超宽带无线通信信号PSD研究及脉冲波形设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线多媒体业务需求的增长,短程高速无线通信已经成为未来通信技术的重要发展方向之一,市场需要一种技术来解决高速网络接入需求与拥挤的频谱资源分配之间的矛盾,超宽带(UWB,ultra-wideband)通信以其速率高、容量大、成本低及功耗小等特点成为备受关注的重要解决方案。目前超宽带技术统一的商用体制标准还没有出台,如果要制定合理的UWB技术规范,必须综合考虑很多技术问题,如调制技术、信道编码技术等。根据美国联邦通信委员会的规定,超宽带室内通信系统可以使用3.1至10.6GHz这个频段,对于脉冲超宽带系统,如果采用不合适的脉冲波形,在数据速率高、情况复杂的无线通信环境中,接收端将难以正常接收信号,无法保证系统的性能,更重要的是其他无线系统的正常工作也会受到干扰。要解决以上问题,在调制技术、发射功率、脉冲波形等方面必须进行综合设计。
     本文对超宽带系统的调制方法、信号频域分布和脉冲波形设计展开研究,具体工作和取得成果如下:
     (1)超宽带通信的调制技术研究:首先简略介绍常用于超宽带脉冲无线电的基本脉冲,即高斯脉冲及其各阶导数,给出时频域波形仿真及脉冲序列的一般表达式;其后讨论超宽带脉冲无线电通信数据调制方式,主要是PPM和PAM两种;之后对脉冲无线电通信的多址调制技术,特别是跳时和直接序列扩频技术进行讨论;着重讨论脉冲无线电目前比较热门的TH-PPM、TH-PAM和DS-UWB的调制解调技术,并分别进行发射端建模仿真,给出信号仿真结果;最后简单介绍多频带超宽带调制技术原理,并进行相应发射机仿真实验。
     (2)典型超宽带脉冲信号功率谱密度表达式推导、频域分析及仿真:首先从随机理论出发,研究随机过程功率谱密度;分析数字基带信号随机特性,得到其本质是周期性平稳随机信号,并将其等效于一阶马尔可夫链,推导出功率谱密度表达式。其后分别分析两种受到业界重视的超宽带信号,即TH-PPM和DS-UWB信号的随机性,得到它们都属于非平稳过程,具有周期平稳随机信号特性,并在该理论基础之上详细推导出各自功率谱密度表达式,填补了相应文献资料上的空白。对于前者的跳时情况,利用概率密度函数描述其随机特性,推导出相应的功率谱密度解析式。对于DS-UWB信号,由于后面分析功率谱密度影响因素的需要,在推导功率谱密度过程中对体现信号随机特性部分的频谱保留了完整形式。随后分析超宽带信号频域分布的影响因素,得到的结论是:对功率谱分布的控制可以通过对已调序列特性、脉冲重复频率和发射脉冲能量谱密度的设计得到实现。其后通过一系列仿真实验对该结论进行了验证。最后,研究超宽带通信系统对窄带系统的干扰,分析影响受扰窄带无线系统功率的因素,得到设计合适的超宽带脉冲信号波形,能够控制干扰、解决共存问题。
     (3)超宽带脉冲信号波形的优化设计及仿真:首先基于超宽带系统共存问题,介绍系统发射功率掩蔽的有关规定,并运用数值逼近理论提出两种新的符合功率掩蔽要求、可降低超宽带系统对现存无线系统的干扰、具有较高频谱利用率的超宽带脉冲波形设计方法。频率采样脉冲波形设计法源于数值逼近理论插值法,所得脉冲波形有确定解析式;Chebyshev最佳一致逼近脉冲波形设计法属于均匀一致逼近,逼近程度能够利用参数进行限定。并在理论分析基础上针对不同参数进行仿真,实验结果验证了两种方法的有效性。最后对脉冲设计方法进行了总结和比较。
The growth of need for wireless multimedia services makes short-range and high-speed become trends of the wireless communication technologies. The market needs technology that can resolve the conflict of high-speed access demand and crowded spectrum resource allocation. Ultra-wideband (UWB) is considered a solution for its characteristics of high speed, large capacity, low cost and low power consumption. At present, its unified commercial standard isn’t yet addressed. To get a reasonable one, a lot of technical issues must be considered, such as modulation, channel coding technology, etc. Federal Communications Commission authorizes to apply UWB technology for communication purposes in the band from 3.1 to 10.6 GHz. For impulse radio ultra-wideband, inappropriate pulse shape will make it difficult to receive signals in the complex wireless communication environment of high data rate, and can’t guarantee the performance. More importantly, the normal work of other wireless systems will be interfered with. To solve this problem, the modulating technique, transmission power, pulse shape, etc. must be designed comprehensively.
