用户名: 密码: 验证码:
甘蓝型油菜显性细胞核雄性不育基因与恢复基因的精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Rs1046AB是派生于宜3A的纯合型甘蓝型油菜显性细胞核雄性不育系,具有败育彻底、不育性稳定和恢复源广泛等特点。1985年,李树林等经过大量的遗传分析后,提出甘蓝型油菜显性核不育材料宜3A的育性受两对显性基因互作控制的遗传假说,其中一对为显性不育基因,另一对为显性上位抑制基因,当显性不育基因单独表达时可以导致雄性不育,而当显性上位抑制基因存在时,育性又可以恢复正常。最近宋来强等(2006)通过遗传分析表明利用一对复等位基因控制的模式来解释Rs1046AB的遗传更加合理,即Ms为显性不育基因,Mf为等位显性恢复基因,ms为正常可育位点,并且具有Mf>Ms>ms的显性遗传效应。以Rs1046AB为主要材料,洪登峰(2006)已利用一个192株的F_2群体对Rs1046AB的不育基因和恢复基因进行了初步定位。以此为基础,本研究中通过不育系Rs1046A和恢复系195-14A(温敏型细胞质雄性不育两用系)杂交构建F_(2:3)家系和F_2全不育株群体,利用分子标记技术筛选与不育基因Ms和恢复基因Mf连锁的分子标记,进一步开展显性核不育基因与恢复基因(Ms/Mf)的精细定位研究,取得的主要结果和结论如下:
     1.将3个AFLP标记E3M10、E1M13和S5T5(洪登峰,2006)成功转化为SCAR标记(依次命名为:SCD2、SCD7和SCD8)。,并结合SCAR标记SCE3(陆光远,2003)和SCHDF(洪登峰,2006),进一步分析708个单株构成的F_(2:3)家系和987个单株的F_2全不育株群体,结果表明:SCD2、SCE3、SCD7和SCD8 4个SCAR标记全部位于目标基因一侧,距目标基因(Ms/Mf)的遗传距离依次为2.0cM、1.7cM、1.5cM、0.1cM,另外一个SCAR标记SCHDF位于目标基因的另一侧,且距目标基因的遗传距离为2.3cM,实现了对目标基因的准确定位。
     2.应用BSA法,结合AFLP技术,继续筛选了512对AFLP的引物组合,获得了4个与目标基因紧密连锁的AFLP标记。其中2个标记(P1M1、P1M4)为共显性标记,被定位于SCAR标记SCD7与SCD8之间。另外2个标记(P3M2、P12M6)为显性标记,与恢复基因连锁,分别位于目标基因两侧,前者被定位于SCAR标记SCD7和SCD8之间,后者被定位于标记SCHDF与目标基因之间,使目标基因的遗传距离进一步缩小。
     3.通过比较测序,将Song et al.,(2006)在甘蓝型油菜显性核不育系609AB中获得的不育基因两侧最近的SCAR标记SC6和SC9进行整合,并成功转化为既与不育基因连锁又与恢复基因连锁的SCAR标记,重新被命名为SC6D和SC9H。前者被定位于AFLP标记P12M6与目标基因之间,后者被定位于AFLP标记P3M2和P1M1/P1M4之间,且分别距目标基因的遗传距离均为1.0cM。结合上述AFLP标记和SCAR标记,在本研究中实现了对目标基因(Ms/Mf)的精细遗传定位。
     4.利用DH群体TN(Tapidor×Ningyou7)的遗传图谱将目标基因Ms/Mf定位于甘蓝型油菜的N8连锁群,并在N8连锁群上成功开发出一个与Ms/Mf基因连锁的共显性SSR标记HUA348,实现了目标基因精细定位图谱与已公布的甘蓝型油菜图谱的整合。
     5.根据目标基因区段与对应拟南芥同源区的信息(洪登峰,2006),在目标基因两侧标记之间,设计18对特异引物(DFN1-DFN18)对目标区段进行扩增,结果除了DFN03、DFN12、DNA14和DFN18等4对引物外,其余14对引物都同时扩增出不育基因和恢复基因,对这14对引物进行比较测序分析之后再次设计引物,结果仍然没有开发出新的分子标记。
     6.以与目标基因紧密连锁的SCAR标记SCD8为探针进行Southern杂交,筛选甘蓝型油菜Tapidor BAC文库,获得了29个具有强杂交信号的BAC克隆。
     7.利用DFN1、DFN5、DFN8、DFN16和SCD8共5对引物通过PCR分析的方法对所获得的29个BAC克隆进行阳性验证,结果依据其中的18个克隆形成了可能覆盖Ms/Mf基因的BAC克隆重叠群。利用限制性内切核酸酶HindⅢ完全酶切29个BAC克隆,构建其指纹图谱,进一步验证了利用PCR分析法构建的BAC克隆重叠群。
Rs1046AB is a dominant genic male sterility (DGMS) line derived from a spontaneous mutant of Yi-3A in Brassica napus. It has some advantages: such as complete and stable male sterility, widely spread of restorers and no negative cytoplasmic. The sterility of this mutant was previously regarded as to be conditioned by the interaction of a dominant male sterility gene Ms and its non-allelic dominant restorer gene Mf (or Rf in previous reports) (Li et al., 1985). Recent genetic analyses, however, indicated that Ms and Mf may be allelic (Song et al., 2006). Using an