导电高聚物中的载流子裂变和随机激光机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文由两个专题构成,包括聚合物分子中的载流子分裂和随机激光机制。
     传统上,聚合物是体现化学工业的关键领域。然而,在最近几年,聚合物却成了在物理学的基础和应用研究的重点研究对象。一方面是电致发光和光电效应为今后的光电的应用提供了新的可能。另一方面,由于聚合物的链状结构,也为基于一维结构的模型和理论提供了出色的试验材料。早期的聚合物研究集中在基态和输运性质。最近,基于激发态和动力学过程的奇异的现象开始被探测,尤其是在飞秒激光光谱的进展,使得揭示高聚物中多种光诱导的动力学过程的细节成为了可能。在这篇论文里,我们研究了高聚物中由于光诱导的载流子的结构的变化,我们的动力学模拟显示了一个特别的光诱导过程:在光激发下,高聚物分子中的载流子被分裂成两个新的载流子。一个正的双极化子裂变成两个正的单极化子,以及一个正单极化子可以裂变成一个正的双极化子和一个负的单极化子。光诱导的载流子裂变不需要一个外电场的帮助,是一个典型的对称性破缺。在凝聚态物理里,基于描述载流子性质自旋和电荷,载流子可以分为自旋载流子和电荷载流子。在无机材料中,他们的载流子有电子和空穴,都带有自旋和电荷。不同于无机材料,有机材料中的载流子是复合了晶格结构的载流子。因此,除了具有和无机材料的电子和空穴类似的具有电荷和自旋的极化子以外,在有机材料中还存在电荷而没有自旋的双极化子。结合上面发现的载流子的裂变,我们发展了ESR(电子自旋共振,电荷载流子的自旋反转)的对偶性质,自旋载流子的电荷反转。
     对于随机激光,在六十年代,Letokhov的前瞻性的工作预言了在随机的介质能实现激射现象。在上世纪80年代,Markushev在Nd掺杂的晶体粉末上观察到了激射现象,他们发现当单个晶体颗粒尺寸比光波的波长长的时候,可以将颗粒看作一个谐振腔,从此,粉末微腔激光的大量研究工作便基于此展开来。1994年Lawandy等人通过抽运随机分布的TiO微粒和Rodanmine构成的胶体溶液,在溶液的表面附近观察到了激光辐射,也就是随机激光,这也激发出了一个新的研究领域。从而,随机激光这个新名词也开始出现。为了在随机固体材料中实现共
This paper consists with two topics, involving carrier fission in polymeric molecule and the mechanism of random laser.Traditionally, polymers represent a key field of the chemical industry. However, in recent years, polymers have also become significant for physics in regard to both fundamental studies and applications. On the one hand, the discoveries of electroluminescence and photovoltaics have provided new possibilities for optoelectronic applications. On the other hand, due to its chain structure, the polymer is an excellent material for testing theories and models based on a onedimensional system. Earlier research on polymers has concentrated on ground-state and transport properties. Recently, many novel phenomena and applications based on excited states and dynamical process have been explored. Thanks especially to substantial progress in femtosecond laser spectroscopy, it is possible to reveal the details of various photoinduced dynamical processes in polymers. In this thesis, we study the structural change of the carrier induced by photoexcitation in polymers. Our dynamical simulation shows some special photoinduced processes whereby the carriers in
    simulation shows some special photoinduced processes whereby the carriers in polymeric molecule is split into two carriers. One positive bipolaron can be slipt into two positive polaron, and one positive polaron can be split into one a negative polaron and the other a positive bipolaron—where this photoinduced carrier fission does not need the aid of an external electric field, which is a typical symmetry breaking. In condensed matter physics, according to two degrees of freedom describing the properties of carriers, carriers can be divided into two categories: charge carriers and spin carriers. In inorganic materials, their carriers are electron and hole that both possess their spin and charge. Yet, the carrier in organic material is a composite particle that, different from inorganic material, are characterized with the surrounding lattice configuration. Thereby, besides the charged spin polaron that is similar to the electron or hole in organic material, there also exist spinless charged carrier, such as bipolaron. Because polaron is a spin carrier, combining with the polaron fission, we also developed a new dual principle of ESR (electron spin resonance), charge flipping of spin carrier.In 1968, the pioneer work of Lethokov predicted that laser action could be