     In this paper, modulation method, spectrum distribution and pulse shape design of ultra-wideband system are studied. The specific dedication is as follows:
     (1) Research of ultra-wideband modulation technique. First of all, give a brief description of the basic pulse waveform that commonly used in impulse radio ultra-wideband, that is, Gaussian pulse and its derivative. After giving their time-domain and the frequency-domain simulation waveforms, as well as the general expression of the pulse sequence, subsequently data modulation methods are discussed, the main two are PPM and PAM; and also the multiple access modulation techniques, such as time-hopping and direct sequence spread spectrum. Next, TH-PPM, TH-PAM and DS-UWB modulation are modeled and simulated separately, and the simulation results of transmitters are giving. Finally, introduce modulation technique of the multiband-OFDM ultra-wideband, and make the corresponding transmitter simulation.
     (2) Formula derivation of power spectral density in impulse radio ultra-wideband communication, spectrum analysis and simulation. At first, the power spectral density of stochastic process is discussed, the random features of digital base-band signal are analyzed, and its power spectral density is derived equivalent to a Markov chain. Next, derives the power spectral density of two kinds of popular ultra-wideband pulse signal . Both of them belong to non-stationary process, have cyclostationary random process characteristics, the analysis is done based on it. For the former, because of the complexity of time-hopping, the probability density function is used to describe the random characteristics, and relative derivation followed by the corresponding formula of the power spectral density. For DS-UWB signal, because of the need to analyze the effect factors of power spectral density, analysis is simplified and retains integrity of the corresponding formula. Subsequently, the various factors that distribute to the impact of the power spectral density are analyzed, and the conclusion is that distribution of power spectral density can be controlled by adjust the sequence characteristics, pulse repetition frequency and pulse energy spectral density. Also the theoretical analysis is verified through a series of simulation. Finally, through the study of interference that ultra-wideband communication system to do with narrow-band system, and the analysis of impact factor of narrow-band wireless systems power, the conclusion is that design of ultra-wideband signal power spectral density can limit the interference, which will solve the problem of coexistence.
     (3) Optimal design of the ultra-wideband pulse waveform. The relevant provisions of UWB transmitter power mask are presented after discussion of UWB system coexistence. On the basis of numerical approximation theory, two novel methods to design the pulse waveform are given, which according with the mask requirements of power, can reduce the interfere of ultra-wideband systems and existing wireless systems and increase the spectrum utilization. The method based on the frequency sampling is taken from the interpolation theory. The method based on the Chebyshev best uniform approximation theory can control the precision of approximation by limiting parameters. And based on the theoretical analysis, several simulations are made with different parameters. Simulation results show the effectiveness of the two methods. Finally, the design methods of UWB pulse are summarized and compared.
引文
[1]邴红艳.超宽带(UWB)极窄脉冲通信系统无线局域网基带单元[D].成都:电子科技大学, 2002.
    [2] Win M Z, Scholtz R A. Impulse radio:how it works[J]. IEEE Communications Letters, 1998, 2(2): 36-38.
    [3]任品毅,廖学文,梁中华.超宽带通信原理及应用[M].西安:西安交通大学出版社, 2007.
    [4]葛利嘉,朱林,袁晓芳等.超宽带无线电基础[M].北京:电子工业出版社, 2006.
    [5]张中兆,沙学军.超宽带无线电技术[M].北京:电子工业出版社, 2005.
    [6] FederalCommunicationsCommission. Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,Docket 98-153 [R]. Washington,DC: Federal Communications Commission, 2002.
    [7]葛利嘉等.超宽带无线通信[M].北京:国防工业出版社, 2005.
    [8]齐永兴.超宽带光无线系统关键技术的研究及性能分析[D].北京:北京邮电大学, 2006.
    [9]王德强,李长青,乐光新.超宽带无线通信技术(1)[J].中兴通讯技术, 2005, 11(4): 75-78.
