基于Copula的海洋生态稳态转换及Lyapunov指数回归树估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
覆盖地球表面积72%的海洋是我们赖以生存的全球生态系统的重要组成部分。在过去10多年中,海洋生态系统研究在国内外都受到较多的关注,取得重大进展。在国际上,联合国和IGBP/SCOR/IOC/UNEP/UNDP等许多重要国际组织、强调海洋生态系统功能研究的重要意义。在国内,国家实施了一系列有关的重大海洋科学计划,如国家973计划、基金重大和重点项目以及有关的国家专项等。我国科学家关注并积极参与国内外的研究发展,开始探讨海洋多学科交叉与整合研究的科学思路。本文首次利用统计学Copula理论计算海洋生态稳态转移概率,提出时间序列Lyapunov指数的回归树估计方法,整合各种检验方法选择预测模型。所做的创新性工作如下:
     将生态模型分岔参数(如总氮和捕捞强度)看作随机变量,基于历史数据以Copula理论计算得到分岔参数的概率分布。将传统动力学每一个分岔区域看成动力系统的一个状态,建立状态转移的齐次马尔科夫链模型。运用蒙特卡罗方法计算一个区域转移到其它区域的概率,得到转移概率矩阵,再计算多稳态转换的平稳概率,给出分岔参数调整的明确建议值,使理想状态的平稳概率(停留时间越长)最大化,从而为海洋生态系统的管理提供理论依据。
     基于相空间重构,运用随机梯度Boosting算法,从回归树的线性组合中直接计算时间序列的最大Lyapunov指数。该方法不用计算估计函数的雅可比矩阵,继承了随机梯度Boosting算法的许多优点,如较高的预测精度,容易处理高维数据等。随机模拟结果表明该方法非常接近真值,而且具有较小的标准误,对于噪声和嵌入维数都很稳健,在实际运用中具有很大的优点。
     采用BDS、Box-Pierce和Ljung-Box独立性检验1995—2005年渤海COD浓度历史数据存在相关性,考虑非线性检验代替数据检验IAAFT、White和Terasvirta人工神经网络弱非线性检验、Hinich双谱检验以及无Fourier变换检验。统计量选取本文最大Lyapunov指数回归树估计,都不能判断出渤海COD存在非线性相关。综合比较线性ARMA、局部线性、规则集成、随机森林、随机梯度Boosting、支持向量、人工神经网络、自适应样条8种预测方法。结果表明线性ARMA模型误差均值和方差最小,证明线性ARMA模型比其它方法更适合渤海COD数据,确实证明前面各种非线性检验结果的可靠性。
Marine, covered 72 percent surface of the earth, is the key part of the globalecosystem. In the past ten years, more attention has been paid to marine ecosystemresearch and great progress was achieved. Many famous international organizations,like The United Nations, GBP, SCOR, IOC, UNEP and UNDP, are emphasizing theimportance of marine ecosystem function study. Major programs about marine science,such as national 973 plan, foundation projects and national special fund, were carriedout in China. Our scientist noticed and took part in the development and began to seekcross-disciplinary and integration about marine system. This paper originally calcu-lated regime shift probability by statistical method-Copula, proposed regression treeestimation of Lyapunov exponent from time series and unified several statistical tests tochoose forecast model. Original work is listed as below:
     Taking bifurcation parameter of ecological model like total nitrogen and fishingintensity as stochastic variable, their probability distribution were estimated by Copulabased on yearly data. State transfer was modeled by homogeneous Markov chain ifevery traditional bifurcation region was regarded as a state. Transfer probability matrixwas calculated by Monte Carlo. Stable probability was clear sequently. The adjustmentof bifurcation parameter was suggested to make ideal state probability maximization,which provided theory evidence for marine ecosystem manager.
     Based on phase space reconstruction, largest Lyapunov exponent of time series wascomputed from linear combination of regression tree using stochastic gradient boosting.Our method, without using Jacobin matrix, inherit many virtues of stochastic gradientboosting like perfect prediction precision and easily dealing with higher dimension.Simulation showed that the method got very close to the true value, had smaller standarderror and was robust to noise and embedding dimension, so it is convenient in practice.