realized in randomly distributed scattering media. In the 1980s, Markushev et al. observed lasing in Nd-doped laser crystal powder. They found a single particle, with size much larger than the optical wavelength, served as a laser resonator. Since then, there has been much work on powder lasers. In 1994, Lawandy [4] applied 530nm laser pulse to pump the colloidal solution consisting of TiO2 particles suspended in Rodanmine methanol solution. Once the gain approached and surpassed the threshold value, laser action could be observed over the surface of the liquid, which triggered many experimental and theoretical studies on this field. The term "random laser" appeared. In order to realize laser with resonant feedback in random solid media,: Cao et al. [6] switched to a solid luminescence semiconductor. When the pump beam (the fourth harmonic X =266nm Nd: YAG laser) is focused on the ZnO polycrystalline thin film surface and its intensity exceeds a threshold value, narrow discrete sharp peaks emerges in the emission spectrum, and simultaneously, a couple of bright
引文
1, Karl Ziegler, Giulio Natta, Nobel presentation 1968
    2, T, Ito. H Shirakawa, S Ikeda J. Polym. Chem., 12, 11 (1974)
    3. H. Shirakawa, S Ikeda Preparation and Morphology of As-prepared and Highly Strentch-Aligned Polyacetalene, Synthetic Metals, 1, 175-184(1980)
    4 Genies. E. M. and Lapkowaki. M., JElectroanal. Chem, 236: 189, 1987.
    5 Huang. WS, Humphrey. B. D andMacDiarmid. A. G, JChemSoc., Faraday
    6 Bacon. J. and Adams. R. N, J Am. Chem. Soc., 90, 6596, 1968
    7 Kanazawa. K. K, Diaz. AT, Geiss. R. H., Gill. WD, Kwak. J. F., Logan TA, RaboltTF and Street. G. B, JChem Soc them Commun., 635, 1979
    8 Genies. E. M, Bidan. G. and Diaz. A. F., J Electroanal. Chem., 149: 101, 1983
    9 Pei. Q. and Qian. R, Synth. Met, 45, 35, 1991
    10 Tanaka. K, Shichiri. T. and Yainabe. T., Synth. Met.,16, 207, 1986
    11, M. Pope, H. Kallmann, EMagnante, Electroluminescence in organic crystals, J. Chem. Phys. 38, 2042-2043, 1963,
    12. C. W. Tang, S. A. Van Slyke, Organic electroluminescent diodes, Appl Phys. Let. 51, 913-915, 1987.
    13. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, RL. Bum, A. B. Holmes, Light-emiting diodes based on conjugated polymers, Nature 347, 539-541, 1990,
    14. G. Gustafsson, Y. Cao, GM. Treacy, F. Klaveter, N. Colaneri, A. J. Heeger, Flexible light-emiting diodes made from soluble conducting polymers, Nature 357, 477-479,1992,
    15. S. Son, A. Dodapalapur, A. J. Lovinger, Luminescence enhancement by the introduction of disorder into poly(p-phenylene vinylene), Science, 269, 376-378, 1997.
    16. G Yu, High performance photonic devices made with semiconducting polymers, Synth. Met. 80, 143-146, 1996,
    18. N. C. Greenham, S. C. Morati, D. D. C. Bradley, Efficient polymer-based light-emiting diodes based on polymers with high electron affinities, Nature 365, 628-630. 1993,
    19. H. Spreitzer, Soluble phenyl-substituted PPVs-new materials for highly efficient polymer LEDs, Adv Mater. 10, 1340-1344,1998,
    20.Y. Ohmori, M.Uchida, K. Muro, Efects of alkyl chain-length and carrier confinement layer on characteristics of poly(3-alkyl thiophene) electrolumenescent diodes, Solid State Commun. 80, 605-608,1991,
    21. D. Braun, GGustafsson, D.McBranch, Electroluminescence and electrical transportation of poly(3-octylthiophene) diodes, J.Appl.Phys. 72, 564-569,1992,.
