轨道客车用SUS301L奥氏体不锈钢激光叠焊技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对轨道客车不锈钢车体制造过程中电阻点焊变形大、密封性差、接头静强度和疲劳强度低以及生产效率低等难题,充分利用激光焊接技术所具有的焊接变形小焊接速度快以及连续焊接密封性好等优点,提出了轨道客车用奥氏体不锈钢小变形、高强度的非熔透型激光叠焊方法。
     本文以轨道客车用SUS301L奥氏体不锈钢为研究对象,采用4kW连续的Nd:YAG激光器对奥氏体不锈钢进行了非熔透型激光叠焊技术研究。利用三维非线性瞬态热传导微分方程,建立了奥氏体不锈钢激光叠焊传热模型。在对激光焊接物理过程分析的基础上,利用SYSWELD焊接仿真软件对奥氏体不锈钢激光叠焊过程进行了数值模拟,获得了熔池形貌、熔化区热循环曲线以及接头焊接变形情况等数值模拟结果。与实际激光焊接过程中测量的数据对比发现,二者十分吻合,表明所建立的奥氏体不锈钢激光叠焊传热模型正确,数值模拟结果可信度高。
     为了获得奥氏体不锈钢小变形、高强度的非熔透型激光叠焊接头,本研究首次提出了倾斜激光入射角度的非熔透型激光叠焊方法。理论分析结果和实际实验结果表明,倾斜激光入射角度可以更容易地获得小熔深、大结合宽度的焊接接头(即小变形、高强度焊接接头)。此外,通过倾斜激光入射角度还能减小激光焊接过程中焊接熔深的波动范围,从而提高焊接接头质量的可靠性。
     为了避免单因素试验过程由于忽略了因素间的相互关系而导致的试验误差,文中还对激光叠焊工艺进行了多因素交互试验研究。并利用Design-Expert V7试验设计软件建立了试验输入因子与响应因子之间的数学关系式。试验验证结果表明,该数学关系式的误差较小,其误差范围小于5%。根据该数学关系式和试验优化目标,获得了SUS301L奥氏体不锈钢激光叠焊最优的工艺参数范围:激光功率为3.50-3.79kW、焊接速度为7.40~8.00m/min、激光入射角度为65°、离焦量为0mm、保护气体成分为N2以及其流量为30L/min。
     为了进一步减小奥氏体不锈钢激光叠焊接头的焊接变形量,本研究在分析其焊接变形特点和变形产生机理的基础上首次提出了一种针对奥氏体不锈钢激光叠焊接头微小角变形的激光热矫形方法。并通过对该方法的数值模拟仿真和试验研究,获得了与最优焊接工艺参数相匹配的激光热矫形工艺参数:激光功率P=0.15kW、扫描速度v=3m/min、激光入射角度θ=90°、离焦量Δf=+8mm和N2保护气体流量fg30L/min,与焊接方向同向扫描4次。通过该矫形工艺可以将最优工艺参数条件下所获得的焊接接头的角变形量由0.88°降低至0.3°左右。
     通过对奥氏体不锈钢激光叠焊工艺和激光热矫形方法的研究,获得了最佳的奥氏体不锈钢激光叠焊接头,并将其与电阻点焊接头进行对比研究。其研究结果表明,40mm宽的激光叠焊接头的最大静拉伸力为23.326kN,约为电阻点焊接头的2.4倍;在相同疲劳载荷条件下,置信度为99%时,激光叠焊试样的中值疲劳寿命是电阻点焊试样的1.80~11.72倍。
     最后,通过对本文的研究实现了0.8mm厚的SUS301L-ST奥氏体不锈钢板和1.5mm厚的SUS301L-DLT奥氏体不锈钢板搭接接头的高效率、高强度、无变色以及小变形的密封焊接。
For the manufacturing process of stainless steel vehicles by resistance spot welding, some problems have not been well solved up until now, such as larger welding distortion, poorer sealing of joints, lower static tensile strength, lower fatigue strength, and lower production efficiency. Because laser welding technique has many advantages, such as smaller welding distortion, faster welding speed, and better sealing of continuous welded joints. Therefore, in this study, a new method was proposed which carried out non-penetration laser lap joints of austenitic stainless steel for railway vehicles by means of changing the laser irradiation angle technology, and this strategy was also one of the innovations.
