量子耗散动力学的理论发展与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文致力于量子耗散动力学两方面的研究。一方面是量子耗散理论的发展,我们系统介绍了通过影响泛函路径积分求导来建立严格的级联量子耗散方程的方法,给出了在不同方案下的:具体形式;另一方面是严格量子耗散理论的实际应用。这里我们涉及了几种常见的耗散模型体系,包括布居数转移体系、电荷转移体系和驱动布朗振子体系。另外,由于严格的量子耗散理论所需的计算量非常巨大,本论文也讨论了我们在数值算法方面所做的一些具体工作。本论文具体安排如下:
     第一章介绍了量子耗散理论的一些背景知识,包括体系的约化描述,相关函数、响应函数及线性响应理论,重点讨论了其中涉及的一些关键概念以及涨落-耗散定理。
     在第二章,我们首先回顾了影响泛函路径积分公式,然后通过求影响泛函路径积分时间导数的方法构建了级联耦合运动方程组(Hierarchical Equations of Motion, HEOM)。该方法非微扰地处理任意温度下的非马尔可夫量子耗散过程,并且适用于有含时外场驱动的情况。除此之外,我们还推导了与该级联方程组等价的格林函数的连分数方程。
     在第三章,我们具体应用上述的HEOM方程研究了受激拉曼绝热转移过程中纯相位弛豫的影响。在具体应用上,HEOM方程包含一组已知定义的辅助密度算符(Auxiliary Density Operators, ADOs),这些辅助算符将体系-热库的耦合强度及记忆时间尺度以非微扰、级联的方式处理。为了实现HEOM理论的数值计算,我们提出了一种索引机制,该机制可以在复杂的级联结构中方便地实现下标序列和ADOs之间的对映关系,从而可以大大加快运算过程中的寻址操作。另一方面,我们对每一个ADO都重新做了标度,这样所有的ADOs都统一到和约化体系密度矩阵相同的误差范围内。在此基础上,我们可以采用一种有效的过滤方法,该方法大大减少参与运算的ADOs的数目。在做完这些准备工作后,我们利用该严格方法具体计算和分析了在一个简单的三能级受激拉曼绝热转移过程中,存在纯相位弛豫的耗散动力学问题,并将得到的严格结果同几种微扰理论的结果进行比较和标定。
     上述HEOM是以玻色-爱因斯坦函数的Matsubara展开(Matsubara Spectral Decomposition, MSD)为基础的,简称为MSD-HEOMo在第四章,我们给出了玻色-爱因斯坦函数的部分分式分解方法(Partial Fraction Decomposition, PFD),并以此为基础构造了相应的HEOM方程,简称PFD-HEOM。PFD分解的一个特点就是它分解后得到的极点为复极点,这个特点使我们能够更有效、更准确地展开玻色-爱因斯坦分布函数。为了考察PFD-HEOM的数值效率,我们计算了自旋-玻色体系的耗散动力学演化,通过和MSD-HEOM比较,发现PFD-HEOM的计算效率明显优于MSD-HEOM,计算时间可以缩短一个数量级甚至更多。
     在第五章,我们发展了一种近似的级联量子主方程方法(Hierarchical Quan-tum Master Equation, HQME)。该方法对Drude热库模型的传统半经典处理进行改进,所得到的HQME方程可以看作是对传统的随机Liouville方程理论的修正。虽然从形式上看只是很简单的一项修正,但是改进后的方程不仅提高了准确性而且也极大地扩宽了适用范围;更加难能可贵的是,该修正并不会导致计算量的增加。这在随后的对两能级电荷转移体系的耗散动力学研究中得到了验证。同时我们还推导了该电荷转移体系的严格、解析的速率表达式,其中用到了我们在前面提到的Liouville空间的连分数格林函数方法。最后,我们给出了该近似HQME理论的应用判则,它可以用来预估该理论在不同系统中的具体表现。
     第六章中,我们通过Wigner相空间高斯波包演化方法构建了驱动布朗振子体系的严格量子主方程。该方程充分考虑了驱动和耗散之间的相关效应,并将这种相关效应归结为有效场修正。通过研究,我们发现在驱动场频率较低和热库记忆时间尺度为中等大小时,驱动和耗散之间的这种协同效应对体系的影响明显。
     在第七章,我们总结了本论文,并着重讨论了作者接下来的工作计划。
The thesis comprises two major themes of quantum dissipative dynamics. One is the development of quantum dissipation theory (QDT). We summarize the estab-lishment of the exact and nonperturbative hierarchical equations of motion (HEOM) of QDT, via the calculus on the influence functional path integral. Different forms of HEOM on the basis of different decomposition/expansion schemes are presented. Another is the application of exact QDT in various dissipative systems, including pop-ulation/electron transfer systems and driven Brownian oscillators. Due to the expensive numerical cost of exact QDT, some special numerical implementation algorithms are also detailed. The thesis is organized as follows.
     In Chapter 1, we introduce the theoretical background of QDT, including the re-duced system description, the correlation and response functions versus linear response theory, with emphasis on key concepts and fluctuation-dissipation theorem.
     In Chapter 2, we revisit the influence functional path integral formulation and construct the HEOM. It constitutes a systematic, nonperturbative approach to quantum dissipative dynamics with non-Markovian dissipation at an arbitrary finite temperature in the presence of time-dependent field driving. The well-known continued fraction Green's function formalism is also proposed for time-independent reduced Hamiltonian systems.
     In Chapter 3, we apply the HEOM to study the dephasing effect on the stimulated Raman adiabatic passage (STIRAP). The HEOM couples the primary reduce density operator with a set of well-defined auxiliary density operators (ADOs), which resolve not just system-bath coupling strength but also memory. For the numerical implemen-tation of HEOM, we propose a convenient index scheme that allows an easy tracking of the coupled ADOs in the hierarchical equations. On the other hand, we scale ADOs individually to achieve a uniform error tolerance, as set by the reduced density oper-ator. An efficient filtering algorithm is then adopted, by which the effective number of ADOs is greatly reduced. Using HEOM, numerically exact studies are carried out on the dephasing effect on STIRAP. We also make assessments on several perturbative theories for their applicabilities in the present system of study.
