of a correlation ratchet [J]. Phys. Lett. A, 1995, 209: 26-30.
    [110] Svoboda K, Schmidt C F, Schnapp B J, Block S M, Direct observation of kinesin stepping by optical trapping interferometry [J]. Nature, 1993, 365: 721.
    [111] Leibler S. Moving forward noisily [J]. Nature, 1994, 370: 412.
    [112] Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance [J]. Journal of Physics A, 198l, 14: 453-458.
    [113] Jung P, Hanggi P. Amplification of small signals via stochastic resonance [J]. Phys. Rev. A, 1991, 44: 8032-8042.
    [114] Fulinski A. Active transport in biological membranes and stochastic resonance [J]. Phys. Rev. Lett., 1997, 79: 4926-4929.
    [115] Gammaitoni L, Hanggi P, Jung P, Marchesoni F. Stochastic resonance [J]. Rev. Mod. Phys., 1998, 70: 223-287.
    [116] Fulinski A. Barrier fluctuations and stochastic resonance in membrane transport [J]. Chaos, 1998, 8: 549-556.
    [117] Kim Y W, Sung W. Does stochastic resonance occur in periodic potentials [J]. Phys. Rev. E, 1998, 57: R6237-R6240.
    [118] Reimann P, Hanggi P, Quantum features of Brownian motors and stochastic resonance [J]. Chaos, 1998, 8: 629-642.
    [119] Doering C R, Horsthemke W, Riordan J. Nonequilibrium fluctuation-induced transport [J]. Phys. Rev. Lett., 1994, 72: 2984-2987.
    [120] Millonas M M. Self-consistent microscopic theory of fluctuation-induced transport [J]. Phys. Rev. Lett., 1995, 74: 10-13.
    [121] Cecchi G, Magnasco M O. Negative resistance and rectification in Brownian transport [J].Phys. Rev. Lett., 1996, 76: 1968-1971.
    [122] Bartussek R, Reimann P, Hanggi P. Precise numerics versus theory for correlation ratchets [J]. Phys. Rev. Lett., 1996, 76: 1166-1169.
    [123] Reimann P, Bartussek R, Haussler R, Hanggi P. Brownian motors driven by temperature oscillations [J]. Phys. Lett. A, 1996, 215: 26-31.
    [124] Bier M. Reversal of noise induced flow [J]. Phys. Lett. A, 1996, 211: 12-18.
    [125] Bao J D, Zhuo Y Z, Wu X Z. Diffusion current for a system in a periodic potential driven by additive colored noise [J]. Phys. Lett. A, 1996, 215: 154-159.
    [126] Slater G W, Guo H L, Nixon G I. Bidirectional transport of polyelectrolytes using self-modulating entropic ratchets [J]. Phys. Rev. Lett., 1997, 78: 1170-1173.
    [127] Ibarra Bracamontes L, Romero Rochin V. Stochastic ratchets with colored noise [J]. Phys. Rev. E, 1997, 56: 4048-4051.
    [128] Magnasco M O. Szilard’s heat engine [J]. Europhys. Lett., 1996, 33: 583-588.
    [129] Julicher F, Prost J. Cooperative molecular motors [J]. Phys. Rev. Lett., 1995, 75: 2618-2621
    [130] Bao J D, Abe Y, Zhuo Y Z. Rocked quantum periodic systems in the presence of coordinate-dependent friction [J]. Phys. Rev. E, 1998, 58: 2931-2937.
    [131] Bao J D. Directed current of Brownian ratchet randomly circulating between two thermal sources [J]. Physica A, 1999, 273: 286-293.
    [132] Zhang Y, Lin B H, Chen J C. Performance characteristics of an irreversible thermally driven Brownian microscopic heat engine [J]. Euro. Phys. J. B, 2006, 53: 481-485.
    [1] Goktun S, Yavuz H. Performance of irreversible combined cycles for cryogenic refrigeration [J]. Energy Conv. & Mgmt., 2000, 41: 449-459.
    [2] Swift W L, Nellis G F, Zagarola M V, McCormick J A, Sixsmith H, Gibbon J A. Developments in Turbo Brayton technology for low temperature applications [J]. Cryogenics, 1999, 39: 989-995.