     Dependence was tested in Bohai COD from 1995 to 2005 by BDS, Box-pierceand Ljunng-Box independence test. Considering surrogate data test IAAFT for nonlin-earity, White’s and Teravirta’s artificial neuron network test for neglected nonlinearity,Hinich’s bispectrum test and a test without Fourier transfer, no nonlinearity was madeout. The statistic was Lyapunov exponent from regression tree. The mean error andstandard error of linear ARMA model were the minimum comparing local linear, ruleensemble, random forest, stochastic gradient boosting, support vector, artificial neuron network and multivariate adaptive regression splines. So linear ARMA model fittedbetter, which testified former tests result.
引文
[1]吴亚东,孙世新.低分辨率小规模网络流量数据的混沌特性鉴别[J].计算机应用研究, 2005(9):247–249.
    [2]张宾. Lyapunov特性指数的算法研究及其在弱信号混沌检测中的应用[D].长春:吉林大学, 2004.
    [3] May R M. Thresholds and breakpoints in ecosystems with a multiplicity of stablestates[J]. Nature, 1977, 269(5628):471–477.
    [4] Mantua N. Methods for detecting regime shifts in large marine ecosystems: areview with approaches applied to North Pacific data [review article][J]. Progressin Oceanography, 2004, 60:165–182.
    [5] Rothschild B J, Shannon L J. Regime shifts and fishery management [reviewarticle][J]. Progress in Oceanography, 2004, 60:397–402.
    [6] Scheffer M, Hosper S H, Meijer M L, et al. Alternative Equilibria in ShallowLakes[J]. Trends in Ecology & Evolution, 1993, 8(8):275–279.
    [7] Morris K, Boon P I, Bailey P C, et al. Alternative stable states in the aquaticvegetation of shallow urban lakes. I. Effects of plant harvesting and low-levelnutrient enrichment[J]. Marine and Freshwater Research, 2003, 54(3):185–200.
    [8] Chase J M. Experimental evidence for alternative stable equilibria in a benthicpond food web[J]. Ecology Letters, 2003, 6(8):733–741.
    [9] Knowlton N. Multiple’stable’states and the conservation of marine ecosystems[J]. Progress in Oceanography, 2004, 60(2-4):387–396.
    [10] Knowlton N. Thresholds and Multiple Stable States in Coral Reef CommunityDynamics[J]. American Zoologist, 1992, 32(6):674–682.
    [11] Scheffer M. Fish and Nutrients Interplay Determines Algal Biomass - a MinimalModel[J]. Oikos, 1991, 62:271–282.
    [12]秦伯强,胡维平,陈伟民.太湖水环境演化过程与机理[M].北京:科学出版社, 2004.
    [13] Durrleman E A, Nikeghbali A. Copulas for Finance: A Reading Guide and SomeApplications[R]. London: Working Paper of City University Business School,2000.
    [14] Chen X H, Fan Y Q. Estimation and model selection of semiparametric copulabasedmultivariate dynamic models under copula misspecification[J]. Journal ofEconometrics, 2006, 135(1-2):125–154.
    [15] Chen X H, Fan Y Q, Tsyrennikov V. Efficient estimation of semiparametricmultivariate copula models[J]. Journal of the American Statistical Association,2006, 101(475):1228–1240.
    [16] Grimaldi S, Serinaldi F. Asymmetric copula in multivariate flood frequency analysis[J]. Advances in Water Resources, 2006, 29(8):1155–1167.
    [17] Jaworski P. On value at risk for foreign exchange ratesThe copula approach[J].Acta Physica Polonica B, 2006, 37(11):3005–3015.
    [18] Pitt M, Chan D, Kohn R. Efficient Bayesian inference for Gaussian copula regressionmodels[J]. Biometrika, 2006, 93(3):537–554.
    [19] Shen C Y, Weissfeld L. A copula model for repeated measurements with nonignorablenon-monotone missing outcome[J]. Statistics In Medicine, 2006,25(14):2427–2440.
    [20] Yang J P, Cheng S H, Zhang L H. Bivariate copula decomposition in terms ofcomonotonicity, countermonotonicity and independence[J]. Insurance Mathematics& Economics, 2006, 39(2):267–284.
    [21]韦艳华,张世英,孟利锋. Copula理论在金融上的应用[J].西北农林科技大学学报, 2003, 3(5):27–30.
    [22]韦艳华. copula理论及其在多变量金融时间序列分析上的应用研究[D].天津:天津大学, 2004.
    [23]罗俊鹏. Copula理论及其金融分析中的应用研究[D].天津:天津大学, 2006.