     The research object was austenitic stainless steel for railway vehicles, which was joined by a4kW continuous Nd:YAG laser using non-penetration laser lap welding technology. Heat conduction model of laser lap welding of austenitic stainless steel was established by using the three-dimensional nonlinear transient heat conduction differential equations. On the basis of the analysis of the physical processes of laser welding, the numerical calculation was made using SYSWELD welding simulation software, and the temperature field contours of upper surface and transverse section was obtained, the temperature cycle curve of melting zone, and the distortion distribution contours of the joints, et al.. Compared with the actual measurement data, it was found that the measurement data and simulation data were very consistent, which demonstrated that the high accuracy of the heat conduction model.
     In order to get laser lap welding joints of smaller distortion and higher strength, this study first proposed a non-penetration laser lap welding method, which utilized the changing the laser irradiation angle. Through the results of theoretical analysis and actual experiment, it can be found that changing the laser irradiation angle can easily get the joints of smaller distortion and higher strength. In addition, changing the laser irradiation angle could effectively reduce the fluctuation range of welding depth of the joints, and then improve reliability of the joints.
     In order to avoid the experimental errors generated by univariate tests since the relationship among the different factors were usually neglected, the multi-factors interaction tests research was done for the laser lap welding. Meanwhile, the mathematical formulas between input factors and response factors have been given using Design-Expert V7software. The verification results showed that the error range was less than5%. According to the mathematical formulas and the optimization goals, the optimal parameters range were obtained, as laser power of3.50-3.79kW, welding speed of7.40~8.00m/min, laser irradiation angle of65°, focusing distance of Omm, type of shielding gas of N2, and flux of30L/min.
     For the purpose of reducing the distortion of laser lap welding joints of austenitic stainless steel, this study first proposed a new laser orthopedic method which focused on angular distortion through the analysis of welding deformation feature and mechanism. Based on the numerical simulations and actual experimental studies of this new method, the laser orthopedic process parameters with optimal welding parameters were obtained, as laser power of0.15kW, scanning speed of3m/min, laser irradiation angle of90°, focusing distance of8mm, type of shielding gas of N2, and flux of30L/min, need to scan4times, and the scanning direction same as the welding direction. Through laser welding and laser orthopedic processing, using the optimal laser processing parameters, the angular distortion of welding joints can be reduced by0.88°to0.3°.
     Through the research of laser lap welding and laser orthopedic of austenitic stainless steel, the optimal laser lap welding joints were obtained, and compared them with the resistance welding joints. The comparison results showed that the static tensile force of laser welding joint with its width of40mm was23.326kN, about2.4times of the resistance welding joint. Under the same condition, and the confidence level of99%, the median fatigue life of laser welding specimens was about1.80-11.72times of the resistance welding specimens.
     Finally, through the research on this study, laser lap welding of0.8mm thick SUS301L-ST and1.5mm thick SUS301L-DLT austenitic stainless steel plate have been implemented with high efficiency, high strength, no discoloration and smaller deformation.