F_2 population (Rs1046A×195-14A) of 192 plants, Hong (2006) have constructed a primary linkage map of Ms/Mf genes. Based on these result, the present study emphasized on identifying DNA markers linked to Ms/Mf genes in the F_(2:3) and sterile plants in F_2 populations constructed by crossing Rs1046A with a double haploid (DH) restorer line (19514A). Main results of the present study are as follows:
     1. Three AFLP markers E3M10, E1M13 and S5T5 (Hong, 2006) were converted into SCAR markers successfully (designated as SCD2, SCD7 and SCD8). Five SCAR markers, including SCE3 (Lu, 2003) and SCHDF (Hong, 2006) were used to analysis in F_(2:3) population and all sterile plants in F_2 population, which including 708 individuals in former population and 987 individuals in latter population, respectively. As a result, four SCAR markers SCD2 , SCE3 , SCD7 and SCD8 all have been mapped in one side of the target genes (Ms/Mf), with the genetic distances of 2.0cM, 1.7cM, 1.5cM and 0.1 cM, respectively, another SCAR marker SCHDF has been mapped in the other side of the target genes, with the genetic distance of 2.3cM.
     2. AFLP technology combined with bulked segregant analysis (BSA) was used to identify the genetic markers more tightly linked to Ms/Mf genes. Additional 512 primers combinations were screened and four AFLP markers linked with the Ms/Mf genes were obtained. Among them, two markers (P1M1 and P1M4) were co-dominant markers, they have been mapped between the SCAR markers SCD7 and SCD8. Another two markers (P3M2 and P12M6) were dominant markers, have been mapped in two sides of the target gene (Ms/Mf), the former was between SCD7 and SCD8, and the latter was between SCHDF and target genes.
     3. Using comparative sequencing technology, two SCAR markers (SC6 and SC9) obtained by Song et al., 2006, which linked with the sterile gene Ms of 609AB in Brassica napus have been integrated in the linkage map of present study and converted into co-dominant markers, designated as SC6D and SC9H. SC6D was mapped between AFLP marker P12M6 and target genes, and SC9H was mapped between AFLP markers P3M2 and P1M1/P1M4, with the genetic distance of 1.0cM. Combining the above AFLP markers and SCAR markers, the target genes (Ms/Mf) have been finely mapped in a little genetic regions.
     4. Through comparing with the linkage map of DH (Tapidor×Ningyou7) population, the target genes {Ms/Mf) have been mapped on linkage group N8. One co-dominant SSR marker located on linkage group N8, HUA348, was confirm to linkage to the Ms/Mf genes.