    22. O. Inganas, M.R.Andersson, Thiophene polymers in light-emitting diodes making multicolor devices, Synth. Met. 71, 2121, 1995,
    23. M.Berggren, White light from an electroluminescent diode made from poly[3(4-octylphenyl)-2,2'-bithiophene] and an oxidizole derivative, J.Appl. Phys. 76, 7530, 1994
    24. Y. Yang, Q. Pei, A.J.Heeger, Efficient blue polymer light-emiting diodes from a series of soluble poly(para-phenylene)s, J.Appl.Phys. 79, 934-939,1996,
    25. Y Yang, Q. Pei, A.J.Heeger, Efficient blue light-emiting diodes from a soluble poly(para-phenylene) internal field emission measurement of the energy gap in semiconducting polymers, Synth. Met. 78,263,1996,
    26. M. Remmers, D.Neher, J. Gruner, The optical, electronic and electroluminescent properties of novel poly(p-phenylene)-related polymers, Macromolecules,29, 7432,1996
    27. M.Grell, D.D.C.Bradley, M.Inbasekaran, A glass-forming polymer for polarized electroluminescence applications, Adv. conjugated main-chain liquid crystal Mater. 7, 798. 1996,
    28. R.H.Friend, R.WGymer, A.B.Holmes, J.H.Burroughes, R.N.Marks, C.Taliani, D.D.C.Bradley, D.A.Dos Santos, J.L.Bredas, M.Logdltmd, WR.Salaneck, Electroluminescence in conjugated polymers, Nature 397,121,1999
    29. V.N.Bliznyuk, S.A.Carter, J.C.Scot, G.Klamer, R.D.Miller, D.C.Miller, Electrical and photoinduced degradation of polyfluorene based films and light-emitting devices, Macromolecules 32, 361-369. 1999
    30. Q. Pei, Y. Yang, Efficient photoluminescence and electrolumineseence from a soluble polyfluorene, J. Am. Chem. Soc. 118, 7416-4717. 1996,
    31. A. W. Grice, D. D. C. Bradley, M. T. Bemius, M.Inbasekaran, W.Wu, E.P.Woo, High brightness and efficiency blue light-emiting polymer diodes, Appl. Phys. Lett. 73, 629-631. 1998,
    32. M. Grell, D. D. C. Bradley, G. Ungar, J. Hill, K. S. Whitehead, Interplay of physical structure and photophysics for liquid crystalline polyfluorene, Macromolecules32, 5810-5817, 1999,
    33. D. J. Pinner, R. H. Friend, N. Tessler, Transient electroluminescence of polymer light emiting diodes using electrical pulses, J. Appl. Phys. 86, 5116-5130. 1999,
    34. D. B. Romero, M. Schaer, M. Leclerc, D. Ades, A. Siove, L. Zuppiroli, The role of carbazole in organic light-emiting devices, Synth. Met. 80, 271-277. 1996,
    35. J. R. Sheats, H.Antoniadis, M. Hueschen, Organic electroluminescent devices, Science, 273, 884-888,1996
    65. J. R. Sheats, H. Antoniadis, M. Hueschen, Organic electroluminescent devices, Science 273, 884-888., 1996,
    66.黄剑,曹镛,有机电致发光材料研究进展,第29卷第9期 《化工新型材料》
    1.孙鑫,高聚物中的孤子和极化子,四川科技出版社,1986
    2. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Polyacetylene, Phys. Rev. Lett. 42, 1698-1701 (1979)
    3. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons Excitations in Polyacetylene, Phys. Rev. B 22, 2099-2111 (1980); (E)B28, 1138 (1983)
    4. H. Takayama, Y. R. Lin-Liu and K. Maki, Continuum Model for Solitons in Polyacetylene, Phys. Rev. B21, 2388-2393 (1980)
    5. S. A. Brazovskii, Self-localized Excitation in the Peierls-ProhlichState, Sov. Phys. JETP 51, 342-353 (1980)
    6.庞小峰,非线性量子力学理论基础,重庆出版社,1994
    1, Karl Ziegler, Giulio Natta, Nobel presentation, 1968
    2, J. A. Popel & S. H. Walmsley, Bond Alternation Defects in Long polyene Molecule, Mol. Phys. 5, 15-20 (1962)