    [24]罗薇,刘建平,何山.基于copula理论的金融风险分析[J].统计与决策,2006(8):126–129.
    [25]李健伦,方兆本,鲁炜,等. Copula方法与相依违约研究[J].运筹与管理,2005(3):46–49.
    [26]类淑志.整合省级银监局三项风险分析职能的思考[J].济南金融,2005(7):45–48.
    [27]吴振翔,陈敏,叶五一,等.基于Copula-GARCH的投资组合风险分析[J].统工程理论与实践, 2006(3):43–46.
    [28] Brock D W, W.A., Scheinkman J. A test for independence based on the correlationdimension[R].[S.l.]: University of Wisconsin-Madison and University ofChicago, 1986.
    [29] Theiler J, Eubank S, Longtin A, et al. Testing for nonlinearity in time series: themethod of surrogate data[J]. Physica D Nonlinear Phenomena, 1992, 58:77–94.
    [30] Schreiber T, Schmitz A. Improved Surrogate Data for Nonlinearity Tests[J].Phys. Rev. Lett., 1996, 77(4):635–638.
    [31] Unsworth C P, Cowper M R, Mulgrew B, et al. Improved surrogate data testsfor sea clutter[J]. IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION,2001, 148(3):112–118.
    [32] Kugiumtzis D. Surrogate data test for nonlinearity including nonmonotonictransforms[J]. Phys. Rev. E, 2000, 62(1):R25–R28.
    [33] Schreiber T. Constrained Randomization of Time Series Data[J]. Phys. Rev.Lett., 1998, 80(10):2105–2108.
    [34] Liu Y Z, Wen X S, Hu N Q. Surrogate data test for the linear non-Gaussian timeseries with non-minimum phase[J]. ACTA PHYSICA SINICA, 2001, 50(4):633–637.
    [35] Unsworth C P, Cowper M R, McLaughlin S, et al. A new method to detectnonlinearity in a time-series: synthesizing surrogate data using a Kolmogorov-Smirnoff tested, hidden Markov model[J]. Physica D: Nonlinear Phenomena,2001, 155(1-2):51–68.
    [36] White H. An additional hidden unit test for neglected nonlinearity in multilayerfeedforward networks[C]//Proceedings of the International Joint Conference onNeural Networks. New York: IEEE Press, 1989,2:451–455.
    [37] TSAY R S. Nonlinearity tests for time series[J]. Biometrika, 1986, 73(2):461–466.
    [38] Engle R. Autorregressive Conditional Heteroskedasticity with Estimates ofUnited Kingdom Inflation[J]. Econometrica, 1982, 50:987–1008.
    [39] Hinich M. Testing for Gaussianity and linearity of a stationary time series[J].Journal of Time Series Analysis, 1982, 3(3):169–176.
    [40] McLeod W, A.I. & Li. Diagnostic checking ARMA time series models usingsquared-residual autocorrelations[J]. Journal of Time Series Analysis, 1983,4:269–273.
    [41] Sprott J C. Chaos and Time-Series Analysis[M]. New York: Oxford UniversityPress, 2003.
    [42] Benettin G, Galgani L, Giorgilli A, et al. Lyapunov Characteristic Exponents forsmooth dynamical systems and for hamiltonian systems; A method for computingall of them. Part 2: Numerical application[J]. Meccanica, 1980, 15(1):21–30.
    [43] Eckmann J P, Ruelle D. Ergodic theory of chaos and strange attractors[J]. Rev.Mod. Phys., 1985, 57(3):617–656.
    [44] Geist K, Parlitz U, Lauterborn W. Comparison of Different Methods for Com-puting Lyapunov Exponents[J]. Progress of Theoretical Physics, 1990k, 83:875–893.
    [45] Wolf A, Swift J, Swinney H, et al. Determining Lypunov exponents from a timeseries[J]. Physica D, 1985, 16:285–317.
    [46] Kantz H. A robust method to estimate the maximal Lyapunov exponent of a timeseries[J]. Physics Letters A, 1994, 185:77–87.
    [47] Ellner S, Gallant A R, MeCaffrery D, et al. Converge Rates and Data Requirementsfor Jacobian-based Estimates of Lyapunov Exponents from Data[J]. Phys.Lett. A, 1991, 153:357–363.
    [48] Eckmann J P, Kamphorst S O, Ruelle D, et al. Lyapunov exponents from timeseries[J]. Phys. Rev. A, 1986, 34:4971–4972.