引文
[1]薛艳丽.不锈钢在车体中的应用[J].汽车工程师.2009,(1):47-62
    [2]村田隆行等.不锈钢车辆车体的激光焊接技术[J].国外机车车辆工艺.2007,(5):4-5
    [3]内田博行.不锈钢车辆的开发及最新的车体技术[J].国外机车车辆工艺.2004,(3):1-9
    [4]内田博行等.日本不锈钢车辆技术[J].国外铁道车辆.2001,38(4):1-4
    [5]孙双进.开发生产不锈钢客车提高我国客车制造水平[J].铁道车辆.1998,36(6):18-20
    [6]彭惠民,姚懋许.川崎重工全面采用激光焊接不锈钢车辆[J].铁道机车车辆工人.2005,(4):30
    [7]何俊.301LN不锈钢冷轧板及其电阻点焊性能研究:[硕士学位论文][D].北京:北京交通大学车辆工程专业.2006:30-59
    [8]吴茂国,刘伟,樊猛等.SUS301L板电阻点焊接头的组织和性能[J].北京交通大学学报.2005,29(4):104-106
    [9]丁成钢,史春元,都本刚等.SUS301L不锈钢电阻点焊工艺研究[J].热加工工艺.2006,35(11):28-29
    [10]丁成钢,史春元,杨蔚.SUS304不锈钢MAG焊工艺试验研究[J].机车车辆工艺.2006,(3):20-21
    [11]丁成钢,史春元,杨蔚.SUS304不锈钢MAG焊接头组织与性能[J].焊接.2009,35(15):19-20
    [12]王洪潇,史春元,王春生等.铁道客车用SUS301L不锈钢非熔透型激光搭接焊接工艺[J].热加工工艺.2009,19(38):136-139
    [13]王春生,陈勇,韩凤武等.三层不锈钢板电阻点焊温度场数值模拟[J].机械工程学报.2004,40(1):191-194
    [14]HAN GuoMing, ZHAO Jian, LI JianQang. Dynamic simulation of the temperature field of stainless steel laser welding [J]. Materials and Design.2007, (28):240-245
    [15]J.B. Shamsul, M.M. Hisyam. Study of spot welding of austenitic stainless steel type 304 [J]. Journal of Applied Sciences Research.2007,3(11):1494-1499
    [16]Abdel-Monem El-Batahgy. Effect of laser welding parameters on fusion zone shape and solidification structure of austenitic stainless steels [J]. Materials Letters.1997, (32):155-163
    [17]S.Celen, S.Karadeniz, H.Ozden. Effect of laser welding parameters on fusion zone morphologieal, meehanical and microstruetural charaeteristies of AISI304 stainless steel [J]. Mat.-wiss.u.Werkstofftech.2008,39(11):845-850
    [18]T.Zacharia, S.A.David, J.M.Vitek, et al.. Heat transfer during Nd:YAG pulsed laser welding and its effect on solidification structure of austenitic stainless steels [J]. Metallurgical Transaction A.1989,20:957-967
    [19]HarishKumar, P.Ganesh, Rakesh Kaul, et al.. Laser welding of 3mm thick laser-cut AISI 304 stainless steel sheet [J]. Journal of Material Engineering and Performanee.2006,15:23-31.
    [20]李刚卿,韩晓辉.不锈钢车体的焊接工艺及发展[J].机车车辆工艺.2004,(1):1-4
    [21]朱永胜.奥氏体不锈钢焊接的主要缺陷及其预防措施[J].齐鲁石油化工.1994,(3):258-260
    [22]陈炜.奥氏体不锈钢焊接的缺陷分析及解决办法[J].山西焦煤科技.2003,(6):27-28
    [23]王璐,齐爱霞,王琳.奥氏体不锈钢的焊接特点及焊接工艺[J].农机使用与维修.2008,(4):16-17
    [24]王恭钦.不锈钢轨道客车车体材料的性能研究[D].北京:北京交通大学机械与电子控制工程学院.2008:5-10
    [25]Felix Schmitt, Alexander Olowinsky [J]. Micromanufacturing Engineering and Technology.2010:185-201
    [26]Kojiro F. Kobayashi [J]. Non-equilibrium Processing of Materials (Volume 2).1999:89-118
    [27]John F. Ready. Industrial Applications of Lasers-Second Edition [M], Academic Press, San Diego, USA,1997
    [28]王家金.激光加工技术[M].北京:中国计量出版社,1992
    [29]关振中.激光加工工艺手册[M].北京:中国计量出版社,1998
    [30]J. Dutta Majumdar,I. Manna [J]. Laser Processing of Materials.2003:495-562
    [31]Einstein A. [J]. Z. Phys.1917:18-121
    [32]Kopfermann H., Ladenburg R. [J]. Phys. Chem. Abt.1928:A139-375