     The above HEOM is constructed on the basis of the Matsubara spectral decompo-sition (MSD) of Bose-Einstein function. In Chapter 4, we implement the partial frac- tion decomposition (PFD) scheme, and derive the corresponding HEOM. One feature of PFD scheme is the complex poles in the decomposition of Bose-Einstein function, which lead to not just the Bose function expansion more efficient and accurate, but also the HEOM construction more compact. The performance of the resulting PFD-HEOM is exemplified with spin-boson systems. We find it performs much better, about an order of magnitude faster, than the best available HEOM based on the MSD scheme.
     In Chapter 5, we propose a hierarchical quantum master equation (HQME) ap-proach. The theoretical development is rooted in an improved semiclassical treatment of Drude bath, beyond the conventional high temperature or classical approximations. It leads to the new theory a simple but important improvement over the conventional stochastic Liouville equation theory, without extra numerical cost. Its broad range of validity and applicability is extensively demonstrated with two-level electron trans-fer model systems, where the new theory can be considered as the modified Zusman equation. For this system, we can derive an analytical rate expression on the basis of the aforementioned continued fraction Liouville-space Green's function formalism, together with the Dyson equation technique. Finally, we also propose a criterion to estimate the performance of HQME.
     In Chapter 6, we construct an exact quantum master equation for a driven Brow-nian oscillator system via a Wigner phase-space Gaussian wave packet approach. It shows explicitly that the driving-dissipation correlation results in an effective field cor-rection that enhances the polarization. As the linear response and nonlinear dynamics are concerned, we demonstrate this cooperative effect is important in the low-frequency driving and intermediate bath memory region.
     In Chapter 7, we conclude the thesis, and discuss some future work.
引文
[1]M. Golden. Formal theory of spin-lattice relaxation.J. Magn. Reson.,149:160-187,2001.
    [2]W. H. Louisell. Quantum Statistical Properties of Radiation. Wiley, New York, 1973.
    [3]M. Born and K. Huang. Dynamical Theory of Crystal Lattices. Oxford University Press, New York,1985.
    [4]S. Mukamel. The Principles of Nonlinear Optical Spectroscopy. Oxford Univer-sity Press, New York,1995.
    [5]R. P. Feynman and F. L. Vernon, Jr. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys.,24:118-173,1963.
    [6]H. Grabert, P. Schramm, and G. L. Ingold. Quantum brownian motion:The func-tional integral approach. Phys. Rep.,168:115-207,1988.
    [7]U.Weiss. Quantum Dissipative Systems. World Scientific, Singapore,1999.2nd ed. Series in Modern Condensed Matter Physics, Vol.10.
    [8]Bloch F. Generalized theory of relaxation. Phys. Rev.,105:1206,1957.
    [9]Redfield AG. The theory of relaxation processes. Adv. Magn. Reson.,1:1,1965.
    [10]Pollard WT, Felts AK, and Friesner RA. The redfield equation in condensed-phase quantum dynamics. Adv. Chem. Phys.,93:77,1996.
    [11]Kohen D, Marson CC, and Tannor DJ. Phase space approach to theories of quan-tum dissipation. J. Chem. Phys.,107:5236,1997.
    [12]Caldeira AO and Leggett AJ. Path integral approach to quantum brownian motion. Physica.,121.
    [13]Caldeira AO and Leggett AJ. Quantum tunneling in a dissipative system. Ann. Phys.,149:374,1983.
    [14]K. G. Kay. Integral expressions for the semiclassical time-dependent propagator. J. Chem. Phys.,100:4377-4392,1994.
    [15]K. G. Kay. Numerical study of semiclassical initial value methods for dynamics. J. Chem. Phys.,100:4432-4445,1994.
    [16]K. G. Kay. Semiclassical propagation for multidimensional systems by an initial value method. J. Chem. Phys.,101:2250-2260,1994.
    [17]X. Sun and W. H. Miller. Forward-backward initial value representation for semi-classical time correlation functions. J. Chem. Phys.,110:6635-6644,1999.
    [18]M. Thoss, H. Wang, and W. H. Miller. Generalized forward-backward initial value representation for the calculation of correlation functions in complex systems. J. Chem. Phys.,114:9220-9235,2001.
    [19]S. Jang and G. A. Voth. Path integral centroid variables and the formulation of their exact real time dynamics. J. Chem. Phys.,111:2357-70,1999.
    [20]S. Jang and G. A.. Voth. A derivation of centroid molecular dynamics and other approximate time evolution methods for path integral centroid variables. J. Chem. Phys.,111:2371-84,1999.
    [21]S. S. Zhang and E. Pollak. Quantum dynamics for dissipative systems:A numer-ical study of the wigner-fokker-planck equation. J. Chem. Phys.,118:4357-64, 2003.
    [22]S. S. Zhang and E. Pollak. Optimization of the semiclassical initial value repre-sentation of the exact quantum mechanical real time propagator. J. Chem. Phys., 119:11058-63,2003.
    [23]J. S. Shao and N. Makri. Forward-backward semiclassical dynamics without pref-actors. J. Phys. Chem. A,103:7753-56,1999.
    [24]J. S. Shao and N. Makri. Forward-backward semiclassical dynamics with linear scaling. J. Phys. Chem. A,103:9479-86,1999.
    [25]J. S. Shao and N. Makri. Forward-backward semiclassical dynamics in the inter-action representation. J. Chem. Phys.,113:3681-5,2000.
    [26]S. Mukamel. Superoperator representation of nonlinear response:Unifying quan-tum field and mode coupling theories. Phys. Rev. E,68:021111,2003.
