量子计算的核磁共振实验实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子计算研究的根本目标是建造基于量子力学原理,能在许多复杂计算问题上大大超越经典计算机性能的新型计算机。作为经典计算方式的继承,量子计算能有效处理一类计算问题,这些问题在经典计算科学中具有相当计算复杂度甚至无法完成,比如大数的质因数分解。量子计算机的实验实现需要对脆弱的量子体系进行初始化,相干控制和操作以及读。要建立一种能够满足各方面要求的量子计算机是非常困难的。相比较而言,核磁共振是当前技术上最为成熟的量子计算实验手段。利用成熟的传统磁共振技术,人们完成了初态制备、量子逻辑门操作,实现了12量子比特的相干调控(迄今最大数量的量子比特操控),大量的量子算法也已在低量子位水平上得到了验证。这些实验验证了量子计算的可行性,给予了人们研究量子计算机的极大信心。
     在本论文中,我们利用NMR技术实验验证了一些重要的量子计算问题。主要工作有:实验实现了态依赖的量子态克隆,这在量子通信和量子密码领域具有重要意义:实验演示了一个非常实用的量子器件,利用它可以非常方便的测量未知量子态的信息而不需要进行量子层析;对于一些量子算法比如随机行走搜索算法我们也给予了实验验证,这个算法能达到和Grover算法相同的搜索提速;实现量子计算最关键的一点是要将噪声压制在一定的限度内,为研究抗噪声量子计算的实验实现,我们集中考虑了作为容错量子计算方案中的重要一员的几何量子计算,我们在国际上首次测量了混念几何相,并利用非传统的几何相搭建了高精度的通用量子逻辑门,以及测量了非对角几何相的性质。
     固态NMR构建可扩展的量子信息处理可以被寄予厚望,我们对固态NMR量子计算实验实现上也进行了一些初步的探讨。
     这些实验工作为我们最终实现量子计算积累了丰富的实际经验,从液体和固体中发展起来的量子态相干控制技术将来可能被用到其它量子体系,甚至是可扩展的量子计算机实现中。
The basic aim of research on quantum computation is to construct a new machine which works grounding on quantum mechanics theory and has intense superiority over the classical computer on processing complicated computational problems. Quantum computer can solve some certain problems which are NP ones for their classical counterparts, and Shor's quantum algorithm for prime factorization is a well-known instance. As the experimental implementation of quantum computation need initialization, coherent manipulation,control and read of the fragile quantum system, practically building quantum computers has proved extremely difficult. However, of the extant methods, liquid-state Nuclear Magnetic Resonance (NMR) is the most successful one. Using mature NMR technique, preparing initial states and manipulating quantum gates are both realized. To this day the coherent control of 12 qubits has been implemented. Many quantum algorithms are demonstrated on the level of small numbers of qubits. The experiments have proven the feasibility of quantum computation, which spirits up us to study quantum computation further.
     In this thesis, we concentrate on some important problems and algorithms concerning robustness against noise in quantum computation.
     We demonstrate some important quantum protocols in quantum computation use NMR technique. The main research results are as follows. We report the first experimental optimal quantum state-dependent cloner. Besides, we demonstrate an important building block which perform various quantum information processing tasks directly without recourse to quantum tomography, and realize a quantum random walk search algorithm which has a speedup similar to the Grover's quantum search algorithm.
     To experimental realization of quantum computation, suppressing the noises to an acceptable level is one of the most important problems. Using liquid NMR system, we have studied geometrical quantum computation which is one method to achieve built-in fault tolerant quantum gates with higher fidelities. We have first observed the geometrical phase of the mixed state, implemented high-fidelity unconventional geo- metric quantum gates, and measure the off diagonal geometric phase. Farther, some underway study on solid state system is carried out.
     This work has given us much practical experience of what it takes to build a quantum computer. The quantum coherence controlling techniques developed for liquid and solid NMR may find use in other, perhaps more scalable quantum computer implementations.
引文
[1]Roger Penrose,"Emperor's New Mind",Oxford University Press(1989)
    [2]Turing A M,1936 On Computable numbers,with an application to the Enschneidungsproblem,Proc.Lond.Math.Soc.Ser.242,230;see also Proc.Lond.Math.Soc.Ser.243,544
    [2] R. Landauer. Irreversibility and heat generation in the computing process[J]. IBM J Res De-velop. 1961, 5(3): 183 - 191
    
