阀门内漏的声场数值模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以承压阀门气体内漏这一工程问题为背景,研究针阀,球阀和闸阀的声学检测与评价。阀门内部流动状态比较复杂,气体喷流流场与声场相互作用,相互影响,从理论上很难准确分析气体喷流声场的特性。本文采用数值模拟和实验研究相结合的方法,通过对阀门气体内漏声场进行模拟,分析阀门气体内漏发声机理及声场特性,模拟分析结果对阀门气体内漏声学检测技术提供理论依据。
     阀门气体内漏过程产生的高速射流喷注不仅辐射四极子噪声,而且不均匀的气流还对噪声的传播起扰动作用。所以分析阀门内漏的流动状态及喷射噪声源的位置,强度,扰动速度的分布等情况可为内漏噪声场的数值模拟提供基础。内漏流场的模拟采用雷诺平均N-S方程和k-ε湍流模型作为控制方程,在空间上采用有限体积方法(FVM)二阶迎风格式对控制方程进行离散,时间上采用四阶Runge-Kutta法进行积分,流速和压力偶合采用SIMPLEC算法。根据阀门气体内漏流场模拟结果,得到扰动速度的分布函数,为阀门气体内漏声场模拟奠定基础。
     阀门气体内漏喷流声场的数值模拟采用加载速度扰动的声波动方程为控制方程,运用无条件稳定,高精度的加权平均三层隐格式差分方法,边界上综合运用Clayton-Engquist-Majda无反射边界条件和Dirichlet全反射边界,采用MATLAB软件进行编程计算和结果可视化输出。完成了轴对称射流噪声场及三种阀门气体内漏声场的数值模拟,同时分析不同上游压力和内漏状态对阀门内漏声场的影响及其声场特性,得到上游压力及内漏状态对内漏发声的影响规律。
     建立阀门气体内漏声学检测模拟实验装置,采用声学检测仪测试不同类型阀门内漏过程的声信号,获得阀门气体内漏过程声强及内漏率的实验数据,验证数值模拟结果的正确性。
This paper takes the engineering problem of pressured valve gas inner leakage as background. Acoustic detection and evaluation of pin valve,ball valve and gate valve are studied. Because the flow state of fluid in the valve is complicated, and it has interaction between gas jet flow filed and their sound filed, it is difficult to analyze characteristics of sound filed truly through the theory method.
     Using the method of numerical simulation combined with experiment, the sound filed of valve gas inner leakage is simulated, then the origin of leakage noise and the characteristics of sound filed are analyzed. At last, the simulation results give theory supporting to acoustic detection technique of inner leakage. High speed jet generated by inner leakage not only radiates quadrupole noise, but also sound transmission is disturbed as refraction by the non-uniformity gas flow. So it is basic for numerical simulation of sound field to analyze the flow state, the position and amplitude of jet’s noise source, and distribution of disturbance speed. Simulation of inner leakage flow field make the Reynold’s average N-S equation and k-εturbulence model as control equation, which is discretized by second order upwind of finite volume method. Fourth order Runge-Kutta scheme is used for time integration, and SIMPLEC method is used to compute flow velocity and pressure coupled. The function of velocity distribution is confirmed by simulation results of flow filed, that provides a foundation for simulation of valve gas inner leakage.
     The numerical simulation of noise field uses the acoustic wave equation with disturbing as control equation, and uses non-condition stability,high order weighted average method with three floors implict difference to separate the equation. Clayton-Engquist-Majda non-reflect and Dirichlet all-reflect have been applied on boundary condition, meanwhile, the results can be visible by programming and using picture display function of MATLABL. The sound generated by axisymmetric jet and the inner leakage sound field of three kinds of valve can be simulated. Considering the factor of different pressure and inner situation, inner leakage sound field and characteristics can be analyzed at the same time, and rule of leakage noise is found.
     By establishing acoustic test device simulating the valve inner leakage, the signal generated by inner leakage of different valve can be collected, the experiment data of acoustic amplitude and inner leakage rate are gained, the numerical simulation results are proved accurate.
引文
[1] (美)J.L.莱昂斯.阀门技术手册[M] .北京:机械工业出版社,1990:124-131.
    [2] 杨源泉.阀门设计手册[M].北京:机械工业出版社,1992:1-6.
    [3]夏琼.石化企业阀门泄漏的原因分析及对策[J].石油化工设备技术, 2005,26(2):22-24.