    [3] Mostafavi M, Alaktiwi A, Agnew B. Thermodynamic analysis of combined open-cycle-twin-shaft gas turbine (Brayton cycle) and exhaust gas operated absorption refrigeration unit [J]. Appl. Therm. Eng., 1998, 18: 847-856.
    [4] Chen L, Sun F, NI N, Wu C. Optimal configuration of a class of two-heat-reservoir refrigeration cycles [J]. Energy Conv. & Mgmt., 1998, 39: 767-773.
    [5] Chen C K, Su Y F. Exergetic efficiency optimization for an irreversible Brayton refrigeration cycle [J]. Int. J. Therm. Sci., 2005, 44: 303–310.
    [6] Wu C. Heat exchanger effect on a gas refrigeration cycle [J]. Energy Conv. & Mgmt., 1996, 37: 1513-1516.
    [7] Chen L, Zhou S, Sun F, Wu C. Performance of heat-transfer irreversible regenerated Brayton refrigeration cycles [J]. J. Phys. D: Appl. Phys., 2001, 34: 830–837.
    [8] Zhou S, Chen L, Sun F, Wu C. Theoretical optimization of a regenerated air refrigeration cycle [J]. J. Phys. D: Appl. Phys., 2003, 36: 2304–2311.
    [9] Zhou S, Chen L, Sun F, Wu C. Cooling-load density optimization for a regenerated air refrigeration cycle [J]. Appl. Energy, 2004, 78: 315-328.
    [10] Kaushik S C, Tyagi S K, Singhal M K. Parametric study of an irreversible regenerative Brayton cycle with isothermal heat addition [J]. Energy Conv. & Mgmt., 2003, 44: 2013-2025.
    [11] Wu C. Maximum obtainable specific cooling load of a refrigeration cycle [J]. Energy Conv. & Mgmt., 1995, 36: 7–10.
    [12] Wu C, Kiang R. Performance of a nonisentropic Brayton cycle [J]. Trans. ASME, J. Energy Gas Turbine Power, 1991, 113: 501-503.
    [13] Bejan A. Advanced Engineering Thermodynamics [M]. New York: Wiley 1988.
    [14] Chen J. The maximum power output and maximum efficiency of an irreversible Carnot heat engine [J]. J. Phys. D: Appl. Phys., 1994, 27: 1144-1149.
    [15] Chen J, Yan Z, Unified description of endoreversible cycles [J]. Phys. Rev. A, 1989, 39: 4140-4147.
    [16] Wu C, Chen L, Chen J. Recent advances in finite-time thermodynamics [M]. New York: Nova Sci. Publishers, Inc 1999.
     [17] Zhang Y, Chen J C, He J Z, Wu C. Comparison on the optimum performance of the irreversible Brayton refrigeration cycles with regeneration and non-regeneration [J]. Appl. Therm. Eng., 2007, 27: 401-407.
    [1] Pathria R K. Statistical mechanics 2ed [M]. Singapore: Elsevier Pte Ltd, 1996.
    [2] Huang K. Statistical mechanics 2ed [M]. New York: Wiley, 1987.
    [3] Landau L D, Lifshitz E M. Statistical Physics [M]. London: Pergamon, 1958.
    [4] Scully M. Quantum afterburner: Improving the efficiency of an ideal heat engine [J]. Phys. Rev. Lett., 2002, 88: 050602.
    [5] Sisman A, Saygin H. J. On the power cycles working with ideal quantum gas: I. TheEricsson cycle [J]. Phys. D: Appl. Phys., 1999, 32: 664-670.
    [6] Saygin H, Sisman A. Quantum degeneracy effect on the work output from a Stirling cycle [J]. J. Appl. Phys., 2001, 90: 3086-3089.
    [7] Lin B H, Chen J C. The influence of quantum degeneracy on the performance of a Fermi Brayton engine [J]. Open Sys. & Information Dyn., 2004, 11: 87-99.
    [8] Chen J C, He J Z, Hua B. The influence of regenerative losses on the performance of a Fermi Ericsson refrigeration cycle [J]. J. Phys, A: Math, Gen., 2002, 35: 7995-8004.