    [10] Ibrahim H, Kenny T, Hafez R. Ultra-wideband as a short-range, ultra high-speed wireless communications technology[EB/OL]. url, 2009-3-5.
    [11] Qiu R C, Liu H, Shen X. Ultra-wideband for multiple access communications[J]. IEEE Communications Magazine, 2005, 43(2): 80-87.
    [12]刘万洪,王国民,杜广超.超宽带通信抗干扰性能分析[J].无线通信技术, 2008, 17(2): 21-24.
    [13]蒋磊,王永生,程韧.多频带干扰对超宽带调制技术性能的影响分析[J].空军工程大学学报(自然科学版), 2005, 6(4): 44-48.
    [14]周炯槃等.通信原理[M].北京:北京邮电大学出版社, 2005.
    [15] Taha A, Chugg K M. A theoretical study on the effects of interference UWB multiple access impulse radio[C]. Signals, Systems and Computers, 2002. Conference Record of the Thirty-Sixth Asilomar Conference on. 2002: 728-732.
    [16]李会勇,高昕艳,徐政五. UWB在室内高速无线传输中的应用研究[J].电子科技大学学报, 2003, 32(6): 604-607.
    [17]李唐,刘水生.未来无线个人域网中的超宽带技术[J].现代电信科技, 2003(5): 10-13.
    [18]余咏.基于超宽带技术的无线个域网MAC协议研究[D].北京:北京邮电大学, 2006.
    [19]梁璟.超宽带技术在无线局域网中的应用研究[D].西安:西安电子科技大学, 2005.
    [20]李欣. UWB室内无线移动网络MAC协议研究[D].哈尔滨:哈尔滨工程大学, 2006.
    [21] McCorkle J,周正.利用超宽带(UWB)组建高速家庭网络[J].今日电子, 2005(11): 48, 54, 39.
    [22]谈振辉.未来无线通信领域的新技术[J].中兴通讯技术, 2004, 10(1): 37-40.
    [23]焦胜才.超宽带通信系统关键技术研究[D].北京:北京邮电大学, 2006.
    [24]王金龙,王呈贵,吴启晖等. Ad Hoc移动无线网络[M].北京:国防工业出版社, 2004.
    [25]程文青.无线自组织网络MAC层和网络层的可区分性能保证[D].武汉:华中科技大学, 2006.
    [26]佟志勇.超宽带Ad Hoc网络MAC协议研究[D].哈尔滨:哈尔滨工程大学, 2006.
    [27] Qiaoqiao C, Ting J, Zheng Z. A new ranging application of UWB modulated by orthogonal waves in wireless sensor network[C]. Communication Systems Software and Middleware and Workshops, 2008. COMSWARE 2008. 3rd International Conference on. 2008: 128-131.
    [28] Han J, Nguyen C. Development of a Tunable Multiband UWB Radar Sensor and Its Applications to Subsurface Sensing[J]. IEEE Sensors Journal, 2007, 7(1): 51-58.
    [29]吴昌英.探地雷达脉冲天线的优化设计[D].西安:西北工业大学, 2001.
    [30]马龙,王庭昌. UWB-IR室外通信信道模型及其容量近似求解[J].电波科学学报, 2006, 21(4): 595-600.
    [31]张永胜.超宽带收发系统设计与调试[D].北京:中国人民解放军国防科学技术大学, 2003.
    [32] Immaculate Mary G, Prithiviraj V. Test measurements of improved UWB localization technique for precision automobile parking[C]. Recent Advances in Microwave Theory and Applications, 2008. MICROWAVE 2008. International Conference on. 2008: 550-553.
    [33]戴刚.穿墙探测雷达的数据采集、目标检测与定位方法研究[D].北京:国防科学技术大学, 2006.
    [34] Taylor J D. Introduction to ultra-wideband radar systems[M]. Boca Raton,Florida: CRC Press, 1995.
    [35]李育红,周正.超宽带无线通信技术的新进展[J].系统工程与电子技术, 2005, 27(1): 20-24, 99.
    [36]魏为民,唐振军. UWB超宽带无线通信技术研究[J].计算机工程与设计, 2008, 29(11): 2748-2750.
    [37]穆强.飞思卡尔:要做UWB市场的急先锋[J].电子设计技术, 2004, 11(11): 112-114.