    [27]H. P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. Oxford University Press, New York,2002.
    [28]M. B. Plenio and P. L. Knight. The quantum-jump approach to dissipative dynam-ics in quantum optics. Rev. Mod. Phys.,70:101-144,1998.
    [29]H-P. Breuer, B. Kappler, and F. Petruccione. Stochastic wave-function method for non-markovian quantum master equations. Phys. Rev. A,59:1633-1643,1999.
    [30]J. T. Stockburger and C. H. Mak. Stochastic liouvillian algorithm to simulate dissipative quantum dynamics with arbitrary precision. J. Chem. Phys.,110:4983-5,1999.
    [31]J. T. Stockburger and H. Grabert. Exact c-number representation of non-markovian quantum dissipation. Phys. Rev. Lett,88:170407,2002.
    [32]J. S. Shao. Decoupling quantum dissipation interaction via stochastic fields. J. Chem. Phys.,120:5053-56,2004.
    [33]Y. A. Yan, F. Yang, Y. Liu, and J. S. Shao. Hierarchical approach based on stochas-tic decoupling to dissipative systems. Chem. Phys. Lett,395:216-21,2004.
    [34]J. S. Shao. Stochastic description of quantum open systems:Formal solution and strong dissipation limit. Chem. Phys.,322:187-192,2006.
    [35]H. S. Goan, G. J. Milburn, H. M. Wiseman, and H. B. Sun. Continuous quantum measurement of two coupled quantum dots using a point contact:A quantum trajectory approach. Phys. Rev. B,63:125326,2001.
    [36]J. Gambetta and H. M. Wiseman. Non-markovian stochastic schrodinger equa-tions:Generalization to real-valued noise using quantum-measurement theory. Phys. Rev. A,66:012108,2002.
    [1]R. P. Feynman and F. L. Vernon, Jr. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys.,24:118-173,1963.
    [2]U. Weiss. Quantum Dissipative Systems. World Scientific, Singapore,1999.2nd ed. Series in Modern Condensed Matter Physics, Vol.10.
    [3]H. Grabert, P. Schramm, and G. L. Ingold. Quantum brownian motion:The func-tional integral approach. Phys. Rep.,168:115-207,1988.
    [4]R. X. Xu, P. Cui, X. Q. Li, Y. Mo, and Y. J. Yan. Exact quantum master equation via the calculus on path integrals. J. Chem. Phys.,122:041103,2005.
    [5]C. Meier and D. J. Tannor. Non-markovian evolution of the density operator in the presence of strong laser fields. J. Chem. Phys.,111:3365-3376,1999.
    [6]M. V. Korolkov, J. Manz, and G. K. Paramonov. State-selective control for dissi-pative vibrational dynamics of hod by shaped ultrashort infrared laser pulses. J. Phys. Chem.,100:13927-13940,1996.
    [7]U. Kleinekathofer. Non-markovian theories based on a decomposition of the spec-tral density. J. Chem. Phys.,121:2505-14,2004.
    [8]R. X. Xu and Y. J. Yan. Theory of open quantum systems. J. Chem. Phys., 116:9196-9206,2002.
    [9]R. X. Xu, Y. Mo, P. Cui, S. H. Lin, and Y. J. Yan. Non-markovian quantum dissipa-tion in the presence of external fields. In J. Maruani, R. Lefebvre, and E. Brandas, editors, Progress in Theoretical Chemistry and Physics, Vol.12:Advanced Topics in Theoretical Chemical Physics, pages 7-40. Kluwer, Dordrecht,2003.
    [10]Y. J. Yan and R. X. Xu. Quantum mechanics of dissipative systems. Annu. Rev. Phys. Chem.,56:187-219,2005.
    [11]P. Han, R. X. Xu, B. Q. Li, J. Xu, P. Cui, Y. Mo, and Y. J. Yan. Kinetics and thermodynamics of electron transfer in debye solvents:An analytical and nonper-turbative reduced density matrix theory. J. Phys. Chem. B,110:11438-43,2006.
    [12]P. Han, R. X. Xu, P. Cui, Y. Mo, G. Z. He, and Y. J. Yan. Electron transfer theory revisit:Quantum solvation effect. J. Theore.& Comput. Chem.,5:685-92,2006.
    [13]N. Makri. Numerical path integral techniques for long time dynamics of quantum dissipative systems. J. Math. Phys.,36:2430-2457,1995.
    [14]B. L. Hu, J. P. Paz, and Y. Zhang. Quantumbrownian motion in a general environ-ment:Exact master equation with nonlocal dissipation and colored noise. Phys. Rev. D,45:2843-61,1992.
    [15]R. Karrlein and H. Grabert. Exact time evoluation and master equations for the damped harmonic oscillator. Phys. Rev. E,55:153-164, 1997.
    [16]Y. Tanimura and R. Kubo. Time evolution of a quantum system in contact with a nearly gaussian-markovian noise bath. J. Phys. Soc. Jpn.,58:101-114,1989.
    [17]Y. Tanimura and P. G. Wolynes. Quantum and classical fokker-planck equations for a guassian-markovian noise bath. Phys. Rev. A,43:4131-4142,1991.
    [18]A. Ishizaki and Y. Tanimura. Quantum dynamics of system, strongly coupled to low temperature colored noise bath:Reduced hierarchy equations approach. J. Phys. Soc. Jpn.,74:3131,2005.
    [19]J. T. Stockburger and C. H. Mak. Stochastic liouvillian algorithm to simulate dissipative quantum dynamics with arbitrary precision. J. Chem. Phys.,110:4983-5,1999.
    [20]Y. Tanimura. Stochastic liouville, langevin, fokker-planck, and master equation approaches to quantum dissipative systems. J. Phys. Soc. Jpn.,75:082001,2006.
    [1]R. P. Feynman and F. L. Vernon, Jr. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys.,24:118-173,1963.