    [49] Nychka D, Ellner S, Gallant A, et al. Finding Chaos in Noisy Systems[J]. J. R.Stat. Soc. B, 1992, 54(2):399–426.
    [50] Shuai J W, Lian J, Hahn P J, et al. Positive Lyapunov exponents calculated fromtime series of strange nonchaotic attractors[J]. Phys. Rev. E, 2001, 64(2):026220.
    [51] Abarbanel H. Analysis of Observed Chaotic Data[M]. New York: Springer-Verlag, 1995.
    [52] D¨unki R M. Largest Lyapunov-exponent estimation and selective prediction bymeans of simplex forecast algorithms[J]. Phys. Rev. E, 2000, 62(5):6505–6515.
    [53] Lewontin R C. The meaning of stability[J]. Brookhaven symposia in biology,1969, 22:13–24.
    [54] Holling C S. Resilience and Stability of Ecological Systems[J]. Annual Reviewof Ecology and Systematics, 1973, 4:1–23.
    [55] Law R, Morton R D. Alternative Permanent States of Ecological Communities[J]. Ecology, 1993, 74(5):1347–1361, July 01, 1993.
    [56] Case T J, Casten R G. Global Stability and Multiple Domains of Attraction inEcological Systems[J]. The American Naturalist, 1979, 113(5):705–714.
    [57] GILPIN M E, CASE T J. Multiple domains of attraction in competition communities[J]. Nature, 1976, 261(5555):40–42.
    [58] Noy-Meir L. Stability of Grazing Systems: An Application of Predator-PreyGraphs[J]. The Journal of Ecology, 1975, 63(2):459–481.
    [59] Janse J. A model of nutrient dynamics in shallow lakes in relation to multiplestable states[J]. Hydrobiologia, 1996, 342-343:1–8.
    [60] Nes E v, Scheffer S v d, M.and Berg, Coops H. Dominance of charophytes ineutrophic shallow lakes : when should we expect it to be an alternative stablestate?[J]. Aquatic Botany, 2002, 72:275–296.
    [61] van Nes E H, Scheffer M. Large Species Shifts Triggered by Small Forces[J].The American Naturalist, 2004, 164:255–266.
    [62] Suding KN, Gross KL, Houseman GR. Alternative states and positive feedbacksin restoration ecology[J]. Trends in Ecology & Evolution, 2004, 19(1):46–53.
    [63] Scheffer M, Carpenter S R, J.A.Foley, et al. Catastrophic Shifts in Ecosystems[J].Nature, 2001, 413(11):591–596.
    [64] Maler K G. Development, ecological resources and their management: A studyof complex dynamic systems[J]. European Economic Review, 2000, 44(4-6):645–665.
    [65] Collie J S, Richardson K, Steele J H. Regime shifts: Can ecological theoryilluminate the mechanisms? [review article][J]. Progress in Oceanography, 2004,60:281–302.
    [66] Petraitis P S, Dudgeon S R. Detection of alternative stable states in marine communities[J]. Journal of Experimental Marine Biology and Ecology, 2004, 300(1-2):343–371.
    [67]冯剑丰.浮游生态系统非线性动力学与赤潮的预测预警研究[D].天津:天津大学, 2006.
    [68] deYoung B, Harris R, Alheit J, et al. Detecting regime shifts in the ocean: Dataconsiderations [review article][J]. Progress in Oceanography, 2004, 60:143–164.
    [69] Scheffer M, Carpenter S. Catastrophic regime shifts in ecosystems: linking theoryto observation[J]. Trends in Ecology and Evolution, 2003, 18(12):648–656.
    [70] Done T J. Phase shifts in coral reef communities and their ecological significance[J]. Hydrobiologia, 1992, 247(1):121–132.
    [71] Hughes T P. Catastrophes, Phase Shifts, and Large-Scale Degradation of aCaribbean Coral Reef[J]. Science, 1994, 265(5178):1547–1551, September 9,1994.
    [72] Johnson C R, Mann K H. Diversity, Patterns of Adaptation, and Stability of NovaScotian Kelp Beds[J]. Ecological Monographs, 1988, 58(2):129–154, June 01,1988.
    [73] Dudgeon S, Petraitis P S. Scale-Dependent Recruitment And Divergence OfIntertidal Communities[J]. Ecology, 2001, 82(4):991–1006, April 01, 2001.