    [38]吴晓东.飞思卡尔:超宽带技术为消费者提供完美体验[J].世界电子元器件, 2004(12): 77.
    [39]佘静.超宽带信号模型及调制方式的研究与仿真[D].武汉:武汉理工大学, 2006.
    [40] Peng-Yong K, Shajan M R. A medium access control protocol for ultra-wideband wireless ad hoc networks[C]. Vehicular Technology Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st. 2005: 1993-1997.
    [41] Li K. Experimental Study on UWB Pulse Generation Using UWB Bandpass Filters[C]. Ultra-Wideband, The 2006 IEEE 2006 International Conference on. 2006: 103-108.
    [42] Xiaohua L, Wa K, Gang W. On the selection of template pulse waveform in UWB impulse communications[C]. Antennas and Propagation Society International Symposium 2006, IEEE. 2006: 1311-1314.
    [43] Li K. UWB bandpass filter: structure, performance and application to UWB pulse generation[C]. Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings. 2005: 4.
    [44] Liuqing Y, Giannakis G B. Ultra-wideband communications: an idea whose time has come[J]. IEEE Signal Processing Magazine, 2004, 21(6): 26-54.
    [45] Hong N, Zhizhang C. Transceiver Technologies for Impulse Radio Ultra Wideband (IR UWB) Wireless Systems[C]. Communication Networks and Services Research Conference, 2008. CNSR 2008. 6th Annual. 2008: 3-4.
    [46] Orlik P, Shiwei Z, Molisch A F. A Hybrid UWB Modulation Design Compatible for both Coherent and Transmit-Reference Receivers[C]. Communications, 2006. ICC '06. IEEE International Conference on. 2006: 4741-4745.
    [47] Pepper S H S. Quadrature/correlating sampler and pulse generator for mmwave UWB QAM modulation and wide-band signaling[C]. Microwave Conference, 2005 European. 2005: 3.
    [48]蒋磊,王永生,郭建新.超宽带TH-PPM调制技术抗干扰性能研究[J].系统工程与电子技术, 2006, 28(5): 670-673, 740.
    [49]周晔. TH-UWB接收理论与抗干扰技术的研究[D].苏州:苏州大学, 2004.
    [50] Lei J, Jianxin G, Yongsheng W. A Novel Approach to Interference Mitigation with Coexisting Spectrum Users for UWB Pulse Radio[C]. Wireless Communications, Networking and Mobile Computing, 2006. WiCOM 2006.International Conference on. 2006: 1-4.
    [51] Kuan L Y, Bee E T, Fook N L. Coexistence study on ultra-wideband and mobile cellular systems[C]. Ultra-Wideband, 2005. ICU 2005. 2005 IEEE International Conference on. 2005: 752-757.
    [52] Wei L, Zheng Z, Zhiquan B. A novel UWB modulation method based on time-frequency energy distribution[C]. Communications and Information Technology, 2005. ISCIT 2005. IEEE International Symposium on. 2005: 960-963.
    [53]唐岚,王树勋,孙晓颖.超宽带无线传输技术[J].吉林大学学报(工学版), 2004, 34(2): 330-335.
    [54]常远. UWB无线通信系统信号产生和调制技术的研究[D].哈尔滨:哈尔滨工程大学, 2006.
    [55]丁海洋.超宽带系统若干关键问题研究[D].北京:北京工业大学, 2006.
    [56]倪剑强.超宽带无线通信系统及其关键电路研究[D].杭州:东南大学, 2005.
    [57]王涛.脉冲超宽带通信系统的天线和信号设计研究[D].杭州:浙江大学, 2006.
    [58]李晗.脉冲无线电超宽带系统抗干扰技术研究[D].长春:长春理工大学, 2006.
    [59] Chu X L, Murch R D. The effect of NBI on UWB time-hopping systems[J]. IEEE Trans on Wireless Comm, 2004, 3(5): 1431-1436.
    [60] Guangrong Y, Lijia G, Shaoqian L. Ultra wideband impulse radio signal interference to code division multiple access system[C]. Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. 14th IEEE Proceedings on. 2003: 2437-2441.
    [61]贾琳,张中兆.采用跳时扩频技术的模拟超宽带冲激无线电[J].系统工程与电子技术, 2003, 25(8): 918-924, 940.