     5. Based on the homologous region sequences of target genes (Ms/Mf) region and Arabidopsis homologous, 18 specific primers (DFN1-DFN18) have been designed to amplify Ms gene and Mf gene. As a result, 14 primers could have amplified Ms gene and Mf gene together, except for primers DFN3, DFN12, DFN14 and DFN18.
     6. Using the SCAR marker SCD8, linked with the restorer gene Mf as a probe screened the Tapidor BAC library by Southern hybridization, and 29 positive BAC clones were identified.
     7. Twenty-nine positive BAC clones were identified by four specific primers DFN1, DFN5, DFN8, DFN16 and SCAR marker SCD8, then, an overlap contigs maybe covered Ms/Mf genomic region were constructed by the 18 positive BAC clones in 29 positive BAC clones. 29 positive BAC clones were digested with HindIII, and a fingerprint of 29 positive BAC clones has been constructed. As a result, it is a further verification of the possible overlap contigs covered Ms/Mf genomic region were constructed by PCR amplification.
引文
1.陈凤祥,胡宝成,李强生.细胞核不育材料9012A的发现与初步遗传.全国植物雄性不育及杂种优势利用青年学术讨论会论文集.北京农业大学学报(增刊),1993.2:20-25
    2.陈凤祥,胡宝成.甘蓝型油菜细胞核雄性不育性的遗传研究Ⅰ.隐性核不育系9012A的遗传.作物学报,1998,24:423-437
    3.陈吉宝,景蕊莲,员海燕,卫波,昌小平.小麦TaDREB1基因的单核苷酸多态性分析.中国农业科学,2005,38:2387-2394
    4.陈玉峰.甘蓝型油菜隐性细胞核雄性不育恢复基因的精细定位.[硕士论文].武汉:华中农业大学图书馆,2007
    5.邓晓建,周开达.低温敏显性核不育水稻“8987”的育性转换与遗传研究.四川农业大学学报,1994,12:376-382
    6.董振生,刘创社,景军胜,冉隆贵,张修森.白菜型油菜(B.campestris L.)双显性核不育896AB的选育.西北植物学报,1997,6:35-38
    7.董振生,刘创社.白菜型油菜(B.campestris L.)双显性核不育896AB的选育.作物学报,1998,24:187-192
    8.董振生,刘创社.白菜型油菜双显性核不育896AB恢复系基因型的鉴定.作物学报,1999,25:193-198
    9.樊颖伦,陈学伟,王春连,朱立煌,章琦,赵开军.水稻抗白叶枯病基因Xa23的RFLP标记定位及其STS标记的转化.作物学报,2006,32:931-935
    10.方智远,孙培田.甘蓝显性雄性不育系的选育及其利用.园艺学报,1997,24:249-254
    11.冯辉,魏毓棠,许明.大白菜核基因雄性不育系遗传假说及其验证.中国科协第二届青年学会-园艺学论文集.北京:北京农业大学出版社,1995,453-466
    12.傅廷栋,涂金星.油菜杂种优势利用的现状与展望.见:刘后利主编,作物育种学论丛.北京:中国农业大学出版社,2002
    13.傅廷栋,涂金星.油菜杂种优势利用的现状与展望.刘后利主编,作物育种学论丛.北京:中国农业大学出版社,2002
    14.傅廷栋.杂交油菜的育种与利用.武汉:湖北科学技术出版杜,1995
    15.傅廷栋.杂交油菜的育种与利用.武汉:湖北科学技术出版社,2000a
    16.傅廷栋.中国油菜生产和品种改良的现状与前景.安徽农学通报,2000b,6:2-8
    17.龚仁才.甘蓝型油菜(B.napus L.)细胞核雄性不育系杂种“中杂3号”的选育和遗传分析.作物研究,1990,4:5-8
    18.郝岗平,吴忠义,陈茂盛,曹鸣庆,Dominique Brunnel,Georges Pelletier,黄丛林,杨清.拟南芥CBF4基因位点的单核苷酸多态性(SNP)变化与抗旱表型的相应性.农业生物技术学报,2004,12:122-131
    19.何俊平.甘蓝型油菜隐性细胞核雄性不育基因ms3的精细定位.[博士论文].武汉:华中农业大学图书馆,2008
    20.洪登峰.甘蓝型油菜显性细胞核雄性不育基因Ms/Mf的定位.[博士论文].武汉:华中农业大学图书馆,2006
    21.胡洪凯,马尚耀,石艳华.谷子(Setaria italica)显性雄性不育基因的发现.作物学报,1986,12:73-78