    [74] Peterson C H. Does a Rigorous Criterion for Environmental Identity Precludethe Existence of Multiple Stable Points?[J]. The American Naturalist, 1984,124(1):127–133.
    [75] Cury P, Shannon L. Regime shifts in upwelling ecosystems: observed changesand possible mechanisms in the northern and southern Benguela [review article][J]. Progress in Oceanography, 2004, 60:223–243.
    [76] GragnaniMR S, A.; Scheffer. Top-down control of cyanobacteria : A theoreticalanalysis[J]. American Naturalist, 1999, 153:59–72.
    [77] Christensen V, Walters C J. Ecopath with Ecosim: methods, capabilities andlimitations[J]. Ecological Modelling, 2004, 172(2-4):109–139.
    [78] Perez E H. Ecological importance of snappers in the stability of modeled coastalecosystems[J]. Ecological Modelling, 2003, 168(12):13–24.
    [79] Steele J H. Regime shifts in the ocean: reconciling observations and theory[review article][J]. Progress in Oceanography, 2004, 60:135–141.
    [80] Beisner B, Haydon D, Cuddington K. Alternative stable states in ecology[J].Frontiers in Ecology and the Environment, 2003, 1(7):376–382, September 01,2003.
    [81]朱位秋.非线性随机动力学与控制――Hamilton理论体系框架[M].北京:科学出版社, 2002.
    [82]李秋华,黄伟建,骆育敏.大鹏湾夜光藻赤潮发生风险率的随机过程分析[J].生态科学, 2003, 22(3):242–244.
    [83] Zhou S, Dichmont C, Burridge C Y, et al. Is catchability density-dependent forschooling prawns?[J]. Fisheries Research, 2007, 85(1-2):23–36.
    [84] Walker D M, Perez-Barberia F, Marion G. Stochastic modelling of ecologicalprocesses using hybrid Gibbs samplers[J]. Ecological Modelling, 2006, 198(1-2):40–52.
    [85] Guttal V, Jayaprakash C. Impact of noise on bistable ecological systems[J]. EcologicalModelling, 2007, 201(3-4):420–428.
    [86] Nelsen R. An Introduction to Copulas[M]. Berlin: Springer, 1998.
    [87] Scheffer M, Rinaldi S, Kuznetsov Y A. Effects of fish on plankton dynamics:a theoretical analysis[J]. Canadian Journal of Fisheries and Aquatic Sciences,2000, 57:1208–1219.
    [88] Dhooge A, Govaerts W, Kuznetsov Y A. MATCONT: A MATLAB package fornumerical bifurcation analysis of ODEs[J]. ACM Transactions on MathematicalSoftware, 2003, 29(2):141–164.
    [89] Rosenzweig M L. The paradox of enrichment: Destabilization of exploitationecosystems[J]. Science, 1971, 171:385–387.
    [90] Caughley G, Lawton. J H. Plant-herbivore systems[M]. Oxford: Blackwell ScientificPublications, 1981.
    [91] Joe H. Multivariate models and dependence concepts[M]. London: Chapmanand Hall, 1999.
    [92] ThodeJr H C. Testing for Normality[M]. New York.: Marcel Dekker, 2002.
    [93] Genest C, Quessy J F, Remillard B. Goodness-of-fit procedures for copula modelsbased on the probability integral transformation[J]. Scandinavian Journal OfStatistics, 2006, 33(2):337–366.
    [94] Davison A C, Hinkley D V. Bootstrap Methods and Their Application[M]. London:Cambridge University Press, 1997.
    [95] Friedman J H. Stochastic gradient boosting[J]. Computational Statistics & DataAnalysis, 2002, 38(4):367–378.
    [96] Breiman L. Random Forests[J]. Mach. Learn, 2001, 45(1):5–32.
    [97] Breiman L, Fredman J, Olshen R, et al. Classification and Regression Trees[M].New York: Chapman and Hall, 1984.
    [98] Malerba D, Esposito F, Semeraro G. Multi-user rate-based flow control: Distributedgame-theoretic algorithms[C]//Learning From Data: Artificial Intelligenceand StatisticsStatistics V, D. Fisher and H. Lenz, eds., Lecture Notes inStatistics. Berlin: Springer: [s.n.] , 1996,112:365–374.