    3, T, Ito. H Shirakawa, S Ikeda J. Polym. Chem., Ed. 12, 11 (1974)
    4, C. K. Chiang, C. R. Flinch, Jr. Y. W. Park, A. J. Heeger, H. Shiralawa. E. J. Louis, S. C. Gau,. and A. G. MacDiarmid. Electrical Conductivity in Doped Polyacetylene, Phys. Rev. Lett. 39, 1098-1101 (1977)
    5, Russell JS. 1842. Supplementary report of a Committee on Waves. Rep. Br. Assoc. Adv. Sci., Part ⅱ, pp. 19-21
    6, Russell JS. 1844. Report on waves. Rep. Br. Assoc. Adv. Sci., pp. 311-90
    7, Russell JS, Robison Sir John. 1837. Report on waves. Rep. Br. Assoc. Adv. Sci., pp. 417-9
    8, Korteweg DJ, de Vries G. 1895. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39(5): 422-43
    9, Alex D. D. Craik, THE ORIGINS OF WATER WAVE THEORY, Annual Review of Fluid Mechanics Vol. 36: 1-28
    10, M. J. Rice, Charged Pi-Phase Kinds in Lightly Doped Polyacetylene, Phys, Lett. 71A, 152-154 (1979)
    11, W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Polyacetylene, Phys. Rev. Lett. 42, 1698-1701 (1979)
    12, H. Takayama, Y. R. Lin-Liu and K. Maki, Continuum Model for Solitons in Polyacetylene, Phys. Rev. B21, 2388-2393 (1980)
    13, S. A. Brazovskii, Self-localized Excitation in the Peierls-Prohlich State, Sov. Phys. JETP 51, 342-353 (1980)
    14, S. A. Brazovskii, N. Kirova, Excitons, Polaron and Bipolarons in Conducting Polymers, Sov. Phys. JETP, Lett. 33, 4-8 (1981)
    15, D. K. Campbell, A. R. Bishop, Solitons in Polyacetylene and Relativistic Field Theory Model, Phys. Rev. B 24, 4859-4862, 1981
    1,孙鑫,高聚物中的孤子和极化子,四川科技出版社,1986
    2,曾谨严,量子力学,科技出版社,1988
    3, S. Kivelson, T. K. Lee, Y. R. Lin-Liu, I. Peschel, and L. Yu, Boundary Conditions and Optical Absorption in the Soliton Model of Polyacetylene, Phys. Rev. B 25, 4173-4184 (1982)
    4.姜浩,徐小华,孙鑫,傅柔励,褚君浩,聚合物中光激发在电场作用下的转化,物理学报,12期,1999
    5,统计物理学中的量子场论方法,阿布拉克索夫,戈尔可夫,加洛辛斯基,科学出版社,1962
    1, W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Polyacetylene, Phys. Rev. Lett. 42, 1698-1701 (1979)
    2, W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons Excitations in Polyacetylene, Phys. Rev. B 22, 2099-2111 (1980); (E) B28, 1138 (1983)
    3, S. A. Brazovskii, Self-localized Excitation in the Peierls-Prohlich State, Sov. Phys. JETP 51, 342-353 (1980)
    4, S. A. Brazovskii, N. Kirova, Excitons, Polaron and Bipolarons in Conducting Polymers, Sov. Phys. JETP, Lett. 33, 4-8 (1981)
    5, D. K. Campbell, A. R. Bishop, Solitons in Polyacetylene and Relativistic Field Theory Model, Phys. Rev. B 24, 4859-4862, 1981
    8, Heeger J, Kivelson S, Schrie_er J R and Su WP Rev. Mod. Phys. 60 781, 1988
    1, Heeger J, Kivelson S, Schrie_er J R and Su WP Rev. Mod. Phys. 60 781, 1988
    2, Wohlgenannt M, Tandon K, Mazumdar S, Ramasesha S and Vardeny Z V Nature 409 494, 2001
    3, Hoofman R J O M, de Haas M P, Siebbeles L D A and Warman J M Nature 392 54, 1998
    4, Bach U et al Nature 395, 583,1998
    5, Granstrom M et al Nature 395,257,1998
    6, Juodkazis S et al Nature 408, 178,2000
    8, Schrieer J R and Heeger A J Phys. Rev. Lett. 42, 1698,1979
    9, Peo M et al Solid State Commun. 35,119,1980
    13, J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks.K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature (London) 347, 539 (1990).