    22.胡胜武,刘胜毅,于澄宇,郭学兰,赵惠贤,胡小加,路明,刘越英.甘蓝型油菜核不育材料Shaan-GMS不育基因的RAPD标记.中国油料作物学报,2003,25:5-7.
    23.胡胜武,于澄宇,赵惠贤,路明.甘蓝型油菜显性核不育材料Shaan-GMS纯合两型系803AB的选育.西北农业学报,2002,11:25-27
    24.胡胜武,于澄宇,赵惠贤.甘蓝型油菜新型不育源的发现及其初步研究.西北农业学报,2000,9:90-94
    25.胡胜武,于澄宇,赵惠贤,路明,张春红,俞延军.甘蓝型油菜核不育材料Shaan-GMS恢复基因的筛选及其遗传分析.西北农林科技大学学报,2004,32:9-12
    26.金梦阳,刘列钊,付福友,张正圣,张学昆,李加纳.甘蓝型油菜SRAP,SSR,AFLP和TRAP标记遗传图谱构建.分子植物育种,2006,4:520-526
    27.柯丽萍.甘蓝型油菜隐性细胞核雄性不育的基因定位.[博士论文].武汉:华中农业大学图书馆,2005
    28.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传验证.上海农业学报,1986,2:1-8.
    29.李树林,钱玉秀,周熙荣.显性核不育油菜的遗传.上海农业学报,1987,3:1-8.
    30.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海农业学报,1985,1:1-12
    31.李树林,周熙荣.显性核不育油菜的遗传与利用.作物研究,1990,4:27-32
    32.梁景霞,祁建民,方平平,王涛,陈顺辉,周东新,陶爱芬,梁康迳,吴为人.烟草种质资源遗传多样性与亲缘关系的ISSR聚类分析.中国农业科学,2008,41:286-294
    33.蔺兴武,吴建国,石春海.远缘杂交油菜核不育系的创建及其细胞学和形态学研究.遗传,2005,27:403-409
    34.刘斌美,吴跃进,童继平,吴敬德,余增亮,张瑛,程灿.水稻显性半矮秆基因的SCAR标记及初步定位.作物学报,2006,32:449-454
    35.刘秉华,邓景扬.小麦显性雄性不育单基因Ta1的染色体组定位及端体分析.中国科学(B辑),1986,2:157-165
    36.刘冠明,郑奕雄,陈建萍,麦俊伟,黎国良.珍珠豆型花生品种遗传差异的SSR 标记分析.河南农业科学,2006,10:28-31
    37.刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25:317-321
    38.刘章雄,王守才.玉米锈病研究进展.玉米科学,2003,11:76-79
    39.卢泳全,汪旭升,黄伟素,肖天霞,郑燕,吴为人.基于水稻内含子长度多态性开发禾本科扩增共有序列遗传标记.中国农业科学,2006,39:433-439
    40.陆才瑞,喻树迅,于霁雯,范术丽,宋美珍,王武,马淑娟.功能型分子标记(ISAP)的开发及评价功能型分子标记(ISAP)的开发及评价.遗传,2008,30:1207-1216
    41.陆光远,杨光圣,傅廷栋.甘蓝型油菜分子标记连锁图谱的构建及显性细胞核雄性不育基因的图谱定位.遗传学报,2004b,31:1309-1315
    42.陆光远,杨光圣,傅廷栋.甘蓝型油菜显性细胞核雄性不育基因的AFLP标记.作物学报,2004a,30:104-107
    43.陆光远.甘蓝型油菜显性细胞核雄性不育基因和上位抑制基因的分子标记及其应用.[博士论文].武汉:华中农业大学图书馆,2003
    44.潘家驹.作物遗传育种总论.北京:中国农业出版社,1995
    45.石海波,王立新,李宏博,张风廷,马庆,赵昌平.利用SSR标记区别小麦品种种子混杂和SSR位点不纯的研究.分子植物育种,2006,4:513-519
    46.石华娟,董云麟.川油15核不育三系制种技术的应用研究.西南农业学报,2004,17:12-15
    47.舒庆尧,吴殿星.60Cor射线辐照诱发创造水稻显性雄性核不育系.核农学报,2000,14:274-278
    48.宋来强,傅廷栋,杨光圣,涂金星,马朝芝.1对复等位基因控制的油菜(Brassica napus L.)显性核不育系609AB的遗传验证.作物学报,2005,31:869-875
    49.宋来强,傅廷栋,杨光圣,涂金星,马朝芝.甘蓝型油菜显性核不育基因及与恢复基因的等位性分析.中国农业科学,2006,39:456-462
    50.王彩霞,舒庆尧.水稻紫色种皮基因的精细定位与候选基因分析.科学通报,2007,52:2517-2523
    51.王道杰,田建华,王灏,胡选萍,李殿荣,郭蔼光.油菜单显性核不育及其不育基因的RAPD标记.西北植物学报,2003,23:1556-1560
    52.王道杰.油菜单显性细胞核雄性不育分子机理研究.[博士论文].杨凌:西北农林科技大学图书馆,2007
    53.王通强,田筑萍,黄泽素,魏忠芬,邵明波.甘蓝型双低油菜细胞核显性雄性不育系黔油2AB的选育.贵州农业科学,1999,27:14-18
    54.王武萍,庄顺琪.白菜型油菜细胞核雄性不育三系选育研究.西北农业学报,1992,1:37-40
    55.王晓波,马传喜,司红起.不同Wx蛋白重组类型对普通小麦直链淀粉含量及RVA 参数的影响.中国粮油学报,2008,23:16-19
    56.王晓武,方智远,孙培田,刘玉梅,杨丽梅,庄木.利用分子标记EPT11 900辅助甘蓝显性雄性不育基因转育.中国蔬菜,1998,6:1-4