    [62]蒋磊,王永生,郭建新. UWB与共存通信系统互干扰缓解方法[J].数据采集与处理, 2007, 22(3): 364-369.
    [63]李彬,岳曾敬,骆云志. UWB无线通信技术分析[J].兵工自动化, 2006, 25(6): 61-62.
    [64]张卓,刘光明.超宽带无线通信主要调制技术的研究及其应用[J].信息通信, 2007(1): 15-17.
    [65]邹卫霞,周正,张春青. UWB的调制与多址技术[J].济南大学学报(自然科学版), 2004, 18(4): 319-321.
    [66]周祥为,冯金振,郑国莘. UWB无线通信关键技术与应用[J].电视技术, 2007, 31(9): 51-53, 64.
    [67]岳光荣,李少谦.超宽带冲激无线电性能比较[J].电子科技大学学报, 2003, 32(5): 477-480.
    [68] Abu-Suleiman G S. A study of composite modulation scheme for impulse ultra-wideband communications[D]. Arlington: The university of Texas at Arlington, 2004.
    [69]杨庆瑞.超宽带(UWB)通信系统极窄脉冲特性研究[D].成都:电子科技大学, 2002.
    [70]鲁巧丽,陈伟,杨媛媛. UWB无线通信性能分析与研究[J].武汉理工大学学报(信息与管理工程版), 2006, 28(11): 132-135.
    [71]刘剑桥. UWB无线通信系统多址技术研究[D].哈尔滨:哈尔滨工程大学, 2005.
    [72] Yang L, Giannakis G B. Unification of ultra-wideband multiple access schemes and comparison in the presence of interference[C]. Signals, Systems and Computers, 2003.Conference Record of the Thirty-Seventh Asilomar Conference on. 2003: 1239-1243.
    [73]马惠珠.超宽带无线通信关键技术研究[D].哈尔滨:哈尔滨工程大学, 2006.
    [74]樊艳.超宽带(UWB)通信系统多址接入技术的研究[D].武汉:华中师范大学, 2006.
    [75]樊艳,谢文武,刘守印. UWB系统多址接入方法的比较研究[J].现代电子技术, 2006, 29(11): 8-11.
    [76]郑继禹,林基明,仇洪冰.超宽带多址通信信号的功率谱分析[J].电子学报, 2003, 31(10): 1575-1577.
    [77]吴建军,陈江,蒋伟. TH-PPM UWB系统的多址干扰模型改进及误码性能分析[J].北京大学学报(自然科学版), 2007, 43(1): 113-118.
    [78] Scholtz R. Multiple access with time-hopping impulse modulation[C]. MILCOM. Boston, 1993: 447-450.
    [79]周金,邵世祥.跳时超宽带(TH-UWB)多址系统性能的研究[J].重庆邮电大学学报(自然科学版), 2007, 19(4): 481-484.
    [80]张新跃,沈树群. UWB超宽带无线通信技术及其发展前景[J].数据通信, 2004(2): 9-12.
    [81] Win M Z, Scholtz R A. Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications[J]. IEEE Trans Commun, 2000, 48(4): 679-691.
    [82]郑红伟,张陆勇,周正.一种新颖的超宽带无线电跳时序列设计[J].无线电工程, 2006, 36(8): 14-16.
    [83]段吉海,郑继禹,仇洪冰. UWB通信系统的TH-PPM信号产生与接收处理[J].桂林电子工业学院学报, 2005, 25(3): 20-24.
    [84]唐葛亮,郭勇,罗海明.超宽带TH-PAM调制系统的研究及其仿真[J].微计算机信息, 2008, 24(3): 118-120.
    [85] Guangrong Y, Shaoqian L, Lijia G. The PSD analysis of UWB time hopping impulse radio multi-user aggregate signals[C]. Communications, Circuits and Systems, 2005. Proceedings. 2005 International Conference on. 2005: 441-445.
    [86] Piazzo L. Performance analysis and optimization for impulse radio and direct-sequence impulse radio in multiuser interference[J]. IEEE Transactions on Communications, 2004, 52(5): 801-810.
    [87] Mccorkle J,周正. CDMA与DS-UWB具有不同的工作原理和应用领域[J].今日电子, 2006(1): 65-66.