    14, M. Granstrom, K. Petritsch, A. C. Arias, A. Lüx, M. R. Andersson,and R. H. Friend, Nature (London) 395, 257 (1998).
    15, S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo,and H. Misawa, Nature (London) 408,178 (2000).
    16, R. J. O. M. Hoofman, M. P. de Haas, L. D. A. Siebbeles, and J.M. Warman, Nature (London) 392, 54 (1998).
    17, M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z.V. Vardeny, Nature (London) 409,494 (2001).
    18, X. Sun, R. L. Fu, K. Yonemitsu, and K. Nasu, Phys. Rev. Lett.84, 2830 (2000).
    19, W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,1698 (1979).
    20, J. C. Scott, P. Pfiuger, M. T. Krounbi, and G. B. Street, Phys. Rev.B 28, 2140 (1983); Synth. Met. 9, 165 (1984).
    21, X. Sun, G. P. Zhang, Y. S. Ma, R. L. Fu, and X. C. Shen, Phys.Rev. B 53, 15481 (1996).
    22, U. Gaubatz, P. Rudecki, S. Schieman, and K. Bergmann, J. Chem.Phys. 92, 5363 (1990); S. Schiemann, A. Kuhn, S. Stenerwald,and K. Bergmann, Phys. Rev. Lett. 71, 3637(1993).
    23, W. Graupner, G. Cerullo, G. Lanzani, M. Nisoli, E. J. W. List, G.Leising, and S. De Silvestri, Abstracts of the International Conferenceof Synthetic Metals, Montpellier, France (1998), p. 93.14A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J.Feldmann, and U. Scherf, Abstracts of the International Conference of Synthetic Metals, Montpellier, France (1998), p. 93.
    24, X. Sun, L. Li, R. L. Fu, and T. F. George, Synth. Met. 101, 263
    25, Sir Ernest Rutherford, Representation For Nobel Prize of Physics, 1903
    26, Sir James Chadwick, Representation For Nobel Prize of Physics, 1936
    27, M, N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petro, Phys. Rev. Lett. 61, 2472 (1988).
    28, J. Moodera, L. Kinder, T. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
    29, S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnor, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001);
    30, J. M. Kikkawa and D. D. Awschalom, Nature 397, 139 (1999);
    31, Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999).
    32, A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Rev. Mod. Phys. 60, 781 (1988).
    33, J. C. Scott, P. Pluger, M. T. Krounbi, and G. B. Street, Phys. Rev. B 28, 2140 (1983); Synth. Met. 9, 165 (1984).
    34, V. I. Krinichnyi, Synth. Met. 108, 173 (2000).
    35, V. Dediu, M. Murgia, F. C. Matacotta, C. Taliani, and S. Barbanera, Solid State Commun. 122, 181 (2002).
    36, S. Forrest, P. Burrows, and M. Thompson, IEEE Spectr. 37, 29 (2000).
    37, Z. H. Xiong, Di Wu, Z. V. Vardeny, and J. Shi, Nature 427, 821 (2004).
    38, S. J. Xie, K. H. Ahn, D. L. Smith, A. R. Bishop, and A. Saxenal, Phys. Rev. B 67, 125202 (2003).
    39, X. Sun, R. L. Fu, K. Yonemitsu, and K. Nasu, Phys. Rev. Lett. 84, 2830 (2000).
    40, S. Li, L. Chen, T. George, and X. Sun, Phys. Rev. B, 70, 075201 (2004);
    41, S. Li, D. S. Long and X. Sun, Chin. Phys. Lett. 19, 657 (2002).
    42, F. Luo, W. Song, Z. M. Wang, and C. H. Yan, App. Phys. Lett. 84, 1719 (2004).
    1 R. V. Ambartsumian, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, "Lasers with nonresonant feedback," IEEE J. Quantum Electron, Vol. QE-2, pp. 442-446, 1966.
    2 V. S. Letokhov, Generation of light by a scattering medium with negative resonance absorption," Sov. Phys.—JETP, Vol. 26, pp. 835-840, 1968.
    3 V. M. Markushev, V. F. Zolin, and C. M. Briskina, "Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders," Sov. J. Quantum Electron., vol. 16, pp. 281-283, 1986.