    57.王晓武,方智远,孙培田,刘玉梅,杨丽梅,庄木.一个用于甘蓝显性雄性不育基因转育辅助选择的SCAR标记.园艺学报,2000,27(2):143-144
    58.卫波,景蕊莲,王成社,昌小平.用等位基因特异POR检测普通小麦(Triticum aestivum L.)的单核苷酸多态性单核苷酸多态性.中国农业科学,2006,39:1313-1320
    59.肖玲,卢长明.油菜脂肪酸延长酶基因fael片段的克隆与SNP分析.中国农业科学,2005,38:891-896
    60.谢传晓,朱苏文,李培金,程备久,余增亮.玉米对生性状两个显性基因SCAR 分了标记.高技术通讯,2002,12:38-41
    61.徐相波,刘冬成,郭小丽,孙家柱,刘立科,张相岐,张爱民.小麦抗白粉病基因Pm21分子标记辅助选择的应用.分子植物育种,2006,4:194-198
    62.许明,冯辉,魏毓棠,王世刚.大白菜核复等位基因向可育品系92-11的转育.沈阳农业大学学报,2000,31:324-327
    63.颜龙安,张俊才.水稻显性雄性核不育基因鉴定初报.作物学报,1989,15:174-18
    64.杨光圣,瞿波.甘蓝型油菜显性细胞雄性不育系宜3A花药发育的解剖学研究.华中农业大学学报,1999,18:405-408
    65.易斌.甘蓝型油菜隐性核不育基因Bnms1的精细定位和克隆.[博士论文].武汉:华中农业大学图书馆,2007
    66.张建成,王传堂,杨新道.SSR和STS标记在花生栽培品种鉴定中的应用研究.植物遗传资源学报,2006,7:215-219
    67.张立阳,张凤兰,王美,刘秀村,赵岫云,薛林宝.大白菜永久高密度分子遗传图谱的构建.园艺学报,2005,32:249-255
    68.张书芳,宋兆华.大白菜细胞核基因互作雄性不育系选育及应用模式.园艺学报,1990,17:117-125
    69.张书芳,周帮福,武兴丽,张瑞君,那红梅,靖发顺.大白菜双位点复等位雄性不育遗传模型.辽宁农业科学,2003,3:1-4
    70.张书芬,宋文光,傅廷栋.甘蓝型单、双低油菜细胞质雄性不育杂种生理优势.中国油料,1994,16:5-10
    71.张献龙,唐克轩.植物生物技术.北京:科学出版社,2004
    72.郑靓,张正圣,陈利,万群,胡美纯,王威,张轲,刘大军,陈笑,魏新琦.IT-ISJ标记及其在陆地棉遗传图谱构建中的应用.中国农业科学,2008,41:2241-2248
    73.周熙荣,李树林,周志疆,庄静,顾龙弟.甘蓝型(Brassica napus L.)显性核不育双低油菜杂交新品种核杂3号的选育.上海交通大学学报:农业科学版,2003,21:304-308
    74.周熙荣,庄静,孙超才,李树林,赛晓峰,胡官保,王伟荣,李延莉,顾龙弟,钱小芳.甘蓝型油菜显性核不育双低杂交种核杂7号的选育.上海农业学报,2006,22:6-9
    75.朱旭东,J.Neil Rutger.显性雄性核不育突变体水稻的遗传鉴定.核农学报,2000,14:279-283
    76.庄炳昌,陈受宜.大豆遗传图谱的构建和分析.遗传学报,2000,27:1018-1026
    77.Aarts M,Dirkse W,Stiekema W,Pereira A.Transposon tagging of a male sterility gene in Arabidopsis.Nature,1993,363:715-717
    78.Adams M,Kelley J,Gocayne J,Dubnick M,Polymeropoulos M,Xiao H,Merril C,Wu A,Olde B,Moreno R.Complementary DNA sequencing:expressed sequence tags and human genome project.Science,1991,252:1651-1656
    79.Akkaya M,Bhagwat A,Cregan P.Length Polymorphisms of Simple Sequence Repeat DNA in Soybean.Genetics,1992,132:1131-1139
    80.Arondel V,Lemieux B,Hwang I,Gibson S,Goodman H,Somerville C.Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis.Science,1992,258:1353-1355
    81.Bender W,Spierer P,Hogness D.Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster.J Mol Biol,1983,168:17-33
    82.Bennett M D,Leitch I J.Nuclear DNA amounts in angiosperms.Ann Bot,1995,76:113-176
    83.Bent A,Kunkel B,Dahlbeck D,Brown K,Schmidt R,Giraudat J,Leung J,Staskawicz B.RPS2 of Arabidopsis thaliana:a leucine-rich repeat class of plant disease resistance genes.Science,1994,265:1856-1860
    84. Brunei D, Froger N, Pelletier G. Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome, 1999, 42:387-402
    