    [99] Quinlan J. C4.5: Programs for Machine Learning [M]. San Mateo, Calif: MorganKaufmann, 1993.
    [100] Freidman J H. Greedy function approximation: a gradient boosting machine[J].Annals of Statistics, 2001, 29:1189–1232.
    [101] Huber P. Robust estimation of a location parameter[J]. Annals of MathematicalStatistics, 1964, 35:73–101.
    [102] Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning[M].Berlin: Springer-Verlag, 2001.
    [103] Kwiatkowski D, Phillips P C B, Schmidt P, et al. Testing the Null Hypothesis ofStationarity against the Alternative of a Unit Root[J]. Journal of Econometrics,1992, 54:159–178.
    [104] Brock W A, Dechert. W D. A General Class of Specification Tests: The ScalarCase[C]//Proceedings of the American Statistical Association, Business and Eco-nomic Statistics Section. Alexandria: [s.n.] , 1988.
    [105] Lee T H, White H, Granger C W J. esting for neglected nonlinearity in timeseries models[J]. Journal of Econometrics, 1993, 56:269–290.
    [106] Lee T H, White H, Granger C W J. Testing for neglected nonlinearity in timeseries models: a comparison of neural network methods and alternative tests[J].2001:208–229.
    [107] Hinich M, Mendes E, Stone L. Detecting Nonlinearity in Time Series:Surrogate and Bootstrap Approaches[J]. Studies in NonlinearDynamics & Econometrics, 2005, 9(4):1268–1268. available athttp://ideas.repec.org/a/bep/sndecm/9200541268-1268.html.
    [108] Gencay R, Dechert W D. An algorithm for the n Lyapunov exponents of ann-dimensional unknown dynamical system[J]. Phys. D, 1992, 59(1-3):142–157.
    [109] Barna G, Tsuda I. A new method for computing Lyapunov exponents[J]. PhysicsLetters A, 1993, 175:421–427.
    [110] Rosenstein M T, Collins J J, Luca C J D. A practical method for calculatinglargest Lyapunov exponents from small data sets[J]. Phys. D, 1993, 65(1-2):117–134.
    [111] Casdagli M. Chaos and deterministic versus stochastic nonlinear modeling[J].Journal of the Royal Statistical Society: Series B, 1992, 54(2):303–328.
    [112] Kennel MB, Brown R, Abarbanel H D I. Determining embedding dimension forphase-space reconstruction using a geometrical construction[J]. Physical ReviewA, 1992, 45:3403– 3411.
    [113] Kaplan D, Glass L. Coarse grained Embeddings of Time Series: Random walks,Gaussian Random Processes and Deterministic Chaos[J]. Physica D, 1993,64:431–454.
    [114] Kaplan D. Exceptional events as evidence for determinism[J]. Physica D, 1994,73:38–48.
    [115] Nakamura T, Luo X, Small M. Testing for nonlinearity in time series without theFourier transform[J]. Physical Review E, 2005, 72(5):055201–+.
    [116] Yu D, Small M, Harrison R G, et al. Efficient implementation of the Gaussiankernel algorithm in estimating invariants and noise level from noisy time seriesdata[J]. Physical Review E, 2000, 61(4):3750–3756.
    [117] Mitschke F, M¨oller M, Lange W. Measuring filtered chaotic signals[J]. Phys.Rev. A, 1988, 37(11):4518–4521.
    [118] Friedman J H, Popescu B E. Importance Sampled Learning Ensembles[R]. StanfardUniversity: Department of Statistics, 2003.
    [119] Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal ofRoyal Statistics Society: Series B, 1996, 58:267–288.
    [120] Donoho D, Johnstone I, Kerkyacharian G, et al. Wavelet shrinkage; asymptotia?(with discussion)[J]. Journal of Royal Statistics Society: Series A, 1995, 57:201–337.
    [121] Friedman J H, Popescu B E. Gradient directed regularization[R]. Stanford Universtity:Department of Statistics, 2004.
    [122] Breiman L. Bagging Predictors[J]. Machine Learning, 1996, 26(2):123.
    [123] Friedman J H, Hall P. On Bagging and Nonlinear Estimation[R]. Stanfard Universtiy:Department of Statistics, 1999.
    [124] Y F, B. S R. A Decision-Theoretic Generalization of Online Learning and anApplication to Boosting[J]. Journal of Computer and System Sciences, 1997,55(1):119–139.