    [2]H. Kleinert. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets. World Scientific, Singapore,2006.4th ed.
    [3]U.Weiss. Quantum Dissipative Systems. World Scientific, Singapore,2008.3rd ed.
    [4]A. J. Leggett, S. Chakravarty, A. T. Dorsey, Matthew P. A. Fisher, Anupam Garg, and W. Zwerger. Dynamics of the dissipative two-state system. Rev. Mod. Phys., 59:1-85,1987.67,725-726(Erratum) (1995).
    [5]H. Grabert, P. Schramm, and G. L. Ingold. Quantum brownian motion:The func-tional integral approach. Phys. Rep.,168:115-207,1988.
    [6]N. Makri and D. E. Makarov. Tensor propagator for iterative quantum time evo-lution of reduced density matrices, i. theory.J. Chem. Phys.,102:4600-4610, 1995.
    [7]N. Makri and D. E. Makarov. Tensor propagator for iterative quantum time evo-lution of reduced density matrices, ii. numerical methodology. J. Chem. Phys., 102:4611-4618,1995.
    [8]N. Makri. Numerical path integral techniques for long time dynamics of quantum dissipative systems.J. Math. Phys.,36:2430-2457,1995.
    [9]M. Thorwart and P. Hanggi. Iterative algorithm versus analytic solutions of the parametrically driven dissipative quantum harmonic oscillator. Phys. Rev. E, 62:5808-5817,2000.
    [10]C. H. Mak and R. Egger. Quantum monte carlo study of tunneling diffusion in a dissipative multistate system. Phys, Rev. E,49:1997-2008,1994.
    [11]R. Egger, L. Miihlbacher, and C. H. Mak. Path-integral monte carlo simulations without the sign problem:Multilevel blocking approach for effective actions. Phys. Rev.E,61:5961-5966,2000.
    [12]L. Miihlbacher, J. Ankerhold, and C. Escher. Path-integral monte carlo Simula- tions for electronic dynamics on molecular chains, i. sequential hopping and super exchange. J. Chem. Phys.,121:12696-12707,2004.
    [13]L. Muhlbacher and J. Ankerhold. Path-integral monte carlo simulations for elec-tronic dynamics on molecular chains, ii. transport across impurities.J. Chem. Phys.,122:184715,2005.
    [14]L. Muhlbacher and E. Rabani. Real-time path integral approach to nonequilibrium many-body quantum systems. Phys. Rev. Lett.,100:176403,2008.
    [15]Y. J. Yan and R. X. Xu. Quantum mechanics of dissipative systems. Annu. Rev. Phys. Chem.,56:187-219,2005.
    [16]Y. Tanimura. Stochastic liouville, langevin, fokker-planck, and master equation approaches to quantum dissipative systems.J. Phys. Soc. Jpn.,75:082001,2006.
    [17]R. X. Xu, P. Cui, X. Q. Li, Y. Mo, and Y. J. Yan. Exact quantum master equation via the calculus on path integrals.J. Chem. Phys.,122:041103,2005.
    [18]R. X. Xu and Y. J. Yan. Dynamics of quantum dissipation systems interacting with bosonic canonical bath:Hierarchical equations of motion approach. Phys. Rev. E,75:031107,2007.
    [19]J. S. Jin, S. Welack, J.Y. Luo, X. Q. Li, P. Cui, R. X. Xu, and Y. J. Yan. Dynamics of quantum dissipation systems interacting with Fermion and Boson grand canon-ical bath ensembles:Hierarchical equations of motion approach. J. Chem. Phys., 126:134113,2007.
    [20]J. S. Jin, X. Zheng, and Y. J. Yan. Exact dynamics of dissipative electronic systems and quantum transport:Hierarchical equations of motion approach. J. Chem. Phys.,128:234703,2008.
    [21]X. Zheng, J. Y. Luo, J. S. Jin, and Y. J. Yan. Complex non-markovian effect on time-dependent quantum transport. J. Chem. Phys.,130(12):124508,2009.
    [22]X. Zheng, J. S. Jin, S. Welack, M. Luo, and Y J. Yan. Numerical approach to time-dependent quantum transport and dynamical kondo transition.J. Chem. Phys., 130(16):164708,2009.
    [23]Y. Tanimura and R. Kubo. Time evolution of a quantum system in contact with a nearly gaussian-markovian noise bath. J. Phys. Soc.Jpn.,58:101-114,1989.
    [24]Y. Tanimura and P. G. Wolynes. Quantum and classical fokker-planck equations for a guassian-markovian noise bath. Phys. Rev. A,43:4131-4142,1991.
    [25]Y. Tanimura. Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath. Phys. Rev. A,41:6676-87,1990.
    [26]Y. Tanimura and S. Mukamel. Optical stark spectroscopy of a brownian oscillator in intense fields. J. Phys. Soc. Jpn.,63:66-77,1994.
    [27]A. Ishizaki and Y. Tanimura. Quantum dynamics of system strongly coupled to low temperature colored noise bath:Reduced hierarchy equations approach.J. Phys. Soc. Jpn.,74:3131,2005.
    [28]A. Ishizaki and Y. Tanimura. Modeling vibrational dephasing and energy relax-ation of intramolecular anharmonic modes for multidimensional infrared spectro-scopies. J. Chem. Phys.,125:084501,2006.
    [29]A. Ishizaki and Y. Tanimura. Dynamics of a multimode system coupled to multi-ple heat baths probed by two-dimensional infrared spectroscopy. J. Phys. Chem. A,111:9269-9276,2007.
    [30]J. S. Shao. Decoupling quantum dissipation interaction via stochastic fields. J. Chem. Phys.,120:5053-56,2004.
    [31]Y. A. Yan, F. Yang, Y. Liu, and J. S. Shao. Hierarchical approach based on stochas-tic decoupling to dissipative systems. Chem. Phys. Lett.,395:216-21,2004.