    85. Buckler A, Chang D, Graw S, Brook J, Haber D, Sharp P, Housman D. Exon Amplification: A Strategy to Isolate Mammalian Genes Based on RNA Splicing. Proceedings of the National Academy of Sciences, 1991, 88:4005-4009
    
    86. Cardie L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R. Computational and Experimental Characterization of Physically Clustered Simple Sequence Repeats in Plants. Genetics, 2000, 156:847-854
    
    87. Chumakov I, Rigault P, Guillou S, Ougen P, Billaut A, Guasconi G, Gervy P, LeGall I, Soularue P, Grinas L. Continuum of overlapping clones spanning the entire human chromosome 21. Nature, 1992, 359:380-387
    
    88. Coulson A, Sulston J, Brenner S, Karn J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 1986, 83:7821-7825
    
    89. Eujayl I, Sledge M, Wang L, May G, Chekhovskiy K, Zwonitzer J, Mian M. Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. TAG Theoretical and Applied Genetics, 2004, 108:414-422
    
    90. Eujayl I, Sorrells M, Baum M, Wolters P, Powell W. Assessment of genotypic variation among cultivated durum wheat based on EST-SSRS and genomic SSRS. Euphytica, 2001, 119:39-43
    
    91. Fourmann M, Barret P, Froger N, Baron C, Chariot F, Delourme R, Brunei D. From Arabidopsis thaliana to Brassica napus: development of amplified consensus genetic markers (ACGM) for construction of a gene map. TAG Theoretical and Applied Genetics, 2002, 105:1196-1206
    
    92. Giancola S, Marhadour S, Desloire S, Clouet V, Falentin-Guyomarc'h H, Laloui W, Falentin C, Pelletier G, Renard M, Bendahmane A. Characterization of a radish introgression carrying the Ogura fertility restorer gene Rfo in rapeseed, using the Arabidopsis genome sequence and radish genetic mapping. TAG Theoretical and Applied Genetics, 2003, 107:1442-1451
    
    93. Giraudat J, HUAge B, Valon C, Smalle J, Parcy F, Goodman H. Isolation of the Arabidopsis ABB Gene by Positional Cloning. The Plant Cell Online, 1992, 4:1251-1261
    94. Grant I, Beversdorf W. Heterosis and combining ability estimates in spring-planted oilseed rape (Brassica napus L.). Canadian journal of genetics and cytology, 1985, 27:472-478
    
    95. Green E, Olson M. Systematic Screening of Yeast Artificial-Chromosome Libraries by Use of the Polymerase Chain Reaction. Proceedings of the National Academy of Sciences, 1990,87:1213-1217
    
    96. Grodzicker T, Williams J, Sharp P, Sambrook J. Physical mapping of temperature-sensitive mutations of adenoviruses. Cold Spring Harb Symp Quant Biol, 1975,39:439-446.
    
    97. He C, Poysa V, Yu K. Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. TAG Theoretical and Applied Genetics, 2003, 106:363-373
    
    98. Hodge R, Paul W, Draper J. Cold plaque screening: a simple technique for isolation of low abundance, differentially expressed transcripts from conventional cDNA libraries. Plant J, 1997, 2:257-260
    
    99. Hong D, Wan L, Liu P, Yang G, He Q. AFLP and SCAR markers linked to the suppressor gene (Rf) of a dominant genetic male sterility in rapeseed (Brassica napus L.). Euphytica, 2006, 151:401-409
    
    100.Hu J, Vick B. Target region amplification polymorphism: A novel marker technique for plant genotyping. Plant Molecular Biology Reporter, 2003, 21:289-294
    101.Hu S W, Fan Y F, Zhao H X, Guo X L, Yu C Y, Sun G L, Dong C H, Liu S Y, Wang H Z. Analysis of MS2Bnap genomic DNA homologous to MS2 gene from Arabidopsis thaliana in two dominant digenic male sterile accessions of oilseed rape (Brassica napus L.). Theor Appl Genet, 2006, 113:397-406
    102.Hu, J, Chen, J, Berville, A, Vick, B.A. High potential of TRAP markers in sunflower genome mapping. International Sunflower Conference Proceedings. 16~(th) International Sunflower Conference, August 29-September 2, 2004, Fargo, ND. p. 665-671
    103.Huang Z, Chen Y, Yi B, Xiao L, Ma C, Tu J, Fu T. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet, 2007, 115:113-118
    104.Jean M, Brown G, Landry B. Targeted mapping approaches to identify DNA markers linked to the Rfp1 restorer gene for the 'Polima'CMS of canola (Brassica napus L.). TAG Theoretical and Applied Genetics, 1998, 97:431-438
    105.Kim M, Van K, Lestari P, Moon J, Lee S. SNP identification and SNAP marker development for a GmNARK gene controlling supernodulation in soybean. TAG Theoretical and Applied Genetics, 2005, 110:1003-1010
    106.Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12:172-175
    107.Kota R, Varshney R, Thiel T, Dehmer K, Graner A. Generation and Comparison of EST-Derived SSRs and SNPs in Barley (Hordeum Vulgare L.). Hereditas, 2001, 135:145-151
    108.Labate J, Baldo A. Tomato SNP Discovery by EST Mining and Resequencing. Molecular Breeding, 2005, 16:343-349
    109.Lagercrantz U, Lydiate D. RFLP mapping in Brassica nigra indicates differing recombination rates in male and female meioses[J]. Genome (Ottawa. Print), 1995, 38:255-264
    
    110.Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburgl. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1:174-181
    