    4 V. M. Markushev, N. E. Ter-Gabrielyan, C. M. Briskina, V. R. Belan, and V. F. Zolin, "Stimulated emission kinetics of neodymium powder lasers," Sov. J. Quantum Electron., vol. 20, pp. 773-777, 1990.
    5 C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, "Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders," J. Opt. Soc. Amer. B, vol. 10, pp 2358-2363, 1993;
    6 M. A. Noginov, N. E. Noginova, H. J. Caulfield, P. Venkateswarlu, T. Thompson, M. Mahdi, and V. Ostroumov, "Short-pulsed stimulated emission in the powders of NdA13 (BO3)4, NdSc3(BO3)4, and Nd:Sr5(PO4)3F laser crystals," J. Opt. Soc. Amer. B, vol. 13, pp 2024-2033, 1996;
    7 M. A. Noginov, S. U. Egarievwe, N. E. Noginova, H. J. Caulfield, and J. C. Wang, "Interferometric studies of coherence in a powder laser," Opt. Mater., vol. 12, pp. 127-134,1999.
    8 N. M. Lawandy, R.M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature, vol. 368, pp 436-438, 1994;
    9 W. Sha, C-H. Liu, and R. Alfano, "Spectral and temporal measurements of laser action of rhodamine 640 dye in strongly scattering media," J. Opt. Soc. Amer. B, vol. 19, pp. 1922-1924,1994;
    10 G. van Soest, M. Tomita, and A. Lagendijk, "Amplifying volume in scattering media," Opt. Lett., vol. 24, pp. 306-308,1999;
    11 G. van Soest, F. J. Poelwijk, R. Sprik, and A. Lagendijk, "Dynamics of a random laser above threshold," Phys. Rev. Lett., vol. 86, pp. 1522-1525, 2001.
    12 N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes and E. Sauvain, et al, Nature 368,436 (1994),
    13 D. S. Wiersma and A. Lagendijk, Phys. Rev. E 54,4256 (1996).
    14 H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, "Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films," Appl. Phys. Lett, vol. 73, pp 3656-3658, 1998;
    15 H. Cao, Y. Zhao, S. T. Ho, E.W. Seelig, Q. H.Wang, and R. P. H. Chang, "Random laser action in semiconductor powder", Phys. Rev. Lett., vol. 82, pp. 2278-2281,1999;
    16 S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, "Stimulated emission in high-gain organic media," Phys. Rev. B, vol. 59, pp. R5284-5287,1999
    17 H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, "Microlasers made of disordered media," Appl. Phys. Lett., vol. 76, pp. 2997-2999, 2000;
    18 H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, "Transition from amplified spontaneous emission to laser action in strongly scattering media," Phys Rev. E., vol. 61, pp. 1985-1989,2000;
    19 Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, "Investigation of random lasers with resonant feedback," Phys. Rev. A. vol. 64, pp. 63 808-63 815,2000;
    20 J. X. Zhu, D. J. Pine, and D. A. Weitz, "Internal reflection of diffusive light in random media," Phys. Rev. A, vol. 44, pp. 3948-3959, 1991;
    21 H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, "Spatial confinement of laser light in active random media," Phys. Rev. Lett., vol. 84, pp. 5584-5587, 2000;
    22 C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, "Dynamic response and relaxation oscillation in random lasers," Phys. Rev. B, vol. 65, pp R41103-41 106, 2002;
    23 H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, "Photon statisticsof random lasers with resonant feedback," Phys. Rev. Lett., vol. 86, pp 4524-4527,2001
    24 Zhen Ye, Sheng Li and Xin Sun, Phys. Rev. E 66, 045602 (2002). C. Vanneste and P. Sebbah "Selective Excitation of Localized Modes in Active Random Media" Phys. Rev. Lett., vol. 87, pp. 183903-183907, 2001;
    25 A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, "Model for a random laser," Phys. Rev. Lett., vol. 87, pp. 215 503-215 506, 2001;
    26 Sheng Li, Zi-Jun Wang, Liang-shan Chen, Thomas George, and Xin Sun, "Disorder-induced micro-resonator of random laser and its coherence", submitted to App.Phys. Lett
    27 J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, "Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization," IEEE J. Quantum Electron., vol. 27, pp. 1332-1346, June 1991;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700