    [9] Lin B H, He J Z, Chen J C. Quantum degeneracy effect on the performance of a bose ericsson refrigeration cycle [J]. Non-Equilib. Thermodyn., 2003. 28: 221-232.
    [10] Lin B H, Chen J C. The performance analysis of a quantum Brayton refrigeration cycle with an ideal Bose gas [J]. Open Sys. & Information Dyn., 2003, 10: 147-157.
    [11] Saygin H, Sisman A. Brayton refrigeration cycles working under quantum degeneracy conditions [J]. Appl. Energy, 2001, 69: 77-85.
    [12] Rocco J M M, Velasco S, Medina A, Calvo A H. Optimum performance of a regenerative Brayton thermal cycle [J]. J. Appl. Phys., 1997, 82: 2735-2741.
    [13] Sahin B, Kodal A, Yilmaz T, Yavuz H. Maximum power density analysis of an irreversible Joule-Brayton Engine [J]. J. Phys. D: Appl. Phys., 1996, 29: 1162-1167.
    [14] Medina A, Rocco J M M, Hernandez C. Regenerative gas turbine at maximum power density conditions [J]. J. Phys. D: Appl. Phys., 1996, 29: 2802-2805.
    [15] Gordon J M, Huleihil M. General performance characteristics of real heat engine [J]. J. Appl. Phys., 1992, 72: 829-837.
    [16] Zhang Y, Lin B H, Chen J C. The influence of quantum degeneracy and irreversibility on the performance of a Fermi quantum refrigeration cycle [J]. J. Phys. A: Math. Gen., 2004, 37: 7485-7497.
    [17] Zhang Y, Lin B H, Chen J C. The performance characteristics of an irreversible regenerative quantum refrigeration cycle [J], Physica Scripta, 2006, 73: 48-55.
    [18] 林比宏, 杨雨霖, 陈金灿. 回热式布雷顿制冷循环的性能优化[J]. 制冷学报, 2006, 27:53-57.
    [19] 林比宏, Tyagi S K, 陈金灿. 不可逆布雷顿制冷循环的性能优化[J]. 低温工程, 2004, 139:41-44.
    [1] Zimm C, Jastrab A, Sternberg A, Pecharsky V K, Gschneidner Jr K A, Osborne M, Anderson I. Description and performance of a near-room temperature magnetic refrigerator [J]. Adv Cryog Eng. 1998, 43: 1759-1766.
    [2] Zhang L, Sherif S A, DeGregoria A J, Zimm C, Veziroglu T N. Design optimization of a 0.1 ton/day active magnetic regenerative hydrogen liquefier [J]. Cryogenics, 2000, 40: 269-278.
    [3] Shirron P, Canavan E, DiPirro M, Jackson M, King T, Panek J, Tuttle J. A compact, high-performance continuous magnetic refrigerator for space missions [J]. Cryogenics, 2002, 41: 789-795.
    [4] Reid C E, Barclay J A, Hall J L, Sarangi S. Selection of magnetic materials for an active magnetic regenerative refrigerator [J]. J. Alloys and Compounds, 1994, 207: 366-371.
    [5] Yu B, Gao Q, Zhang B, Meng X, Chen Z. Review on research of room temperature magnetic refrigeration [J]. Int. J. Refrig., 2003, 26: 622-636.
    [6] Pecharsky V K, Karl A, Gschneidner Jr K A. Magnetocaloric effect and magnetic refrigeration [J]. J. Magnetism and Magnetic Materials, 1999, 200: 44-56.
    [7] Hirano N, Nagaya S, Takahashi M, Kuriyama T, Ito K, Nomura S. Development of magnetic refrigerator for room temperature application [J]. Adv. Cryog. Eng., 2002, 47: 1027-1034.
    [8] Shir F, Mavriplis C, Bennett L H, Torre E D. Analysis of room temperature magnetic regenerative refrigeration [J]. Int. J. Refrig., 2005, 28: 616-627.
    [9] Bruck E, Tegus O, Li X W, de Boer F R, Buschow K H J. Magnetic refrigeration-towards room-temperature applications [J]. Physica B, 2003, 327: 431-437.