    111.Lei S, Yao X, Yi B, Chen W, Ma C, Tu J, Fu T. Towards map-based cloning: fine mapping of a recessive genic male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet, 2007, 115:643-651
    112.Leitch I, Bennett M. Polyploidy in angiosperms. Trends in Plant Science, 1997, 2:470-476
    113.Leyser H, Lincoln C, Timpte C, Lammer D, Turner J, Estelle M. Arabidopsis auxin-resistance gene AXRl encodes a protein related to ubiquitin-activating enzyme El. Nature, 1993, 364:161-164
    114. Li L, Song Y, Yan H, Wang L, Liu L. The Physical Location of the Gene Ht1 (Helminthosporium Turcium Resistance 1) in Maize (Zea Mays L.). Hereditas, 1998, 129:101-106
    115.Liu B H, Deng J Y. A Dominant Gene for Male Sterility in Wheat. Plant Breeding, 1986, 97:204-209
    116.Liu Y, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proceedings of the National Academy of Sciences, 1999, 96:6535-6540
    117.Lombard V, Delourme R. A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. TAG Theoretical and Applied Genetics, 2001, 103:491-507
    118.Lu G Y, Yang G S, Fu T D. Molecular mapping of a dominant genic male sterility gene Ms in rapeseed (Brassica napus). Plant Breeding, 2004, 123:262-265
    119.Mammadov J, Zwonitzer J, Biyashev R, Griffey C, Jin Y, Steffenson B, Maroof M. Molecular Mapping of Leaf Rust Resistance Gene Rph5 in Barley. Crop Science, 2003,43:388-393
    120.Marra M, Kucaba T, Sekhon M, Hillier L, Martienssen R, Chinwalla A, Crockett J, Fedele J, Grover H, Gund C. A map for sequence analysis of the Arabidopsis thaliana genome. Nature Genetics, 1999, 22:265-270
    121. Martin G, Brommonschenkel S, Chunwongse J, Frary A, Ganal M, Spivey R, Wu T, Earle E, Tanksley S. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 1993, 262:1432-1436
    122.MATHIAS R. A new dominant gene for male sterility in rapeseed, Brassica napus L. Zeitschrift fur Pflanzenzuchtung, 1985, 94:170-173
    123.Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional Cloning of Rice Semidwarfing Gene, sd-1: Rice "Green Revolution Gene" Encodes a Mutant Enzyme Involved in Gibberellin Synthesis. DNA Research, 2002, 9:11-17
    124.Mozo T, Dewar K, Dunn P, Ecker J, Fischer S, Kloska S, Lehrach H, Marra M, Martienssen R, Meier-Ewert S. A complete BAC-based physical map of the Arabidopsis thaliana genome. Nature Genetics, 1999, 22:271-275
    125.Murai N, Kemp J, Sutton D, Murray M, Slightom J, Merlo D, Reichert N, Sengupta-Gopalan C, Stock C, Barker R. Phaseolin Gene from Bean Is Expressed After Transfer to Sunflower Via Tumor-Inducing Plasmid Vectors. Science, 1983, 222:476-482
    126.Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L, Minobe Y. Search for and Analysis of Single Nucleotide Polymorphisms (SNPs) in Rice (Oryza sativa, Oryza rufipogon) and Establishment of SNP Markers. DNA Research, 2002,9:163-171
    127.Nguyen T, Giband M, Brottier P, Risterucci A, Lacape J. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. TAG Theoretical and Applied Genetics, 2004, 109:167-175
    128.M Olson, L Hood, C Cantor, and D Botstein. A common language for physical mapping of the human genome. Science, 1989,245:1434-1435
    129.Paran I, Michelmore R. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. TAG Theoretical and Applied Genetics, 1993, 85:985-993
    130.Parrish J, Nelson D. Methods for finding genes. A major rate-limiting step in positional cloning. Genet Anal Tech Appl, 1993, 10:29-41
    13 l.Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. TAG Theoretical and Applied Genetics, 2006, 114:67-80
    132.Rana D, Boogaart T, O'Neill C, Hynes L, Bent E, Macpherson L, Park J, Lim Y, Bancroft I. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. The Plant Journal, 2004, 40:725-733
    133.Remington D, Thornsberry J, Matsuoka Y, Wilson L, Whitt S, Doebley J, Kresovich S, Goodman M, Buckler IV E. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proceedings of the National Academy of Sciences, 2001,98:11479-11484
    134.Robbelen G. Citation at the occasion of presenting the GCIRC Superior Scientist Award to FU Tingdong. Proc 8~(th) Int Rapeseed Cong (Sasktoon Canada), 1991, 1:2-5
    135.Rossetto M, McNally J, Henry R. Evaluating the potential of SSR flanking regions for examining taxonomic relationships in the Vitaceae. TAG Theoretical and Applied Genetics, 2002, 104:61-66
    136.Saito M, Kubo N, Matsumoto S, Suwabe K, Tsukada M, Hirai M. Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. TAG Theoretical and Applied Genetics, 2006, 114:81-91