    [32]J. S. Shao. Stochastic description of quantum open systems:Formal solution and strong dissipation limit. Chem. Phys.,322:187-192,2006.
    [33]Y. Zhou and J. S. Shao. Solving the spin-boson model of strong dissipation with flexible random-deterministic scheme. J. Chem. Phys.,128:034106,2008.
    [34]Q. Shi, L. P. Chen, G. J. Nan, R. X. Xu, and Y. J. Yan. Efficient hierarchical liouville space propagator to quantum dissipative dynamics. J. Chem. Phys., 130(8):084105,2009.
    [35]Q. Shi, L. P. Chen, G. J. Nan, R. X. Xu, and Y. J. Yan. Electron transfer dynamics: Zusman equation versus exact theory. J. Chem. Phys.,130:164518,2009.
    [36]K. Bergmann, H. Theuer, and B. W. Shore. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys.,70:1003-1025,1998.
    [37]D. Sugny, M. Ndong, D. Lauvergnat, Y. Justum, and M. Desouter-Lecomte. Laser control in open molecular systems:Stirap and optimal control. J. Photochem. Photobio. A:Chemistry,190:359-371,2007.
    [38]H. Jirari and W. Potz. Quantum optimal control theory and dynamic coupling in the spin-boson model. Phys. Rev. A,74(2):022306,2006.
    [39]S. E. Sklarz, D. J. Tannor, and N. Khaneja. Optimal control of quantum dissipative dynamics:Analytic solution for cooling the three-level λ system. Phys. Rev. A, 69(5):053408,2004.
    [40]Y. Ohtsuki, W. Zhu, and H. Rabitz. Monotonically convergent algorithm for quan-tum optimal control with dissipation. J. Chem. Phys.,110:9825-32,1999.
    [41]P. A. Ivanov, N. V. Vitanov, and K. Bergmann. Effect of dephasing on stimulated raman adiabatic passage. Phys. Rev. A,70(6):063409,2004.
    [42]Qiang Shi and Eitan Geva. Stimulated raman adiabatic passage in the presence of dephasing. J. Chem. Phys.,119(22):11773-11787,2003.
    [43]Y. Mo, R. X. Xu, and Y. J. Yan. Influence of dissipation on the stimulated raman adiabatic passage. Chin. J. Chem. Phys.,15:237-240,2002.
    [44]M. Demirplak and S. A. Rice. Adiabatic transfer of population in a dense fluid: The role of dephasing statistics. J. Chem. Phys.,125:194517,2006.
    [45]Mustafa Demirplak and Stuart A. Rice. Optical control of molecular dynamics in a liquid. J. Chem. Phys.,116(18):8028-8035,2002.
    [46]L. P. Yatsenko, V. I. Romanenko, B. W. Shore, and K. Bergmann. Stimu-lated raman adiabatic passage with partially coherent laser fields. Phys. Rev. A, 65(4):043409,2002.
    [47]R. X. Xu, Y J. Yan, Y. Ohtsuki, Y. Fujimura, and H. Rabitz. Optimal control of quantum non-markovian dissipation:Reduced liouville-space theory. J. Chem. Phys.,120:6600-6608,2004.
    [48]Y. Mo, R. X. Xu, P. Cui, and Y J. Yan. Correlation and response functions with non-markovian dissipation:A reduced liouville-space theory. J. Chem. Phys., 122:084115,2005.
    [49]C. Meier and D. J. Tannor. Non-markovian evolution of the density operator in the presence of strong laser fields. J. Chem. Phys.,111:3365-3376,1999.
    [50]R. X. Xu, Y. Mo, P. Cui, S. H. Lin, and Y. J. Yan. Non-markovian quantum dissipa-tion in the presence of external fields. In J. Maruani, R. Lefebvre, and E. Brandas, editors, Progress in Theoretical Chemistry and Physics, Vol.12:Advanced Topics in Theoretical Chemical Physics, pages 7-40. Kluwer, Dordrecht,2003.
    [51]Y. J. Yan, F. Shuang, R. X. Xu, J. X. Cheng, X. Q. Li, C. Yang, and H. Y. Zhang. Unified approach to the bloch-redfield theory and quantum fokker-planck equa-tions. J. Chem. Phys.,113:2068-2078,2000.
    [52]R. X. Xu and Y. J. Yan. Theory of open quantum systems. J. Chem. Phys., 116:9196-9206,2002.
    [53]A. O. Caldeira and A. J. Leggett. Quantum tunnelling in a dissipative system. Ann. Phys.,149:374-456,1983.153,445(Erratum) (1984).
    [54]A. O. Caldeira and A. J. Leggett. Path integral approach to quantum brownian motion. Physica A,121:587-616,1983.
    [55]J. Cheng, S. S. Han, and Y. J. Yan. Stimulated raman adiabatic passage from atomic to molecular bose-einstein condensates:Feedback laser-detuning control and suppression of dynamical instability. Phys. Rev. A.,73:035601,2006.
    [56]R. Kubo, M. Toda, and N. Hashitsume. Statistical Physics II:Nonequilibrium Statistical Mechanics. Springer-Verlag, Berlin,2nd Ed.,1985.
    [57]J. Xu, R. X. Xu, M. Luo, and Y J. Yan. Hierarchical theory of quantum dissipa-tion:Partial fraction decomposition scheme. Chem. Phys., in press.
    [58]R. X. Xu, B. L. Tian, J. Xu, and Y. J. Yan. Exact dynamics of driven brownian oscillators. J. Chem. Phys.,130:074107,2009.
    [1]A. Croy and U. Saalmann. Partial fraction decomposition of the fermi function. Phys. Rev. B,80(7):073102,2009.
    [2]A. Ishizaki and Y. Tanimura. Quantum dynamics of system strongly coupled to low temperature colored noise bath:Reduced hierarchy equations approach.J. Phys. Soc. Jpn.,74:3131,2005.