    [10] Pecharsky V K, Gschneidner Jr K A. Tunable magnetic regenerator alloys with a giant magnetic effect for magnetic refrigeration from ~20 to ~290 K [J]. Appl. Phys. Lett., 1997, 70: 3299-3301.
    [11] Provenzano V, Shapiro A J, Shull R D. Reduction of hysteresis losses in magnetic refrigerantGd5 (Si2Ge2) by the addition of iron [J]. Nature, 2004, 429: 853-857.
    [12] Tegus O, Bruck E, Buschow K H J, de Boer F R. Transition-metal-based magnetic refrigerants for room-temperature applications [J]. Nature, 2002, 415: 150-152.
    [13] Tegus O, Bruck E, Zhang L, Dagula W, Buschow K H J, de Boer F R. Magnetic-phase transitions and magnetocaloric effects [J]. Physica B, 2002, 319: 174-192.
    [14] Hu F X, Shen B G, Sun J R, Cheng Z H. Large magnetic entropy change in La(Fe,Co)11.83Al1.17 [J]. Phys. Rev. B, 2001, 64: 012409.
    [15] Lin G, Tegus O, Zhang L, Bruck E. General performance characteristics of an irreversible ferromagnetic Stirling refrigeration cycle [J]. Physica B, 2004, 344: 147-156.
    [16] Rowe A M, Barclay J A. Ideal magnetocaloric effect for active magnetic regenerators [J]. J. Appl. Phys., 2003, 93: 1672-1676.
    [17] He J, Chen J, Wu C. Optimization on the performance characteristics of a magnetic Ericsson refrigeration cycle affected by multi-irreversibilities [J]. Energy Res. Technol., 2003, 125: 318-324.
    [18] He J, Chen J, Wu C. Heat-transfer effect on the performance of a magnetic Ericsson refrigerator [J]. Non-Equilib. Thermodyn., 2002, 27: 57-69.
    [19] Chen J, Yan Z. The effect of thermal resistances and regenerative losses on the performance characteristics of a magnetic Ericsson refrigeration cycle [J]. J. Appl. Phys., 1998, 84: 1791-1795.
    [20] Wu F, Chen L, Wu C, Sun F, Zhu Y. Optimizaton of irreversible magnetic Stirling cryocoolers [J]. Int. J. Eng. Sci., 2001, 39: 361-368.
    [21] Chen L, Yan Z. Main characteristics of a Brayton refrigeration cycle of paramagnetic salt [J]. J. Appl. Phys., 1994, 73: 1249-1253.
    [22] Wu C, Chen L, Chen J. Recent advances in Finite-Time thermodynamics [M]. Nova Sci. Publishers, New York, 1999.
    [23] Yang Y, Chen J, He J, Bruck E. Parametric optimum analysis of an irreversible regenerative magnetic Brayton refrigeration cycle [J]. Physica B, 2005, 364: 33-42.
    [24] Zhang Y, Lin B H, Chen J C. Optimum performance analysis of a two-stage irreversible magnetization Brayton refrigeration system [J], J. Phys. D: Appl. Phys., 2006, 39: 4293–4298.
    [25] Pathria R K. Statistical Mechanics [M]. 2th Edition, Pergamon Press, Oxford. 1972.
    [26] Bard S. Improving adsorption cryocoolers by multistage compression and reducing void volume [J]. Cryogenics, 1986, 26: 450-458.
    [1] Aragon-Gonzalez G, Canales-Palma A, Leon-Galicia A. A criterion to maximize the irreversible efficiency in heat engines [J]. J. Phys. D: Appl. Phys., 2003, 36: 280-287.
    [2] Blank D A. Analysis of a combined law power-optimized open Joule-Brayton heat engine cycle with a finite interactive heat source [J]. J. Phys. D: Appl. Phys., 1999, 32: 769-776.
    [3] Wu C, Chen L, Sun F. Performance of a regenerative Brayton heat engine [J]. Energy, 1996, 21: 71-76.
    [4] Wu C, Kiang R. Performance of a nonisentropic Brayton cycle [J]. Trans. ASME, J. Energy Gas Turbine Power, 1991, 113: 501-503.