    [3] A. Steane. Quantum computing[J]. Rep Prog Phys. 1998, 61:117 - 173
    
    [4] C. H. Bennett, D. P. Divincenzo. Quantum information and computation[J]. Nature (London).2000, 404(6775):247 - 255
    
    [5] C. H. Bennett. Quantum information and computation[J]. Physics Today. 1995,48(10):24-30
    
    [6] M. A. Nielsen. Introduction to quantum information theory[J]. ArXiv Quantum Physics e-prints. Nov. 2000. arXiv:quant-ph/0011064
    
    [7] J. Preskill. Quantum information and physics: some future directions[J]. 2000
    [8] J. Preskill. A course for quantum information and computation[M]. 1997
    
    [9] A. Ekert, P. Hayden. Basic concepts in quantum computation[J]. ArXiv Quantum Physics e-prints. Nov. 2000. arXiv:quant-ph/0011013
    
    [10] D. Bouwmeester, A. Ekert, A. Zeilinger. The physics of quantum information[M]. Springer-Verlag, 2000
    
    [11] Nielsen M. A., Chuang I. L. Quantum computation and information[M]. Cambridge, Cam-bridge University Press, 2000
    
    [12] P. Busch, M. Grabowski, P. J. Lahti. Operational quantum physics[M]. Beijing, World Pub-lishing Corporation, First Edition, 1999
    
    [13] R. P. Feynman. Simulating physics with computers[J]. Int J Theor Phys. 1982, 21(6-7):467 - 488
    
    [15] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. Proc. R. Soc.London A, 439, 553, 1992.
    
    [16] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Pro-ceedings, 35th Annual Symposium on Foundations of Computer Science, pp. 124- 134,IEEE Press, Los Alamitos, CA, 1994.
    
    [17] P.W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp., 26(5), 1484 - 1509, 1997.
    
    [18] L. K. Grover. A fast quantum mechanical algorithm for database search. In 28th ACM Sym- posium on Theory of Computation, p. 212, Association for Computing Machinery, New York,1996.
    [19] L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev.Lett., 79(2), 325. 1997.
    
    [14] P.W. Shor. Scheme for reducing decoherence in quantum memory. Phys. Rev. A, 52, 2493,1995.
    
    [15] A. M. Steane. Error correcting codes in quantum theory. Phys. Rev. Lett., 77, 793, 1996.
    
    [22] J.I.Cirac and P.Zoller, Quantum coputation with cold trapped ions. Phys. Rev. Lett., 74:4091,1995
    
    [23] P.Domokos et.al. Simple cavity-QED, two-qubit universal quantum logic gate: The principle and expected performances. Phys.Rev.Lett. 52:3554, 1995.
    
    [24] Daniel Loss and David P. DiVincenzo. Quantum computation with quantum dots. Phys. Rev.A,57, 120- 126, 1998.
    
    [25] J. E.Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van derWaal, and Lloyd S. Josephson persistent-current qubit. Science, 285, 1036 - 1039, 1999.
    
    [26] Y. Maklin, G. Schon, and A. Shnirman. Josephson-junction qubits with controlled couplings.Nature, 398,305-307, 1999.
    
    [27] D.P.Divincenzo, Two-bit gates are universal for quantum computation. Phys.Rev.A51(2): 1015-1022, 1995
    
    [16] N.Gershenfield and I.L.Chuang. Bulk spin resonance quantum computation. Science.275:350, 1997
    
    [17] D. G. Cory, A. F. Fahmy, and T. F. Havel. Ensemble quantum computing by NMR spec-troscopy. Proc. Nat. Acad. Sci. USA, 94, 1634 - 1639, 1997.
    [2]Barenco A,Bennett C H,Cleve R,Divincenzo D P,Margolus N et al Elementary gates for quantum computation,Phys.Rev.A 52,3457,1995
    [3]D.Deutsch and R.Jozsa.Rapid solution of problems by quantum computation.Proc.R.Soc.London A,439,553,1992.
    [4]P.W.Shor.Algorithms for quantum computation:discrete logarithms and factoring.In.Proceedings,35th Annual Symposium on Foundations of Computer Science,pp.124-134,IEEE Press,Los Alamitos,CA,1994.
    [5] P.W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIA.V1 J. Comp., 26(5), 1484 - 1509, 1997.
    
    [6] L. K. Grover. A fast quantum mechanical algorithm for database search. In 28th ACM Sym-posium on Theory of Computation, p. 212. Association for Computing Machinery. New York,1996.
    