    [33]Maiman T. H. [J]. Nature (London).1960:187-493
    [34]李广宏,朱林泉,马巧梅.半导体激光器在固化快速成型中的应用[J].机械管理开发.2008,23(6):88-89
    [35]T. Macguire. Microwelding—laser or electron beam [J]. Electronics.1963:23
    [36]H. Rischall, J. R. Shackleton. Laser welding for microelectronic interconnections [C]. IEEE Trans.1964,11:145
    [37]B. F. Scott, J. E. Stovell. CO2 Lasers as a heat source for engineering applications [J]. Optics Technology.1968,1(1): 15-19
    [38]Thomas E. Gordon, Denton L. Smith. Laser welding of prostheses—an initial report [J]. Journal of Prosthetic Dentistry. 1970,24 (4):472-476
    [39]Ready J. F. Effects of high power laser radiation [M]. New York:Academic Press,1971
    [40]Locke E. V, Hoag E D, Hella R A [J]. Weld J,1972:51-254
    [41]Baarden E. L, Schmatz D. J, Bisaro R. E [J]. Weld J,1973:52-227
    [42]Ball W.C, Banas C. M. Welding with a high power CO2 laser Nat Aerosp Eng and Mfr [C], Meeting, San Diego, California,1974
    [43]Ruffler C, Giirs K [J]. Opt & laser technol,1972:4-265
    [44]Swift-Hook D T, Gick A. E. F [J]. Weld J,1973:52-492
    [45]Rykalin N. N, Uglov A, Kokora A. Laser machining and welding [C], Moscow:MIR,1987
    [46]Nishimi A, Kanazawa H, Taniu Y, et al [C]. Proc ICALEO'96, E11,1996
    [47]Kugler R, Weedon T. Laser technology and Applications [C]:Vulkan-Verlag Essen,1993:47
    [48]李力钧.现代激光技工技术及其装备[M].北京理工大学出版社,1993
    [49]John F. Ready. LIA Handbook of Laser Materials Processing [M]. Laser Institute of America Magnolia Publishing, Inc.2001
    [50]Shi Yan, Zhang Hong, Takehiro Watanabe et al.. CW/PW Dual-Beam YAG Laser Welding of Steel/Aluminum Alloy Sheets [J]. Optics and Lasers in Engineering,2010, (48):732-736.
    [51]Gang Song, Zhimin Luo. The influence of laser pulse waveform on laser-TIG hybrid welding of AZ31B magnesium alloy [J]. Optics and Lasers in Engineering.2011,49(1):82-88
    [52]E. Le Guena, R. Fabbroa, M. Carinb, et al.. Analysis of hybrid Nd:YAG laser-MAG arc welding processes [J]. Optics & Laser Technology.2011,43(7):1155-1166
    [53]雷振,秦国梁,林尚杨等.基于激光-MIG复合热源的5A02铝合金/镀锌钢熔-钎焊[J].机械工程学报,2009,45(3):94-98.
    [54]Claus Emmelmann, Marc Kirchhoff, Nikolai Petri. Development of Plasma-Laser-Hybrid Welding Process [J]. Physics Procedia.2011,12(A):194-200
    [55]李志宁,都东,常保华等.激光-等离子弧复合焊熔池的流动特性[J].清华大学学报(自然科学版).2007,47(8):1263-1266
    [56]王春明,胡席远,刘建haunted等.激光-高频感应复合焊接装置及其方法[P].中国专利.2003,申请号:200310111658.1.
    [57]Koji Nishimoto, Yoshihiro Okumoto, Tomoki Harano et al.. Laser Pressure Welding of Zn-Coated Steel and Pure Aluminum [C]. In:Laser Materials Processing Conference. Proceeding of ICALEO'07, Orlando, FL USA.2007:436-442.
    [58]Hitoshi Ozaki, Muneharu Kutsuna. Laser Roll Welding of Dissimilar Metal Joint of Zinc Coated Steel and Aluminum Alloy [C]. In:Laser Materials Processing Conference. Proceeding of ICALEO'06, Scottsdale, AZ USA.2006:298-302.