    [5] Aragon-Gonzalez G, Canales-Palma A, Leon-Galicia A. Maximum irreversible work and efficiency in power cycles [J]. J. Phys. D: Appl. Phys., 2000, 33: 1403-1409.
    [6] Chen L, Zheng J, Sun F, Wu C. Optimal distribution of heat exchanger inventory for power density optimization of an endoreversible closed Brayton cycle [J]. J. Phys. D: Appl. Phys., 2001, 34: 422-437.
    [7] Bejan A. Theory of heat transfer- irreversible power plants II: The optimal allocation of heat exchange equipment [J]. Int. J. Heat Mass Transfer, 1995, 38: 433-444.
    [8] Perez-Grande I, Leo T J. Optimization of a commercial aircraft environmental control system [J]. Appl. Thermal Eng., 2002, 22: 1885-1904.
    [9] Huang Y C, Hung C I, Chen C K. An ecological exergy analysis for an irreversible- Brayton engine with an external heat source [J]. Proc. Inst. Mech. Eng., Part A-J. Power and Energy,2000, 214: 413-421.
    [10] Chen L, Sun F, Wu C, Kiang R. Theoretical analysis of the performance of a regenerative closed Brayton cycle with internal irreversibilities [J]. Energy Convers. Mgmt., 1997, 36: 871-877.
    [11] Sahin B, Kodal A, Kaya S S. A comparative performance analysis of irreversible regenerative reheating Joule- Brayton engines under maximum power density and maximum power conditions [J]. J. Phys. D: Appl. Phys., 1998, 31: 2125-2131.
    [12] Goktun S, Yavuz H. Thermal efficiency of a regenerative Brayton cycle with isothermal heat addition [J]. Energy Convers. Mgmt., 1999, 40: 1259-1266.
    [13] Erbay L, Goktun S, Yavuz H. Optimal design of the regenerative gas turbine engine with isothermal heat addition [J]. Appl. Energy, 2001, 68: 249-264.
    [14] Chen L, Wang W, Sun F, Wu C. Closed intercooled regenerator Brayton-cycle with constant-temperature heat-reservoirs [J]. Appl. Energy, 2004, 77: 429-446.
    [15] Sahin B, Kodal A, Yavuz H. Efficiency of a Joule- Brayton engine at maximum power density [J]. J. Phys. D: Appl Phys., 1995, 28: 1309-1313.
    [16] Sahin B, Kodal A, Yilmaz T, Yavuz H. Maximum power density analysis of an irreversible Joule- Brayton engine [J]. J. Phys. D: Appl. Phys., 1996, 29: 1162-1167.
    [17] Cheng C, Chen C. Ecological optimization of an irreversible Brayton heat engine [J]. J. Phys. D: Appl. Phys., 1999, 32: 350-357.
    [18] Bejan A. Advanced Engineering Thermodynamics [M]. New York: Wiley, 1988.
    [19] Chen J. The maximum power output and maximum efficiency of an irreversible Carnot heat engine [J]. J. Phys. D: Appl. Phys., 1994, 27: 1144-1149.
    [20] Chen J, Yan Z. Unified description of endoreversible cycles [J]. Phys. Rev. A, 1989, 39: 4140-4147.
    [21] Wu C, Chen L, Chen J. Recent Advances in Finite-Time Thermodynamics [M]. New York: Nova Sci. Publishers, Inc. 1999.
    [22] Lee G, Kang B, Lee J. Effectiveness enhancement of a thermal regenerator in an oscillating flow [J]. Appl. Thermal Eng., 1998, 18: 653-660.
    [23] Cheng C, Chen C. Power optimization of an irreversible Brayton heat engine [J]. Energy source, 1997, 19: 461-474.
    [24] Cheng C, Chen C. Efficiency optimization of an irreversible Brayton heat engine [J]. Energy source Trans. ASME, J. Energy Res. Tech., 1998, 120: 143-148.
    [25] Chen L, Zheng J, Sun F, Wu C. Performance comparison of an endoreversible closed variable temperature heat reservoir Brayton cycle under maximum density and maximum power conditions [J]. Energy Convers. Mgmt., 2002, 43: 33-43.