    [3]Q. Shi, L. P. Chen, G. J. Nan, R. X. Xu, and Y. J. Yan. Electron transfer dynamics: Zusman equation versus exact theory.J. Chem. Phys.,130:164518,2009.
    [4]L. P. Chen, R. H. Zheng, Q. Shi, and Y. J. Yan. Optical line shapes of molec-ular aggregates:Hierarchical equations of motion method. J. Chem. Phys., 131(9):094502,2009.
    [5]J. Xu, R. X. Xu, and Y.J. Yan. Exact quantum dissipative dynamics under external time-dependent driving fields. New J. Phys.,11:105037,2009.
    [6]A. Ishizaki and G. R. Fleming. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl. Acad. Sci. USA, 106:17255-60,2009.
    [7]F. Gagel. Finite-temperature evaluation of the fermi density operator. J. Comput. Phys.,139:399-405,1998.
    [8]S. Goedecker. Integral representation of the fermi distribution and its applica-tions in electronic-structure calculations. Phys. Rev. B,48(23):17573-17575, Dec 1993.
    [9]D. M. C. Nicholson, G. M. Stocks, Y. Wang, W. A. Shelton, Z. Szotek, and W. M. Temmerman. Stationary nature of the density-functional free energy:Applica-tion to accelerated multiple-scattering calculations. Phys. Rev. B,50(19):14686-14689, Nov 1994.
    [10]D. M. C. Nicholson and X.-G. Zhang. Approximate occupation functions for density-functional calculations. Phys. Rev. B,56(20):12805-12810, Nov 1997.
    [11]T. Ozaki. Continued fraction representation of the fermi-dirac function for large-scale electronic structure calculations. Phys. Rev. B,75(3):035123,2007.
    [12]R. X. Xu and Y. J. Yan. Dynamics of quantum dissipation systems interacting with bosonic canonical bath:Hierarchical equations of motion approach. Phys. Rev.E,75:031107,2007.
    [13]Q.Shi, L. P. Chen, G. J. Nan, R. X. Xu, and Y. J. Yan. Efficient hierarchical liouville space propagator to quantum dissipative dynamics. J. Chem. Phys., 130(8):084105,2009.
    [14]Y. Tanimura and R. Kubo. Time evolution of a quantum system in contact with a nearly gaussian-markovian noise bath.J. Phys. Soc. Jpn.,58:101-114,1989.
    [15]R. X. Xu, P. Cui, X. Q. Li, Y. Mo, and Y. J. Yan. Exact quantum master equation via the calculus on path integrals. J. Chem. Phys.,122:041103,2005.
    [16]R. P. Feynman and F. L. Vernon, Jr. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys.,24:118-173,1963.
    [1]R. P. Feynman and F. L. Vernon, Jr. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys.,24:118-173,1963.
    [2]U. Weiss. Quantum Dissipative Systems. World Scientific, Singapore,2008.3rd ed.
    [3]H. Kleinert. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets. World Scientific, Singapore,2009.5th ed.
    [4]Y. Tanimura. Stochastic liouville, langevin, fokker-planck, and master equation approaches to quantum dissipative systems.J. Phys. Soc.Jpn.,75:082001,2006.
    [5]Y. Tanimura and R. Kubo. Time evolution of a quantum system in contact with a nearly gaussian-markovian noise bath. J. Phys. Soc.Jpn.,58:101-114,1989.
    [6]A. Ishizaki and Y. Tanimura. Quantum dynamics of system strongly coupled to low temperature colored noise bath:Reduced hierarchy equations approach. J. Phys. Soc. Jpn.,74:3131,2005.
    [7]R. X. Xu, P. Cui, X. Q. Li, Y. Mo, and Y. J. Yan. Exact quantum master equation via the calculus on path integrals. J. Chem. Phys.,122:041103,2005.
    [8]R. X. Xu and Y. J. Yan. Dynamics of quantum dissipation systems interacting with bosonic canonical bath:Hierarchical equations of motion approach. Phys. Rev.E,75:031107,2007.
    [9]J. S. Jin, X. Zheng, and Y. J. Yan. Exact dynamics of dissipative electronic systems and quantum transport:Hierarchical equations of motion approach.J. Chem. Phys.,128:234703,2008.
    [10]R. Kubo. Stochastic liouville equations. J. Math. Phys.,4:174-183,1963.
    [11]R. Kubo. A stochastic theory of line shape. Adv. Chem. Phys.,15:101,1969.
    [12]D. Abramavicius, B. Palmieri, D. V. Voronine, F. Sanda, and S. Mukamel. Coher-ent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus supermolecule perspectives. Chem. Rev,109:2350-2408, 2009.
    [13]W. Zhuang, T. Hayashi, and S. Mukamel. Coherent multidimensional vibrational spectroscopy of biomolecules:Concepts, simulations, and challenges. Angew. Chem. Int. Ed.,48:3750-3781,2009.
    [14]L. D. Zusman. Outer-sphere electron transfer in polar solvents. Chem. Phys., 49:295-304,1980.
    [15]L. D. Zusman. The theory of transitions between electronic states, application to radiationless transitions in polar solvents. Chem. Phys.,80:29-43,1983.
    [16]A. Garg, J. N. Onuchic, and V. Ambegaokar. Effect of friction on electron transfer in biomolecules. J. Chem. Phys.,83:4491-503,1985.
    [17]D. Y. Yang and R. I. Cukier. The transition from nonadiabatic to solvent controlled adiabatic electron transfer:Solvent dynamical effects in the inverted regime. J. Chem. Phys.,91:281-292,1989.
    [18]P. A. Frantsuzov. Chem. Phys. Lett,267:427,1997.
    [19]P. A. Frantsuzov.J. Chem. Phys.,111:2075,1999.