    [59]Woong-Seong Chang, S.R. Rajesh, Chang-Keun Chun, et al.. Microstructure and Mechanical Properties of Hybrid Laser-Friction Stir Welding between AA6061-T6 Al Alloy and AZ31 Mg Alloy [J]. Journal of Materials Science & Technology.2011,27(3):199-204
    [60]张镜斌,马中伟,孙长涛等.高功率激光焊接的应用及发展[J].热加工工艺.2005,(3):64-67
    [61]S. Suresh,王中光,李家宝等.材料的疲劳[M].北京:国防工业出版社,1993:1-137
    [62]Carslaw H.S., Jaeger J.C..Conduction of heat in solids [M]. Oxford University Press,1973
    [63]武传松.焊接热过程与熔池形态[M].北京:机械工业出版社,2007:28-31
    [64]刘鸿文.材料力学(第三版)[M].北京:高等教育出版社,1993:320-328
    [65]冯贤平,徐至展,赵世诚.铜等离子体电子温度和密度随激光功率的变化[J].核聚变与等离子体物理.1989,9(1):51-53
    [66]吴世凯.激光-电弧相互作用及激光-TIG复合焊接新工艺研究:[博士学位论文][D].北京:北京工业大学光学工程系,2010:30
    [67]Zulkali MMD, Ahmad AL, Norulakmal NH. Oryza sativa L. husk as heavy metal adsorbent:optimization with lead as model solution [J]. Bioresource Technology 2006; 97:21-5
    [68]徐禾水.铬镍奥氏体不锈钢的焊接变形与控制(三)[J].机械工人(热加工).1999,(3):42-43
    [69]徐禾水.铬镍奥氏体不锈钢的焊接变形与控制(五)[J].机械工人(热加工).1999,(5):42-43
    [70]徐琳,严仁军.角焊缝角变形产生机制的研究[J].船舶力学.2008,12(1):67-73
    [71]周欢,孙丽萍.搭接接头焊接角变形产生的原因分析[J].大连交通大学学报.2008,29(5):87-90
    [72]史耀武.焊接技术手册[M].福州:福建科学技术出版社.2005:515-526
    [73]关桥,吴谦,邵亦陈等.预变形工艺研究[J].航空学报(工程版).1986,(4):5-10
    [74]L.M.洛巴诺夫.巴顿焊接研究所在结构焊接及强度领域的最新研究方向[C].第几次全国焊接会议论文集.天津,1999:D48-D61
    [75]方洪渊.焊接结构学[M].北京:机械工业出版社.2008:114-119
    [76]V. I. Pavlovsky, K. Masubuchi. Residual Stress and Distortion in Welded Structures [C]. WRC Bulletin.1994,388(1): 10-16
    [77]P. M. Levlev. Tension of Welded Butt Edges as a Means of Preventing Distortion in Thin Sheets [J], Trudy TsNIIRechFlot.1995, (31):87-100
    [78]L. M. Lobanov, V. I. Pavlovsky. Deformation-free Welding of Thin-walled Structures in Aluminum Alloys [C]. Welded Structure Proceedings of the International Conference. Kiev, Nauk. Dumka,1990:47-50
    [79]李敬勇,章明明,李鹰等.预拉伸对铝合金焊接残余应力和变形的影响[J].热加工工艺.2005,(12):15-17
    [80]赵耀邦.双向预置应力控制焊接变形及防止热裂纹研究:[硕士学位论文l[D].哈尔滨:哈尔滨工业大学材料加工工程系,2007:16
    [81]G. T. Zhou, X. S. Liu, J. G. Yang, et al.. Welding Deformation Controlling of Aluminum Alloy Thin Plate by Two-direction Pre-stress Method [J]. Materials Science and Engineering A.2009, (499):147-152
    [82]Q. Guan. A Survey of Development in Welding Stress and Distortion Controlling in Aerospace Manufacturing Engineering in China [J]. Welding in the World.1999,43(1):64-74
    [83]郭绍庆,徐文立,刘雪松等.温差拉伸控制铝合金薄板的焊接变形[J].焊接学报.1999,20(1):34-42
    [84]S. Q. Guo, X. H. Li, W. L. Xu, et al.. Welding Distortion Control of Thin Aluminum Alloy Plate by Static Thermal Tensioning [J]. Journal of Material Science & Technology.2001,17(1):163-164