    [26] Zhou Y, Tyagi S, Wu C, Chen J. Some optimum criteria on the performance parameters of an irreversible Brayton heat engine [J]. Int. J. Ambient Energy, 2004, 26: 37-44.
    [1] Chen J, Yan Z. Equivalent combined systems of three-heat sources heat pumps [J]. J Chem. Phys., 1989, 92: 4951–4955.
    [2] Gordon J M, Zarmi Y. Wind energy as a solar-driven heat engine: a thermodynamic approach [J]. Am. J. Phys., 1989, 57: 995–998.
    [3] Yan Z, Chen J. The maximum overall coefficient of performance of a solar-driven heat pump system [J]. J. Appl. Phys., 1994, 76: 8129-8134.
    [4] Bejan A. Entropy generation minimization: the new thermodynamics of finite size devices and finite time process [J]. Appl. Phys., 1996, 79: 1191-1218.
    [5] Kribus A. A high-efficiency triple cycle for solar power generation [J]. Sol. Energy, 2002, 72: 1-11.
    [6] Scherrer H, Vikhor L, Lenoir B, Dauscher A, Poinas P. Solar thermoelectric generator based on skutterudites [J]. J Power, Sources, 2003, 115: 141-148.
    [7] Bejan A. Advanced Engineering Thermodynamics [M]. 2nd edn ,New York: Wiley, 1996.
    [8] De Vos A. Endoreversible Thermodynamics of Solar Energy Conversion [M]. Oxford: Oxford University Press, 1992.
    [9] Gordon J M. On optimized solar-driven heat engines [J]. Sol. Energy, 1988, 40: 457-461.
    [10] Chen J. Optimization of a solar-driven heat engine [J]. J. Appl. Phys., 1992, 72: 3778-3780.
    [11] Chen J. Thermodynamic analysis of a solar-driven thermoelectric generator [J]. J. Appl. Phys., 1996, 79: 2717-2721.
    [12] Yan Z, Chen J. Optimal performance of a solar-driven heat engine system at maximum overall efficiency [J]. Int. J. Power & Energy Syst., 1997, 17: 103-106.
    [13] Salah El-Din M M. Thermodynamic optimization of irreversible solar heat engines [J]. Renewable Energy, 1999, 17: 183-190.
    [14] Zheng S, Chen J, Lin G. Performance characteristics of an irreversible solar-driven Braysson heat engine at maximum efficiency [J]. Renewable Energy, 2005, 30: 601-610.
    [15] Badescu V. Optimization of Stirling and Ericsson cycles using solar radiation [J]. Space Power, 1992, 11: 99-106.
    [16] Chen J, Yan Z, Chen L, Andresen B. Efficiency bound of a solar-driven stirling heat engine system [J]. Int. J. Energy Res., 1998, 22: 805-812.
    [17] Frost T H, Anderson A, Agnew B. A hybrid gas turbine cycle (Brayton / Ericsson): an alternative to conventional combined gas and steam turbine power plant [J]. Proc. Inst. Mech. Engrs., Part A, 1997, 211: 121-131.
    [18] Kandpal T C, Singhal A K, Mathur S S. Optimum power from a solar thermal power plant using solar concentrators [J]. Energy Convers. Mgmt., 1983, 23: 103-106.
    [19] Bhowmik N C, Mathur S S, Kandpal T C. Operating temperatures of linear solar concentrators for optimum power output [J]. Energy Convers. Mgmt., 1985, 25: 175-177.
    [20] Chen J, Yan Z. Unified description of endoreversible cycles [J]. Phys. Rev. A, 1989, 39: 4140-4147.
    [21] Wu C, Chen L, Chen J. Recent Advances in Finite-Time Thermodynamics [M]. New York: Nova Sci. Publishers Inc., 1999.
    [22] Wu C, Kiang L. Finite-time thermodynamic analysis of a Carnot engine with internal irreversibility [J]. Energy, 1992, 17: 1173-1178.
    [23] Ibrahim O M, Klein S A, Mitchell J W. Efficiency of irreversibility and economics on the performance of a heat engine [J]. J. Sol. Energy Eng., 1992, 114: 267–271.