    [7] L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev.Lett.. 79(2), 325, 1997.
    
    [8] S. Lloyd. Universal quantum simulators. Science, 273, 1073, 1996.
    
    [9] D.P.DiVincenzo. Quantum Computation. Science, 270:255, 1995. arXiv e-print quant-ph/9503016.
    
    [10] A Quantum Information Science and Technology Roadmap(Version 2.0). http://qist.lani.gov April 2, 2004.
    
    [11] D.Bouwmeester et.al, Experimental quantum teleportation. Nature 390, 575-579 (1997).
    
    [12] I.L.Chuang and Y.Yamamoto. Simple quantum computer. Phys.Rev.A, 52:3489-3496, (1995).arXiv e-print quant-ph/9505011.
    
    [13] M.D.Lukin and A.Imamoglu, Nonlinear optics and quantum entanglement of ultraslow single photons. Phys.Rev.Lett, 84, 1419-1422 (2000).
    
    [14] P.Domokos et.al. Simple cavity-QED, two-qubit universal quantum logic gate: The principle and expected performances. Phys.Rev.Lett. 52:3554, 1995.
    
    [15] Nielsen M. A., Chuang I. L. Quantum computation and information[M]. Cambridge, Cam-bridge University Press, 2000
    
    [16] A. Rauschenbeutel et.al, Coherent operation of a tunable quantum phase gate in cavity QED,Phys.Rev.Lett. 83, 5166-5169 (1999).
    
    [17] S.J.Van Enk, J.I.Cirac and P.Zoller, Photonic channels for quantum communication. Science 279,205-208(1999).
    
    [18] J.I.Cirac and P.Zoller, Quantum computation with cold trapped ions. Phys.Rev.Lett 74, 4091-4094(1995).
    
    [19] D.Loss and D.P.DiVincenzo, Quantum computation with quantum dots. Phys.Rev.A 57, 120-126(1998).
    
    [20] B.E.Kane, A silicon-based nuclear spin quantum computer. Nature 393, 133-137 (1998)
    [21] C.Piermarocchi et.al, Optical RKKY interaction between charged semiconductor quantum dots. Phys.Rev.Lett 89, 167402(2002).
    
    [22] Dieter Suter and Kyungwon Lim, Scalable architecture for spin-based quantum computers with a single type of gate. Phys.Rev.A 65,052309 (2002).
    
    [23] J.Twamley. Quantum-cellular-automata quantum computing with endohedral fullerenes.Phys.Rev.A 67, 052318 (2003).
    
    [24] W.Harneit et.al. Architectures for a spin quantum computer based on endohedral fullerenes.Phys.stat.sol.(b) 233, No.3. 453-461 (2002).
    
    [25] F.Bloch. Nuclear induction. Phys.Rev., 70:460-485, 1946.
    
    [26] E.M.Purcell, H.C.Torrey, and R.V.Pound. Resonance absorption by nuclear magnetic mo-ments in a solid. Phys.Rev., 69:37-38, 1946.
    
    [27] N.Gershenfield and I.L.Chuang. Bulk spin resonance quantum computation, Science,275:350, 1997
    
    [28] D. G. Cory, A. F. Fahmy, and T. F. Havel. Ensemble quantum computing by NMR spec-troscopy. Proc. Nat. Acad. Sci. USA, 94, 1634 - 1639, 1997.
    
    [28] C Ramanathan, N Boulant et al quant-ph/0408166 2004
    
    [29] M. A. Pravia, N. Boulant, J. Emerson, E. Fortunato, T. F. Havel and D. G. Cory, J. Chem.Phys. 119,9993(2003).
    
    [30] L. M. K. Vandersypen, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, Realization of effective pure states for bulk quantum computation. Phys. Rev. Lett., 83, 3085 - 3088, 1999.
    
    [31] D. G. Cory, M. D. Price, and T. F. Havel. Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing. Physica D, 120, 82 - 101, 1998.
    
    [28] E. KNILL, R. LAFLAMME, R. MARTINEZ, AND C. H. TSENG, An algorithmic bench-mark for quantum information processing, Nature, 404, 368 (2000).
    
    [33] E. L. Hahn, Phys. Rev. 80, 580 (1950).
    
    [34] N. Boulant, T. F. Havel, M. A. Pravia and D. G. Cory, Phys. Rev. A 67, 042322 (2003).
    
    [32] P. Shor, Phys. Rev. A 52, 2493 (1995).
    