    [88]夏斌. DS-CDMA UWB系统关键技术的研究[D].北京:北京邮电大学, 2006.
    [89]崔文韬.超宽带无线通信系统中关键技术的研究[D].济南:山东大学, 2006.
    [90]王立华.超宽带无线通信中接收技术的研究[D].杭州:东南大学, 2005.
    [91] Niranjayan S, Nallanathan A, Kannan B. Modeling of multiple access interference and BERderivation for TH and DS UWB multiple access systems[J]. IEEE Transactions on Wireless Communications, 2006, 5(10): 2794-2804.
    [92] da Silva J A N, de Campos M L R. Performance comparison of binary and quaternary UWB modulation schemes[C]. Global Telecommunications Conference, 2003. GLOBECOM '03. IEEE. 2003: 789-793.
    [93]马晓慧.冲激无线电超宽带新调制方法研究[D].桂林:桂林电子科技大学, 2006.
    [94]苗剑.超宽带(UWB)无线通信技术[D].西安:西安电子科技大学, 2004.
    [95]樊艳,刘守印,黄光明. UWB系统的一种改进型伪混沌跳时多址接入技术[J].华中师范大学学报(自然科学版), 2007, 41(1): 60-65.
    [96]孙华明,周正.一种新的超宽带多用户调制方式:伪混沌编码跳时调制[J].无线电工程, 2005, 35(3): 3-4, 7.
    [97]涂虬.混沌扩频序列研究[D].武汉:华中师范大学, 2001.
    [98]肖要强.混沌序列及其在通信系统中的应用研究[D].长沙:湖南师范大学, 2005.
    [99]雷国伟,舒强,游荣义.基于DSP的UWB信号混沌调制实现[J].国外电子测量技术, 2006, 25(6): 29-31.
    [100]李辉,宋耀良,杨余旺.混沌跳时超宽带系统多址干扰分析[J].河南师范大学学报(自然科学版), 2008, 36(1): 49-51, 56.
    [101]李辉,宋耀良,杨余旺.混沌脉位调制UWB系统及信号分析[J].电波科学学报, 2007, 22(3): 533-537.
    [102]孙小薇,邹传云,秦娟. IR-UWB系统几种新型调制技术[J].广西通信技术, 2007(1): 27-30.
    [103]向新,王勇,易克初. PPM调制的超宽带差分接收机[J].电路与系统学报, 2007, 12(2): 11-15.
    [104]杨华,蒋国平.一种用于超宽带通信的改进型混沌脉冲位置调制方法[J].南京邮电大学学报(自然科学版), 2006, 26(2): 47-50.
    [105]李志军,安建平,周荣花.基于混沌脉冲幅度调制的超宽带通信系统[J].北京理工大学学报, 2008, 28(7): 614-617.
    [106] Biradar G S, Merchant S N, Desai U B. Adaptive time hopping PPM UWB multiple access communication schemes[C]. Communications and Information Technologies, 2007. ISCIT '07. International Symposium on. 2007: 1258-1262.
    [107] Yan F, Jun Z, Shouyin L. An improved pseudo-chaotic time hopping scheme for UWB multiple access[C]. Systems and Control in Aerospace and Astronautics, 2006. ISSCAA 2006. 1st International Symposium on. 2006: 5-838.
    [108]王树立,周杰,姚克友. DS/TH-UWB多址系统的误比特分析[J].通信技术, 2007, 40(6):1-3.
    [109]王鹏,刘金铸,周冉.跳时脉幅脉位混合调制超宽带通信性能研究[J].通信技术, 2007, 40(11): 14-16.
    [110]孙凯,吕振肃,张安定. PPM-PAM联合调制UWB系统介绍及性能分析[J].通信技术, 2008, 41(1): 31-32, 76.
    [111] Rahman M A, Sasaki S, Jie Z. Error analysis for a hybrid DS/TH impulse radio UWB multiple access system[C]. Ultra-Wideband, 2005. ICU 2005. 2005 IEEE International Conference on. 2005: 5.
    [112]马龙,王庭昌. UWB-IR中多进制脉位调制性能的解析计算方法[J].南京邮电大学学报(自然科学版), 2006, 26(2): 59-62.