    [24] Zhou Y. Tyagi S K, Chen J. Performance analysis and optimum criteria of an irreversible Braysson heat engine [J]. Int. J. Therm. Sci., 2004, 43: 1101-1106.
    [25] Zhang Y, Lin B H, Chen J. The unified cycle model of a class of solar-driven heat engines and their optimum performance characteristics [J]. J. Appl. Phys., 2005, 97: 084905.
    [26] Zhang Y, Lin B H, Chen J. Optimum performance characteristics of an irreversible solar-driven Brayton heat engine at the maximum overall efficiency [J]. Renewable Energy, 2007, 32: 856-867.
    [27] Zhang Y, Chen J. The thermodynamic performance analysis of an irreversible space solar dynamic power Brayton cycle [J]. Journal of Solar Energy Engineering, 2006, 128: 409-413.
    [1] Doering C R, Horsthemke W, Riordan J. Nonequilibrium fluctuation-induced transport [J]. Phys. Rev. Lett., 1994, 72: 2984-2987.
    [2] Millonas M M. Self-consistent microscopic theory of fluctuation-induced transport [J]. Phys. Rev. Lett., 1995, 74: 10-13.
    [3] Cecchi G, Magnasco M O. Negative resistance and rectification in Brownian transport [J]. Phys. Rev. Lett., 1996, 76: 1968-1971.
    [4] Bartussek R, Reimann P, Hanggi P. Precise numerics versus theory for correlation ratchets [J]. Phys. Rev. Lett., 1996, 76: 1166-1169.
    [5] Reimann P, Bartussek R, Haussler R, Hanggi P. Brownian motors driven by temperature oscillations [J]. Phys. Lett. A, 1996, 215: 26-31.
    [6] Bier M. Reversal of noise induced flow [J]. Phys. Lett. A, 1996, 211: 12-18.
    [7] Bao J D, Zhuo Y Z, Wu X Z. Diffusion current for a system in a periodic potential driven by additive colored noise [J], Phys. Lett. A, 1996, 215: 154-159.
    [8] Slater G W, Guo H L, Nixon G I, Bidirectional transport of polyelectrolytes using self-modulating entropic ratchets [J]. Phys. Rev. Lett., 1997, 78: 1170-1173.
    [9] Astumian R D, Bier M. Fluctuation driven ratchets: molecular motors [J]. Phys. Rev. Lett., 1994, 72: 1766-1769.
    [10] Prost J, Chauwin J F, Peliti L, Ajdari A. Asymmetric pumping of particles [J]. Phys. Rev. Lett., 1994, 72: 2652-2655.
    [11] Maddox J. More models of muscle contraction [J]. Nature, 1994, 368: 287.
    [12] Maddox J. Directed motion from random noise [J]. Nature, 1994, 369: 181.
    [13] Rousselet J, Salome L, Ajdari A, Prost J. Directional motion of Brownian particles induced by a periodic asymmetric potential [J]. Nature, 1994, 370: 446.
    [14] Doering C, Ermentrout B, Oster G, Rotary DNA motors [J]. Biophys. J., 1995, 69: 2256.
    [15] Jung P, Kissner J G, Hanggi P. Regular and chaotic transport in asymmetric periodic potentials: inertia ratchets [J]. Phys. Rev. Lett., 1996, 76: 3436-3439.
    [16] Ibarra Bracamontes L, Romero Rochin V. Stochastic ratchets with colored noise [J]. Phys. Rev. E, 1997, 56: 4048-4051.
    [17] Magnasco M O. Szilard’s heat engine [J]. Europhys. Lett., 1996, 33: 583-588.
    [18] Julicher F, Prost J. Cooperative molecular motors [J]. Phys. Rev. Lett., 1995, 75: 2618-2621
    [19] Bao J D, Abe Y, Zhuo Y Z. Rocked quantum periodic systems in the presence of coordinate-dependent friction [J]. Phys. Rev. E, 1998, 58: 2931-2937.
    [20] Bao J D. Directed current of Brownian ratchet randomly circulating between two thermal sources [J]. Physica A, 1999, 273: 286-293.