    [20]M. Thoss, H. B. Wang, and W. H. Miller. Self-consistent hybrid approach for com-plex dystems:Application to the spin-boson model with debye spectral density. J. Chem. Phys.,115:2991-3005,2001.
    [21]J. S. Cao and Y. J. Jung. Spectral analysis of electron transfer kinetics, i. symmet-ric reactions. J. Chem. Phys.,112:4716-22,2000.
    [22]Y. J. Jung and J. S. Cao. Spectral analysis of electron transfer kinetics, ii. J. Chem. Phys.,117:3822-36,2002.
    [23]L. Muhlbacher and R. Egger. Crossover from nonadiabatic to adiabatic electron transfer reactions:Multilevel blocking monte carlo simulations.J. Chem. Phys., 118:179-191,2003.
    [24]J. Ankerhold and H. Lehle. Low temperature electron transfer in strongly con-densed phases.J. Chem. Phys.,120:1436,2004.
    [25]D. V. Dodin. Problems of coherent description of electron transfer reactions. Chem. Phys.,325:257-264,2006.
    [26]M.-L. Zhang, S.-S. Zhang, and E. Pollak. Theory of electron transfer in the pres-ence of dissipation. J. Chem. Phys.,119:11864,2003.
    [27]M.-L. Zhang, S.-S. Zhang, and E. Pollak. Low temperature extension of the generalized zusman phase space equations for electron transfer. J. Chem. Phys., 120:9630,2004.
    [28]Q. Shi, L. P. Chen, G. J. Nan, R. X. Xu, and Y. J. Yan. Electron transfer dynamics: Zusman equation versus exact theory.J. Chem. Phys.,130:164518,2009.
    [29]P. Han, R. X. Xu, B. Q. Li, J. Xu, P. Cui, Y. Mo, and Y. J. Yan. Kinetics and thermodynamics of electron transfer in debye solvents:An analytical and nonper-turbative reduced density matrix theory. J. Phys. Chem. B,110:11438-43,2006.
    [30]Q. Shi, L. P. Chen, G. J. Nan, R. X. Xu, and Y. J. Yan. Efficient hierarchical liouville space propagator to quantum dissipative dynamics.J. Chem. Phys., 130(8):084105,2009.
    [31]X. Zheng, J. S. Jin, S. Welack, M. Luo, and Y. J. Yan. Numerical approach to time-dependent quantum transport and dynamical kondo transition. J. Chem. Phys., 130(16):164708,2009.
    [32]S. Jang and J. S. Cao. Nonadiabatic instanton calculation of multistate electron transfer reaction rate:Interference effects in three and four states systems.J. Chem. Phys.,114:9959-68,2001.
    [33]Y. C. Cheng and G. R. Fleming. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem.,60:241-262,2009.
    [34]A. Ishizaki and G. R. Fleming. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl. Acad. Sci. USA, 106:17255-60,2009.
    [35]Y. A. Yan, F. Yang, Y. Liu, and J. S. Shao. Hierarchical approach based on stochas-tic decoupling to dissipative systems. Chem. Phys. Lett,395:216-21,2004.
    [36]Y. Zhou and J. S. Shao. Solving the spin-boson model of strong dissipation with flexible random-deterministic scheme. J. Chem. Phys.,128:034106,2008.
    [1]H. Grabert, P, Schramm, and G. L. Ingold. Quantum brownian motion:The func-tional integral approach. Phys. Rep.,168:115-207,1988.
    [2]U.Weiss. Quantum Dissipative Systems. World Scientific, Singapore,2008.3rd ed.
    [3]Y. J. Yan and R. X. Xu. Quantum mechanics of dissipative systems. Annu. Rev. Phys. Chem.,56:187-219,2005.
    [4]A. O. Caldeira and A. J. Leggett. Path integral approach to quantum brownian motion. Physica A,121:587-616,1983.
    [5]G. S. Agarwal. Master equations in phase-space formulation of quantum optics. Phys. Rev.,178:2025-35,1969.184,1966 (1969).
    [6]G. S. Agarwal. Brownian motion of a quantum oscillator. Phys. Rev. A,4:739-47, 1971.
    [7]S. Mukamel. The Principles of Nonlinear Optical Spectroscopy. Oxford Univer-sity Press, New York,1995.
    [8]C. F. Klingshirn. Semiconductor Optics. Springer-Verlag, Heidelberg,1997.
    [9]T. Dittrich, P. Hanggi, G. L. Ingold, B. Kramer, G. Schon, and W. Zwerger. Quan-tum Transport and Dissipation. Wiley-VCH, Weinheim,1998.
    [10]W. H. Zurek. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys.,75:715-775,2003.
    [11]P. Hanggi and G. L. Ingold. Fundamental aspects of quantum brownian motion. Chaos,15:026105,2005.
    [12]J. Ankerhold, H. Grabert, and P. Pechukas. Quantum brownian motion with large friction. Chaos,15:026106,2005.
    [13]H. Grabert. Can quantum brownian motion be markovian? Chem. Phys., 322:160-168,2006.
    [14]A. Nitzan. Chemical Dynamics in Condensed Phases:Relaxation, Transfer and Reactions in Condensed Molecular Systems. Oxford University Press, New York, 2006.
    [15]B. L. Hu, J. P. Paz, and Y. Zhang. Quantum brownian motion in a general environ-ment:Exact master equation with nonlocal dissipation and colored noise. Phys. Rev. D,45:2843-61,1992.
    [16]R. Karrlein and H. Grabert. Exact time evoluation and master equations for the damped harmonic oscillator. Phys. Rev.E,55:153-164,1997.
    [17]F. Haake and R. Reibold. Strong damping and low-temperature anomalies for the harmonic oscillator. Phys. Rev. A,32:2462-75,1985.
    [18]J. J. Halliwell and T. Yu. Alternative derivation of the hu-paz-zhang master equa-tion of quantum brownian motion. Phys. Rev. D,53:2012-9,1996.