    [113] Canadeo C M, Temple M A, Baldwin R O. Code selection for enhancing UWB multiple access communication performance using TH-PPM and DS-BPSK modulations[C]. Wireless Communications and Networking, 2003. WCNC 2003. 2003 IEEE. 2003: 678-682.
    [114] Cassioli D, Mazzenga F. Spectral analysis of UWB multiple access schemes using random scrambling[J]. IEEE Transactions on Wireless Communications, 2004, 3(5): 1637-1647.
    [115]陈良均,朱庆棠.随机过程及应用[M].北京:高等教育出版社, 2003.
    [116]赵希人.随机过程应用[M].哈尔滨:哈尔滨工程大学出版社, 2003.
    [117]王宏禹.非平稳随机信号分析与处理[M].北京:国防工业出版社, 1999.
    [118]王宏禹,邱天爽,陈喆.非平稳随机信号分析与处理(第二版)[M].北京:国防工业出版社, 2008.
    [119]王士林等.现代数字调制技术[M].北京:人民邮电出版社, 1987.
    [120]高远.超宽带系统与其他通信系统频谱共存特性的研究[D].南京:河海大学, 2005.
    [121]迟永钢,张乃通,王芳.脉冲超宽带通信系统功率谱分析与控制[J].哈尔滨工程大学学报, 2007, 28(2): 222-227.
    [122]王学寰. DS-UWB与其它无线通信系统的共存性研究[D].哈尔滨:哈尔滨工程大学, 2006.
    [123]王勇,王涛. PAM TH-UWB信号对窄带系统的干扰分析[J].浙江大学学报(工学版), 2004, 38(7): 831-834.
    [124]吴常国,姬国庆,姜光兴.基于功率谱线模型的脉冲UWB系统干扰分析[J].微波学报, 2008, 24(2): 62-66.
    [125]曹艳浏.对超宽带信号及其干扰特性的研究[D].北京:北京邮电大学, 2006.
    [126]赵静,郑继禹,林基明.超宽带脉冲信号及对窄带通信系统的干扰分析[J].系统仿真学报, 2004, 16(12): 2872-2874, 2879.
    [127] Jeong-Heon L, Tae-Jin L. Design issues of ultra-wideband systems for high-rate wirelessPANs: modulation schemes and coexistence with WLANs[C]. Wireless Communication Technology, 2003. IEEE Topical Conference on. 2003: 459-460.
    [128]陆旻琪,汪敏. UWB信号波形及功率谱密度的分析[J].上海大学学报(自然科学版), 2005, 11(4): 335-340.
    [129]陈启兴,游志军,牟能文. UWB通信信号的频谱分析[J].电子科技大学学报, 2005, 34(4): 437-439, 451.
    [130]杨凯,安建平,卜祥元.传输参考超宽带信号功率谱密度分析[J].北京理工大学学报, 2007, 27(5): 441-445.
    [131] Shanmugan K S. Estimating the power spectral density of ultra wideband signals[C]. Personal Wireless Communications, 2002 IEEE International Conference on. 2002: 124-128.
    [132] Pasya I, Tomiki A, Kobayashi T. Simulation of interference effects from UWB sources to a digital narrowband transmission system[C]. Advanced Communication Technology, 2006. ICACT 2006. The 8th International Conference. 2006: 6-1457.
    [133] Hamalainen M, Hovinen V, Tesi R. On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(9): 1712-1721.
    [134] Giuliano R, Mazzenga F. On the coexistence of power-controlled ultrawide-band systems with UMTS, GPS, DCS1800, and fixed wireless systems[J]. IEEE Transactions on Vehicular Technology , 2005, 54(1): 62-81.
    [135] YoungKeun Y. Analysis of interference impacts by ultra-wideband system to portable Internet service[C]. Antennas and Propagation Society International Symposium 2006, IEEE. 2006: 73-76.
    [136]邹卫霞,房玉东,周正.跳时超宽带无线电的性能分析[J].电路与系统学报, 2005, 10(6): 69-72.
    [137] Irahhauten Z, Nikookar H, Janssen G J M. An overview of ultra wide band indoor channel measurements and modeling[J]. IEEE Microwave and Wireless Components Letters, 2004, 14(8): 386-388.
    [138] Keren L, Kurita D, Matsui T. A novel UWB bandpass filter and its application to UWB pulse generation[C]. Ultra-Wideband, 2005. ICU 2005. 2005 IEEE International Conference on. 2005: 446-451.