    [85]M. V. eo, P. Michaleris, J. Sun. Prediction of Buckling Distortion of Welding Structures [J]. Science and Technology of Welding and Joining.2003, (8):55-61
    [86]M. V. Deo, P. Michaleris. Mitigation of Welding Induced Buckling Distortion Using Transient Thermal Tensioning [J]. Science and Technology of Welding and Joining.2003, (8):49-54
    [87]关桥,张崇显,郭德伦.动态控制的低应力无变形焊接新技术[J].焊接学报.1994,15(1):8-15
    [88]Q. Guan, C. X. Zhang. Dynamic Control of Welding Distortion by Moving Spot Heat Sink [J]. Welding in the World. 1999,33(4):308-313
    [89]姚君山,张彦华,张崇显等.有源强化传热控制薄板焊接压曲变形的研究[J].机械工程学报.2000,36(9):55-60
    [90]郭绍庆,田锡唐,徐文立.随焊激冷减小铝合金薄板的焊接变形[J].焊接.1998,(9):8-11
    [9l]徐文立.随焊锤击控制铝合金薄板焊接应力变形及接头质量的研究:[博士学位论文][D].哈尔滨:哈尔滨工业大学,2001:25-27
    [92]徐文立,黎明,刘雪松等.动态低应力小变形无热裂随焊锤击焊接技术研究[J].材料科学与工艺.2001,9(1):6-10
    [93]W. L. Xu, C. L. Fan, H. Y. Fang, et al.. New Development in Welding Thin-shell Aluminum Alloy Structures with High Strength [J]. China Welding.2004,13(1):27-30
    [94]S. A. Kurkin, V. I. Anufriev. Preventing Distortion of Welded Thin-walled Members of AMg6 and 1201 Alloys by Rolling the Weld with a Roller behind the Welding Arc [C]. Svar. Proiz.1984,(10):32-34
    [95]G. F. Kondakov, A. N. Martynov. Effect of Methods of Local Deform-ation on Residual Stresses and Properties of Welded Joints [C]. Svar. Proiz.1986, (5):18-20
    [96]范成磊,方洪渊,杨建国等.随焊冲击碾压控制焊接应力变形新方法[J].机械工程学报.2004,40(8):87-90
    [97]李军.随焊旋转挤压控制铝合金薄板焊接应力变形及防热裂研究:[博士学位论文][D].哈尔滨:哈尔滨工业大学材料加工工程专业,2009:21-57
    [98]文志杰.锤击法消除铸铁焊接应力的研究:[硕士学位论文][D].济南:山东大学材料加工工程专业,2011:40-60
    [99]关桥.推广应用焊缝滚压工艺中的几个问题[J].航空工艺技术.1980:21-26
    [100]李军,杨建国,翁路露等.用旋转挤压方法控制薄板的焊接变形[J].焊接学报.2008,29(11):25-28
    [101]李军,杨建国,路浩等.铝合金薄板焊件旋转挤压矫形研究[J].材料科学与工艺.2010,18(2):293-296
    [102]周承波,刘志民.钢结构焊接变形的火焰矫正施工方法[J].内蒙古科技与经济.2009,(180):93-95
    [103]龚幼.船舶分段制造过程中的应力与变形问题研究:[硕士学位论文][D].广州:华南理工大学船舶与海洋结构物设殳计与制造专业,2011:60-64
    [104]王恭钦.不锈钢轨道客车车体材料的性能研究:[硕士学位论文][D].北京:北京交通大学机械与电子控制工程学院,2008
    [105]杨南如.无机非金属材料测试方法[M].武汉:武汉理工大学出版社,2003:67-70
    [106]高忠民,王文宇,徐跃等.用x射线线形精炼法分析纳米晶体的微观结构[J].吉林大学学报:理学版.2001,3(1):78-80
    [107]芦亚萍.残余应力位错移动振动频率前后位错密度:[硕士学位论文][D].杭州:浙江大学机械制造及自动化专业,2002:14-15
    [108]姚鸿年.金相研究方法[M].北京:中国工业出版社,1963:273-289
    [109]张旺峰,陈瑜眉,朱金华.一种新型的拉伸应力应变曲线规律研究[J].西安交通大学学报.1999,33(10):64-67
    [110]姜锡山,赵晗.钢铁显微断口速查手册[M].北京:机械工业出版社.2010:1-70
    [111]Derek Hull,李晓刚,董超芳等.断口形貌学[M].北京:科学出版社.2009:1-31
    [112]钱志屏.材料的变形与断裂[M].上海:同济大学出版社,1989:181-190
    [113]高镇同.疲劳性能测试[M].北京:国防工业出版社,1980
    [114]钟群鹏,赵子华.断口学[M].北京:高等教育出版社,2006:242-349

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700