    137.Sattarzadeh A, Achenbach U, Liibeck J, Strahwald J, Tacke E, Hofferbert H, Rothsteyn T, Gebhardt C. Single nucleotide polymorphism (SNP) genotyping as basis for developing a PCR-based marker highly diagnostic for potato varieties with high resistance to Globodera pallida pathotype Pa2/3. Molecular Breeding, 2006, 18:301-312
    138.Schmid K, Sorensen T, Stracke R, Torjek O, Altmann T, Mitchell-Olds T, Weisshaar B. Large-Scale Identification and Analysis of Genome-Wide Single-Nucleotide Polymorphisms for Mapping in Arabidopsis thaliana. Genome Res. , 2003, 13:1250-1257.
    139.Schmidt R, West J, Love K, Lenehan Z, Lister C, Thompson H, Bouchez D, Dean C. Physical Map and Organization of Arabidopsis thaliana Chromosome 4. Science, 1995,270:480-483
    140.Sernyk J, Stefansson B. Heterosis in summer rape (Brassica napus L.). Can. J. Plant Sci, 1983,63:407-413
    141.Shizuya H, Bitten B, Kim U, Mancino V, Slepak T, Tachiiri Y, Simon M. Cloning and Stable Maintenance of 300-Kilobase-Pair Fragments of Human DNA in Escherichia coli Using an F-Factor-Based Vector. Proceedings of the National Academy of Sciences, 1992, 89:8794-8797
    142.Shull G. The Composition of a Field of Maize. Am Breeders Assoc. Rep. 1908, 4:296-301
    143.Snowdon R, Friedrich T, Friedt W, Khler W. Identifying the chromosomes of the A-and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus. TAG Theoretical and Applied Genetics, 2002, 104:533-538
    144.Snowdon R, Khler W, Friedt W, Khler A. Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. TAG Theoretical and Applied Genetics, 1997,95:1320-1324
    145.Song L Q, Fu T D, Tu J , Ma C Z, Yang G S. Molecular validation of multiple allele inheritance for dominant genic male sterility gene in Brassica napus L. Theor Appl Genet, 2006, 113:55-62
    146.Song W, Wang G, Chen L, Kim H, Pi L, Holsten T, Gardner J, Wang B, Zhai W, Zhu L. A Receptor Kinase-Like Protein Encoded by the Rice Disease Resistance Gene, Xa21. Science, 1995, 270:1804-1806
    147.Tao Q, Chang Y, Wang J, Chen H, Islam-Faridi M, Scheuring C, Wang B, Stelly D, Zhang H. Bacterial Artificial Chromosome-Based Physical Map of the Rice Genome Constructed by Restriction Fingerprint Analysis. Genetics, 2001, 158:1711-1724
    148.Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and Experimental Analysis of Microsatellites in Rice (Oryza sativa L.): Frequency, Length Variation, Transposon Associations, and Genetic Marker Potential. Genome Res. ,2001, 11:1441-1452.
    149.Thiel T, Michalek W, Varshney R, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). TAG Theoretical and Applied Genetics, 2003, 106:411-422
    150.Tomkins J, Yu Y, Miller-Smith H, Frisch D, Woo S, Wing R. A bacterial artificial chromosome library for sugarcane. TAG Theoretical and Applied Genetics, 1999, 99:419-424
    151.Ulrike B, Heiko C. Evaluation B-genome intergration in Brassica napus with GISH. Proceeding of the 10~(th) international Rapeseed Congress, 1999, Canberra, Australia
    152.Umehara Y, Inagaki A, Tanoue H, Yasukochi Y, Nagamura Y, Saji S, Otsuki Y, Fujimura T, Kurata N, Minobe Y. Construction and characterization of a rice YAC library for physical mapping. Molecular Breeding, 1995, 1:79-89
    153. Wang Z, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. The Plant Journal, 1999, 19:55-64
    154.Wu J, Yang G. Meiotic abnormality in dominant genic male sterile Brassica napus. Molecular Biology, 2008, 42:572-578
    155.Wu K, Tanksley S. Abundance, polymorphism and genetic mapping of microsatellites in rice. Molecular Genetics and Genomics, 1993, 241:225-235
    156.Xiao L, Yi B, Chen Y, Huang Z, Chen W, Ma C, Tu J, Fu T. Molecular markers linked to Bn; rf: a recessive epistatic inhibitor gene of recessive genic male sterility in Brassica napus L. Euphytica, 2008, 164:337-384
    157.Xu J, Yang D, Domingo J, Ni J, Huang N. Screening for overlapping bacterial artificial chromosome clones by PCR analysis with an arbitrary primer. Proceedings of the National Academy of Sciences, 1998, 95:5661-5666.
    158.Xu S, Hu J, Faris J. Molecular characterization of the langdon durum-Triticum dicoccoides chromosome substitution lines using target region amplification polymorphism (TRAP) markers. Wheat genetics interanational symposium proceedings, 2003, 1:91-94.
    159.Yi B, Chen Y, Lei S, Tu J, Fu T. Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus L. Theor Appl Genet, 2006, 113:643-650
    160.Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proceedings of the National Academy of Sciences, 1998,95:1663-1668

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700