    [125] Friedman J H, Popescu B E. Predictive learning via rule ensembles[R]. StanfordUniversity: Department of Statistics, 2005.
    [126] Nguyen H N, Ohn S Y. DRFE: Dynamic Recursive Feature Elimination for geneidentification based on Random Forest[J]. NEURAL INFORMATION PROCESSING,PT 3, PROCEEDINGS, 2006, 4234:1–10.
    [127] Enot D P, Beckmann M, Draper J. On the interpretation of high throughput MSbased metabolomics fingerprints with Random Forest[J]. COMPUTATIONALLIFE SCIENCES II, PROCEEDINGS, 2006, 4216:226–235.
    [128] Barcellos L F, Ramsay P P, Madden E, et al. Random forest analysis: a novel approachfor exploring the complex genetic component in rheumatoid arthritis.[J].ARTHRITIS AND RHEUMATISM, 2006, 54(9):S132–S132.
    [129] Palmer D S, O’Boyle N M, Glen R C, et al. Random forest models to predictaqueous solubility[J]. JOURNAL OF CHEMICAL INFORMATION ANDMODELING, 2007, 47(1):150–158.
    [130] Zhang Q Y, Aires-De-Sousa J. Random forest prediction of mutagenicity fromempirical physicochemical descriptors[J]. JOURNAL OF CHEMICAL INFORMATIONAND MODELING, 2007, 47(1):1–8.
    [131] Strobl C, Boulesteix A L, Zeileis A, et al. Bias in random forest variable importancemeasures: Illustrations, sources and a solution[J]. BMC BIOINFORMAT-ICS, 2007, 8:25.
    [132] Ehrman T M, Barlow D J, Hylands P J. Virtual screening of Chinese herbs withrandom forest[J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING,2007, 47(2):264–278.
    [133] Granitto P M, Gasperi F, Biasioli F, et al. Modern data mining tools in descriptivesensory analysis: A case study with a Random forest approach[J]. FOODQUALITY AND PREFERENCE, 2007, 18(4):681–689.
    [134] Bayly C I, Brideau C, Liaw A, et al. Iterative focussed screening using RandomForest: A comparison with HTS/random screening for two extreme cases[J]. ABSTRACTSOF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006,231.
    [135] Granitto P M, Furlanello C, Biasioli F, et al. Recursive feature elimination withrandom forest for PTR-MS analysis of agroindustrial products[J]. CHEMOMETRICSAND INTELLIGENT LABORATORY SYSTEMS, 2006, 83(2):83–90.
    [136] Efron B. Bootstrap Methods: Another Look at the Jackknife[J]. The Annals ofStatistics, 1979, 7(1):1–26.
    [137] Singh K. On the Asymptotic Accuracy of Efron’s Bootstrap[J]. The Annals ofStatistics, 1981, 9(6):1187–1195.
    [138] Quinlan J. Bagging, boosting and C4.5[C]//Proc the 13”National Conferenceon Artificial Intelligence. Porland: OR, 1996:725–730.
    [139] Breiman L. Arcing classifiers[J]. Annals of Statistics, 1998, 26(3):801–849.
    [140] Freund Y. Boosting a Weak Algorithm by Majority[J]. Information and Computation,1995, 121(2):256–285.
    [141] Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer,1995.
    [142] Hegger R, Kantz H, Schreiber T. Practical implementation of nonlinear timeseries methods: The TISEAN package[J]. CHAOS, 1999, 9:413–435.
    [143] Cao L. Practical method for determining the minimum embedding dimension ofa scalar time series[J]. Physcai D, 1997, 110:43–50.
    [144] Teraesvirta T, Lin C F, , et al. Power of the Neural Network Linearity Test[J].ournal of Time Series Analysis, 1993, 14:209–220.
    [145] Box G E P, Jenkins G M, Reinsel G C. Time Series Analysis:Forecasting &Control, 3rd ed[M]. New Jersey: Prentice Hall, 1994.
    [146] Fredman J. Multivariate adaptive regression splines(with discussion)[J]. Theannals of statistics, 1991, 19:1–141.
    [147] Liaw A, Wiener M. Classification and regression by randomForest[J]. Rnews,2002, 2:18–22.
    [148] Ridgeway G. A note on out-of-bag estimation for estimating the optimalnumber of boosting iterations[M]. working paper: http://www.ipensieri.com/gregr/gbm.shtml, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700