    [33] E. M. Fortunato, M. A. Pravia, N. Boulant. G. Teklemariam, T. F. Havel and D. G. Cory, Design of strongly modulating pulses to implement effective Hamiltonian for quantum in-formation processing, J.Chem.Phys. 116, 7599 , 2002.
    
    [34] H. K. Cummins et al., Phys. Rev. Lett. 88, 187901 (2002);
    [35] A Sodicksonl, D G. Cory, Progress in Nuclear Magnetic Resonance Spectroscopy 33 (1998)77- 108
    [2] W.K. Wootters and W.H. Zurek. Nature (London) 299, 802 (1982)
    
    [3] G. C. Ghirardi and T. Weber, Nuovo Cimento Soc. Ital. Fis. 78B, 9 (1983).
    
    [4] D. Dieks, Phys. Lett. 92A, 271 (1982).
    
    [5] L. M. Duan and G. C. Guo, Phys. Rev. Lett. 80,4999 (1998).
    
    [6] V. Buzek and M. Hillery, Phys. Rev. A 54, 1844 (1996).
    
    [7] N. Gisin and S. Massar, Phys. Rev. Lett. 79, 2153 (1997); D. Bruss et al., Phys. Rev. Lett. 81,2598 (1998); C. Simon et al., Phys. Rev. Lett. 84, 2993 (2000).
    
    [8] V. Buzek and M. Hillery, Phys. Rev. Lett. 81, 5003 (1998).
    
    [9] N. J. Cerf et al., Phys. Rev. Lett 85, 1754 (2000); C. M. D'Ariano et al., Phys. Rev. Lett. 86,914 (2001); S. L. Braunstern et al., Phys. Rev. Lett. 86, 4938 (2001); J. Fiurasek et al., Phys.Rev. Lett. 86,4942(2001).
    
    [10] H. K. Cummins et al., Phys. Rev. Lett. 88, 187901 (2002); Y. F. Huang, Phys. Rev. A 64,012315(2001).
    
    [11] A. Lamas-Linares et al., Science 296, 712 (2002); S. Fasel et al., Phys. Rev. Lett. 89, 107901(2002); F. De Martini et al., Phys. Rev. Lett. 92,067901 (2004).
    
    [12] M. Ricci et al., Phys. Rev. Lett. 92, 047901 (2004); W. T. M. Irvine et al., Phys. Rev. Lett. 92,047902 (2004).
    
    [13] C. A. Fuchs et al.. Phys. Rev. A 56. 1163 (1997); R. B. Griffiths and C. S. Niu, Phys. Rev. A 56, 1173 (1997); D. Bruss et al., Phys. Rev. A 62, 012302 (2000).
    
    [14] C. S. Niu and R. B. Griffiths. Phys. Rev. A 60. 2764 (1999).
    
    [15] V. Karimipour and A. T. Rezakhani, Phys. Rev. A 66, 052111 (2002).
    
    [16] J. Fiurasek, Phys. Rev. A 67, 052314 (2003).
    
    [17] J. Du et al.,quant-ph/0311010.
    
    [18] C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Comput-ers, Systems and Signal Processing, Bangalore, India (IEEE, New York, 1984), p. 175.
    
    [19] T. Durt and J. Du, Phys. Rev. A 69, 062316 (2004).
    [20] D. Deutsch, Proc. R. Soc. London, Ser. A 400, 97 (1985).
    
    [21] C. Miquel, J. P. Paz. M. Saraceno, E. Knill, R. Lafiamme, and C. Negrevergne. Nature (Lon- don)418, 59(2002).
    [22] A. Y. Kitaev, e-print quant-ph/9511026.
    
    [23] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Proc. R. Soc. London. Sen A 454, 339(1998).
    
    [24] D.S. Abrams and S. Lloyd,Phys.Rev. Lett. 83,5162 (1999).
    
    [25] H. Buhrman, R. Cleve, J. Watrous, and R. deWolf, Phys. Rev. Lett. 87, 167902 (2001).
    
    [26] A. Ekert et al., Phys. Rev. Lett. 88, 217901 (2002).
    
    [27] P. Horodecki and A. Ekert, Phys. Rev. Lett. 89, 127902 (2002).
    
    [29] J. N. deBeaudrap, Phys. Rev. A 69, 022307 (2004).
    
    [28] E. Fredkin and T. Toffoli, J. Theoret. Phys. 21, 219 (1982).
    