    [21] Zhang Y, Lin B H, Chen J C. Performance characteristics of an irreversible thermally driven Brownian microscopic heat engine [J]. Euro. Phys. J. B, 2006, 53: 481-485.
    [22] 黄祖治,丁鄂江.输运理论 [M]. 科学出版社,1987.
    [23] Einstein A, Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen [J]. Ann. Phys. (Leipzig) 1905, 17: 549-560.
    [24] Gardiner C W. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Science [M]. Springer-Verlag, Berlin Heidelberg New York Tokyo, 1985.
    [25] Langevin P. Sur la theorie du mouvement brownien [J]. Comptes Rendus, 1908, 146: 530–533.
    [26] Kelly T R, De Silva H, Silva R A. Unidirectional rotary motion in a molecular system [J]. Nature, 1999, 401: 150-152.
    [27] Li J W, Tan W H. A single DNA molecule nanomotor [J]. Nano letters, 2002, 2: 315-318.
    [28] 赵同军, 李微, 韩英荣, 卓益忠. 分子马达动力学 [J]. 原子核物理评论, 2004, 21: 177-179.
    [29] 卓益忠, 赵同军, 展永. 分子马达与布朗马达 [J]. 物理, 2000, 29:712-718.
    [30] Buttiker M. Transport as a consequence of state dependence diffusion [J]. Z. Phys. B, 1987, 68: 161-167.
    [31] Van Kampen N G. Relative stability in nonuniform temperature [J]. IBM J. Res. Develop., 1988, 32: 107-111.
    [32] Landauer R. Motion out of noisy states [J]. J. Stat. Phys. 1988, 53: 233-248.
    [33] Derenyi I, Astumian R D. Efficiency of Brownian heat engines [J]. Phys. Rev. E, 1999, 59: R6219-R6222.
    [34] Ai B Q, Xie H Z, Wen D H, Liu X M, Liu L G. Heat flow and efficiency in a microscopic engine [J]. Eur. Phys. J. B, 2005, 48: 101-106.
    [35] Matsuo M, Sasa S. Stochastic energetics of non-uniform temperature systems [J]. Physica A, 2000, 276: 188-200.
    [36] Velasco S, Roco J M M, Medina A, Calvo Hernandez A. Feynman's ratchet optimization: maximum power and maximum efficiency regimes [J]. J. Phys. D, 2001, 34: 1000-1006.
    [37] Derenyi I, Bier M, Astumian R D. Generalized efficiency and its application to microscopic engines [J]. Phys. Rev. Lett., 1999, 83: 903-906.
    [38] Asfaw M, Bekle M. Current, maximum power and optimized efficiency of a Brownian heatengine [J]. Eur. Phys. J. B, 2004, 38: 457-561.
    [39] Humphrey T E, Newbury R, Taylor R P, Linke H. A reversible quantum Brownian heat engine for electrons [J]. Phys. Rev. Lett. 2002, 89: 116801.
    [40] Reimann P, Bartussek R, Haubler R, Hanggi P. Brownian motors driven by temperature oscillations [J]. Phys. Lett. A, 1996, 215: 26-31.
    [41] Bao J D. Directed current of Brownian ratchet randomly circulating between two thermal sources [J]. Physica A, 1999, 273: 286-293.
    [42] Muller A W J. Thermosynthesis by biomembranes: energy gain from cyclic temperature changes [J]. J Theor Biol., 1985, 115: 429-453.
    [43] Marchesoni F. Savel’ev S and Nori F. Achieving optimal rectification using underdamped rocked ratchers [J]. Phys. Rev. E, 2006, 73: 021102.
    [44] Wang H Y, Bao J D. Cooperation behavior in transport process of coupled Brownian motors [J]. Physica A, 2005, 357: 373-382.
    [45] Freund J A, Schimansky-Geier L. Diffusion in discrete ratchets [J]. Phys. Rew. E, 1999, 60: 1304-1309.
    [46] Mannella R, Palleschi V. Fast and precise algorithm for computer simulation of stochastic differential equations [J]. Phys. Rev. A, 1989, 40: 3381-3386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700