    [139]王俊,宫勋,吴微威.一种基于时频分析的超宽带脉冲构造方法[J].中国科学院研究生院学报, 2006, 23(6): 787-792.
    [140] Ramirez-Mireles E. Signal design for ultra-wideband communications in dense multipath[J]. IEEE Tran on Vehicular Technology, 2002, 51(11): 1517-1521.
    [141]周刘蕾,朱洪波.满足FCC辐射掩模的UWB信号设计算法及性能分析[J].微波学报, 2007, 23(4): 32-36.
    [142] Huang L, Zhang H, Lu Y. A Novel Method To Generate UWB Shaping Pulses Based on Chip pulse[C]. ITS Telecommunications Proceedings, 2006 6th International Conference on. 2006: 290-293.
    [143]邹卫霞,周正.基于频段及带宽限制设计UWB脉冲的算法[J].北京邮电大学学报, 2005, 28(5): 94-97.
    [144]郝润芳,王华奎.超宽带系统脉冲波形研究[J].仪器仪表学报, 2006, 27(z1): 230-231.
    [145]梁朝晖,周正.基于小波的超宽带脉冲波形设计[J].北京邮电大学学报, 2005, 28(3): 43-45.
    [146]邹卫霞,聂晶,周正. UWB脉冲的优化设计[J].北京邮电大学学报, 2006, 29(4): 65-68.
    [147]罗振东,高宏,刘元安.抑制多窄带干扰的超宽带脉冲设计方法[J].北京邮电大学学报, 2005, 28(1): 55-58.
    [148]郭锋,庄奕琪.带内干扰抑制的超宽带脉冲设计[J].光子学报, 2006, 35(9): 1345-1348.
    [149]赵君喜. UWB无线电脉冲波形设计研究[J].通信学报, 2005, 26(10): 102-106.
    [150] Parr B, Cho B, Wallace K. A novel ultra-wideband pulse design algorithm[J]. IEEE communications Letters, 2003, 17(5): 219-221.
    [151] Proakis J G. Digital communications[M]. New York: McGraw-Hill, 1995.
    [152] Simon M K, Hinedi S M, Lindsey W C. Digital communication techniques,signal design and detection[M]. Englewood Cliffs,New Jersey: Prentice-Hall, 1995.
    [153] Weberm C L. Elements of detection and signal design[M]. New York: Springer-Verlag, 1987.
    [154]付丽琴等.数字信号处理原理及实现[M].北京:国防工业出版社, 2004.
    [155]胡广书.数字信号处理[M].北京:清华大学出版社, 1998.
    [156] McClellan J H, Parks T W. A unified approach to the design of optimum FIR linear phase digital filters[J]. Circuit Theory, 1973, 20(11): 697-701.
    [157]伯晓晨等. Matlab工具箱应用指南[M].北京:电子工业出版社, 2000.
    [158]郑慧娆等.数值计算方法[M].武汉:武汉大学出版社, 2002.
    [159]合肥工业大学数学与信息科学系.数值计算方法[M].合肥:合肥工业大学出版社, 2004.
    [160]丁玉美,高西全.数字信号处理[M].西安:西安电子科技大学出版社, 2003.
    [161] Rabiner L R, McClellan J H, Parks T W. FIR digital filter design techniques using weighted Chebyshev approximation[J]. Proc.IEEE, 1975, 63(4): 595-610.
    [162] Shaoyi X, Zhiquan B, Qinghai Y. Singular Value Decomposition-Based Algorithm for IEEE802.11a Interference Suppression in DS-UWB and TH-PAM UWB Systems[C]. Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd. 2006: 2378-2382.
    [163]纪卫莉.用光电导开关产生超宽带电磁辐射的研究[D].西安:西安理工大学, 2005.
    [164] Ramachandran I, Roy S. Acquisition of direct-sequence ultra-wideband signals[C]. Wireless Communications and Networking Conference, 2005 IEEE. 2005: 752-757.
    [165] Jie C, Lv T, Yingda C. A Timing-Jitter Robust UWB Modulation Scheme[J]. IEEE Signal Processing Letters, 2006, 13(10): 593-596.
    [166]范琪凯.超宽带天线的研究和仿真[D].哈尔滨:哈尔滨工程大学, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700