    [34] M. D. Price. S. S. Somaroo, A. E. Dunlop, T. F. Havel, and D. G. Cory, Phys. Rev. A 60, 2777(1999).
    
    [35] J. Du et al., Phys. Rev. A 63, 042302 (2001).
    
    [36] F. Xue et al., Chin. Phys. Lett. 19, 1048 (2002).
    
    [37] X. Peng et al., J. Chem. Phys. 120, 3579 (2004).
    
    [38] S.Massar, Phys. Rev. A71, 012310 (2005).
    
    [39] A. Uhlmann, Rep. Math. Phys. 9, 273 (1976).
    
    [40] Edward Farhi, Jeffrey Goldstone et al. Science 292, 472 (2001)
    
    [41] Y. Aharonov et al., Phys.Rev.A48, 1687(1993).
    
    [42] E. Farhi and S.Gutmann. Phys.Rev.A58,915(1998).
    
    [38] A. Ambainis et al., in Proceedings of the 30th annual ACM Symposium on Theory of Com-puting (Association for Computing Machinery, New York, 2001).
    
    [39] T.A. Brun et al., Phys Rev. Lett. 91, 130602 (2003).
    
    [40] A.M. Childs et al., Quantum Information Processing 1, 35 (2002).
    
    [41] A.M. Childs et al., Proc. 35th ACM Symposium on Theory of Computing (STOC 2003), pp.59-68.
    
    [421 N. Shenvi, J. Kempe and K.B. Whaley, Phys. Rev. A 67, 052307 (2003).
    [43] B. C. Travaglione and G. J. Milburn, Phys. Rev. A 65, 032310 (2002)
    [44] J. Du et al., Phys. Rev. A 67, 042316 (2003).
    
    [45] C A. Ryan. M. Laforest, J. C. Boileau, and R. Laflamme. Phys. Rev. A 72, 062317 (2005)
    
    [46] C. M. Chandrashekar, Phys. Rev. A 74, 032307 (2006)
    
    [47] M D. Price, Shyamal S.Somaroo et al Phys. Rev. A 60 2777 (1999)
    [1]Y.Aharonov and J.Anandan,Phys.Rev.Lett.58,1593(1987).
    [2]S.Pancharatnam,Proc.Indian Acad.Sci.A 44,247(1956).
    [3]M.V.Berry,Proc.Roy.Soc.A 392,45(1984).
    [4]A.Shapere and F.Wilczek,Geometric phases in Physics,World Scientific.Singapore(1989).
    [5]D.Suter,K.T.Mueller,and A.Pines,Phys.Rev.Lett.60,1218(1988).
    [6]J.A.Jones,V.Vedral,A.Ekert,and G.Castagnoli,Nature 403,869(2000).
    [7]P.Zanardi,M.Rasetti,Phys.Lett.A 264,94(1999).
    [8]L.M.Duan,J.I.Cirac,and P.Zoller,Science 292,1695(2001).
    [9] E. Sjoqvist, A.K. Pati, A. Ekert, J.S. Anandan, M. Ericsson, D.K.L. Oi, and V. Vedral, Phys.Rev. Lett. 85, 2845(2000).
    
    [10] A. Uhlmann, Rep. Math. Phys. 24, 229 (1986).
    
    [11] M. Ericsson, A. K. Pati, E. Sjoqvist, J. Brannlund. and D. K. L. Oi, arXiv.org electronic pre-print quant-ph/0206063 (2002).
    
    [12] D. G. Cory, M. D. Price, and T. F. Havel. Physica D 120. 82 (1998).
    
    [13] J. Du. H. Li, X. Xu, M. Shi, J. Wu, X. Zhou, and R. Han, Phys. Rev. A 67, 042316 (2003)
    
    [14] N. A Gershenfeld and I. L. Chuang, Science 275, 350 (1997)
    
    [15] M. Ericsson, E. Sjoqvist, J. Brannlund, D. K. L. Oi, and A. K. Pati, Phys. Rev. A 67,020101 (R)(2003).
    
    [16] P. W. Shor, SIAM Rev. 41, 303 (1999).
    
    [17] M. V. Berry, Proc. R. Soc. London, Ser. A 392,45 (1984)
    
    [18] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987).
    
    [19] S. L. Zhu, Z. D. Wang, and Y. D. Zhang, Phys. Rev. B 61, 1142 (2000); S. L. Zhu and Z. D.Wang, Phys. Rev. Lett. 85, 1076 (2000); J. C. Y. Teo and Z. D. Wang, ibid. 95,050406 (2005).
    