    [19]G. W. Ford and R. F. O'Connell. Exact solution to the hu-paz-zhang master equation. Phys. Rev. D,64:105020,2001.
    [20]W. G. Unruh and W. H. Zurek. Reduction of a wave packet in quantum brownian motion. Phys. Rev. D,40:1071-94,1989.
    [21]W. T. Strunz and T. Yu. Convolutionless non-markovian master equations and quantum trajectories:Brownian motion. Phys. Rev. A,69:052115,2004.
    [22]R. X. Xu, Y. Mo, P. Cui, S. H. Lin, and Y. J. Yan. Non-markovian quantum dissipa-tion in the presence of external fields. In J. Maruani, R. Lefebvre, and E. Brandas, editors, Progress in Theoretical Chemistry and Physics, Vol.12:Advanced Topics in Theoretical Chemical Physics, pages 7-40. Kluwer, Dordrecht,2003.
    [23]Y. J. Yan and S. Mukamel. Electronic dephasing, vibrational relaxation, and sol-vent friction in molecular nonlinear optical lineshapes. J. Chem. Phys.,89:5160-5176,1988.
    [24]C. H. Chou, T. Yu, and B. L. Hu. Exact master equation and quantum decoher-ence of two coupled harmonic oscillators in a general environment. Phys. Rev. E, 77:011112,2008.
    [25]J. Cao. A phase-space study of bloch-redfield theory. J.Chem. Phys.,107:3204-9, 1997.
    [26]Y. J. Yan. Quantum fokker-planck theory in a non-gaussian-markovian medium. Phys. Rev. A,58:2721-32,1998.
    [27]R. X. Xu and Y. J. Yan. Introduction to dynamics of quantum dissipative systems. In Z. G. Shuai and J. S. Shao, editors, Theoretical Chemistry:Principles and Applications, pages 551-577, Ch.12. Science Press, Beijing,2008.
    [28]M. Grifoni and P. Hanggi. Driven quantum tunneling.'Phys. Rep.,304:229-354, 1998.
    [29]T. Dittrich, B. Oelschlagel, and P. Hanggi. Driven tunneling with dissipation. Europhys. Lett.,22:5,1993.
    [30]R. Blumel, A. Buchleitner, R. Graham, L. Sirko, U. Smilansky, and H. Walther. Dynamical localization in the microwave interaction of rydberg atoms:The influ-ence of noise. Phys. Rev. A,44(7):4521-4540,1991.
    [31]Christine Zerbe and Peter Hanggi. Brownian parametric quantum oscillator with dissipation. Phys. Rev. E,52(2):1533-1543,1995.
    [32]S. Kohler, T. Dittrich, and P. Hanggi. Floquet-markovian description of the para-metrically driven, dissipative harmonic quantum oscillator. Phys. Rev. E,55:300, 1997.
    [33]R. X. Xu, Y. J. Yan, Y. Ohtsuki, Y. Fujimura, and H. Rabitz. Optimal control of quantum non-markovian dissipation:Reduced liouville-space theory.J. Chem. Phys.,120:6600-6608,2004.
    [34]Y. Mo, R. X. Xu, P. Cui, and Y. J. Yan. Correlation and response functions with non-markovian dissipation:A reduced liouville-space theory. J. Chem. Phys., 122:084115,2005.
    [35]A. Ishizaki and Y. Tanimura. Quantum dynamics of system strongly coupled to low temperature colored noise bath:Reduced hierarchy equations approach. J. Phys. Soc. Jpn.,74:3131,2005.
    [36]A. Ishizaki and Y. Tanimura. Nonperturbative non-markovian quantum master equation:Validity and limitation to calculate nonlinear response functions. Chem. Phys.,347:185-193,2008.
    [37]R. X. Xu, P. Cui, X..Q. Li, Y. Mo, and Y. J. Yan. Exact quantum master equation via the calculus on path integrals. J. Chem. Phys.,122:041103,2005.
    [38]R. X. Xu and Y. J. Yan. Dynamics of quantum dissipation systems interacting with bosonic canonical bath:Hierarchical equations of motion approach. Phys. Rev. E,75:031107,2007.
    [39]Y. A. Yan, F. Yang, Y. Liu, and,J. S. Shao. Hierarchical approach based on stochas- tic decoupling to dissipative systems. Chem. Phys. Lett,395:216-21,2004.
    [40]Y. Zhou and J. S. Shao. Solving the spin-boson model of strong dissipation with flexible random-deterministic scheme. J. Chem. Phys.,128:034106,2008.
    [41]J. S. Jin, X. Zheng, and Y. J. Yan. Exact dynamics of dissipative electronic systems and quantum transport:Hierarchical equations of motion approach. J. Chem. Phys.,128:234703,2008.
    [42]X. Zheng, J. S. Jin, and Y. J. Yan. Dynamic coulomb blockade in single-lead quantum dots. New J. Phys.,10:093016,2008.
    [43]A. O. Caldeira and A. J. Leggett. Quantum tunnelling in a dissipative system. Ann. Phys.,149:374-456,1983.153,445(Erratum) (1984).
    [1]A. Ishizaki and G. R. Fleming. On the adequacy of the redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. J. Chem. Phys.,130:234110,2009.
    [2]A. Ishizaki and G. R. Fleming. Unified treatment of quantum coherent and inco-herent hopping dynamics in electronic energy transfer:Reduced hierarchy equation approach. J. Chem. Phys.,130:234111,2009.
    [3]A. Ishizaki and G. R. Fleming. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl. Acad. Sci. USA, 106:17255-60,2009.
    [4]Y. C. Cheng and G. R. Fleming. Dynamics of light harvesting in photosynthesis. Annu.Rev. Phys. Chem.,60:241-262,2009.
    [5]G. S. Engel, T. R. Calhoun, E. L. Read, T..K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature,446:782-6,2007.
    [6]E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Sc-holes. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature; 463:644-7,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700