    [20] P. Zanardi and M. Rasetti, Phys. Lett. A 264, 94 (1999).
    
    [21] G. Falci, R. Fazio, G. M. Palma. J. Siewert, and V. Vedral, Nature (London) 407, 355 (2000).
    
    [22] L. M. Duan, J. I. Cirac, and P. Zoller, Science 292, 1695 (2001).
    
    [23] J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, Nature (London) 403, 869 (2000).
    
    [24] X. B. Wang and M. Keiji, Phys. Rev. Lett. 87, 097901 (2001).
    
    [25] S. L. Zhu and Z. D.Wang, Phys. Rev. Lett. 89, 097902 (2002); Phys. Rev. A 66, 042322(2002).
    
    [26] S. L. Zhu and Z. D. Wang, Phys. Rev. A 67, 022319 (2003); X. D. Zhang, S. L. Zhu, L. Hu,and Z. D. Wang, ibid. 71, 014302 (2005).
    
    [27] S. L. Zhu and Z. D.Wang, Phys. Rev. Lett. 91, 187902 (2003).
    
    [28] D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Je-lenkovic, C. Langer, T. Rosenband, and D. J. Wineland, Nature (London) 422,412 (2003).
    
    [29] S. L. Zhu, Z. D. Wang, and P. Zanardi. Phys. Rev. Lett. 94,100502 (2005)
    
    [30] Jae-Seung Lee, Phys. Lett. A 305, 349 (2002); M. D. Bowdrey, D. K. L. Oi, A. J. Short, K. Banaszak, and J. A. Jones, Phys. Lett. A 294, 258 (2002).
    [31] J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 78, 390 (1997).
    [32] J. Samuel and R. Bhandari, Phys. Rev. Lett. 60. 2339 (1988).
    [33] S. Pancharatnam, Proc.Ind. Acad. Sci.A44, 247(1956).
    
    [341 R. Bhandari, Physics Letters A 157, 221 (1991). 171, 262 (1992); 171, 267 (1992); 180, 15(1993).
    
    [35] R. Bhandari, Phys. Rev. Lett. 89, 268901 (2002); J.S. Anandan, E. Sjoqvist, A.K. Pati, A.Ekert, M. Ericsson, D.K.L. Oi, and V. Vedral, ibid. 89, 268902 (2002).
    
    [36] N. Manini and F. Pistolesi, Phys. Rev. Lett. 85, 3067 (2000).
    
    [37] Y. Hasegawa, R. Loidl, M. Baron, G. Badurek, and H. Rauch, Phys. Rev. Lett. 87, 070401(2001).
    
    [38| Stefan Filipp and Erik Sjddotoqvist, Phys. Rev. A. 68, 042112 (2003).
    [39] J. Li, Y. K. Jiang, and A. Tomita, Physics Letters A 362, 269 (2007).
    [40] J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, Nature 403, 869 (1999)
    
    [41] A. Ekert, M. Ericsson, P. Hayden, H. Inamori, J.A. Jones.D.K.L. Oi, and V. Vedral, J. Mod.Opt. 47 (2000)
    
    [42] Artur K. Ekert, Carolina Moura Alves, and Daniel K. L. O, Phys. Rev. Lett. 88, 217901(2002).
    [1]Melinda J.Duer,Solid-State NMR Spectroscopy Principles and Applications.Blackwell science Ltd
    [2]Garett M.Leskowitz,Nima Ghaderi et al The Jounal of Chemical Physics,119,1643(2003)
    [3]J.Baugh,O.Moussa,C.A.Ryan et al Nature,vol 438 470(2005)
    [4]J.Baugh,O.Moussa,C.A.Ryan et al Phy.Rev.A 73,022305(2006)
    [5]Eur.Phys.J.B 24,23-25(2001)
    [6]Fumoko Yamaguchi,Thaddeus D.Ladd,et al quant-ph/0411099
    [7]T.S.Mahesh and Dieter Suter Phys.Rev.A 74,062312(2006)
    [8]Ranabir Das,Rangeet Bhattacharyya and Anil Kumar Journal of Magnetic Resonance 170310-321(2004)
    [9]陈清博士论文量子信息处理方案研究及其应用unpublished
    [10]F.Yamaguchi,Y.Yamamoto Appl.Phys.A 68,1-8(1999)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700