    [4] 吴伟.止回阀内漏问题的探讨[J].阀门.2005,11(2):41-42.
    [5] 王泽晖,罗柏华,刘宇陆.关于气动声学数值计算的方法与进展[J].力学季刊,2003,24(2):219-226.
    [6] 居鸿宾,沈孟育.计算气动声学的问题,方法与进展[J].力学与实践,1995,17(5):1-10.
    [7] M J Lighthill.On Sound Generated Aerodynamically I General Theory[J]. Proc .Roy.London.Soc,1952.66-70.
    [8] N Curle.The Influence of Solid Boundaries on Aerodynamic Sound[J] .Proc. Roy.London.Soc,1955:504-514.
    [9] A Powell.Theory of Vortex Sound[J].Acoust.Soc.1964,36(8):177-195.
    [10] J E Ffowcs Williams and D L Hawkings.Sound Generation by Turbulence Surfaces in Arbitrary Motion[J].Phil.Trans.Roy.Soc.1969,24(11):321-342.
    [11] M V Goldstein.Unified Approach to Aerodynamic Sound Generation in the Presence of Soundarys[J].Acoust.Soc.1974,10(2):497-509.
    [12] 孙晓峰,周盛.气动声学[M].北京:国防工业出版社,1994:14-16.
    [13] Tam C K.Computationa1 aeroacoustics issues and methods[J].AIAA,1995,33(10):1788-1796.
    [14] Crighton D G.Goals for computational aeroacoustics[J].Computational Acous- tics:Algorithms and Applications,1988,11(9):2-20.
    [15]Lighthill M J.Report on the final panel discussion on computational aeroacoustic [R].Inst for Computer Applications in Science and Engineering,ICASE Rept,1992.
    [16] Hixon R,Shih S H,Mankbadi R R.Evaluation of boundary conditions for comp- utational aeroacoustics[J].AIAA,1995,33(5):2006-2012.
    [17] Hardin J C,Pope D S.A new technique for aerodynamic noise calculation [R]. Proceedings of the DGLRR/AIAA 14th Aeroacoustics Conference,AIAA,Washington D C,1992:448-456.
    [18] Hardin J C,Pope D S.An acoustic/viscous splitting technique for computational aeroacoustics[J].Theoretical and Computational Fluid Dynamics,1994,6(10):333-340.
    [19] Slimon S A,Soteriou M C,Davis D W.Computational aeroacoustics simulationsusing the expansion about incompressible flow approach[J].AIAA,1999,37(8):409-410.
    [20] Ohn A Ekaterinaris.New formulation of Hardin-Pope equations for aeroacoustics [J].AIAA,1999,37(11):26-29.
    [21] Philip J M,Lyle N L,Ashok B,Wang Q.A parallel three-dimensional computa- tional aeroacoustics method using nonlinear disturbance equations[J].Computational- Physic,1997,13(5):56-74.
    [22]刑超.剪切流中气动声学的数值模拟研究[D].天津大学硕士学位论文.2003.
    [23] 高军辉.喷流噪声产生机制的数值模拟研究[D].北京航空航天大学硕士学位论文.2002.
    [24] 李晓军,高军辉.二维平行减切层声波产生的辐射和数值模拟[J].航空学报,2003,24(1):6-9.
    [25]刘时风,李光海.声发射仪器的研究进展[C].中国第十届声发射学术研讨会论文集,2004.8:21-25.
    [26] 耿荣生,沈功田,刘时风.声发射信号处理和分析技术[J].无损检测.2002,24(1):22-28.
    [27] Hixon R.Progressing in Acoustic Emission[C] .15th IAES &6th AEWM.Rome ,Italy.2000.
    [28] 耿荣生.声发射技术发展现状-学会成立 20 周年回顾[J].无损检测.1998, 20(6):151-154.
    [29] 李光海,刘时风.声发射信号分析技术及进展[C] .中国第十届声发射学术研讨会论文集,2004.8:51-62.
    [30] 马大猷.现代声学理论基础[M].北京:科学出版社,2004:296-306.
    [31] 李太宝.声场的方程和计算方法[M].北京:科学出版社,2005:21-66.
    [32] 邵秀民,刘臻.带吸收边界条件的声波方程显差分格式的稳定性分析[J].计算数学,2001,23(2):163-168.
    [33] 葛永斌,朱琳,田振夫.求解波动方程的高精度紧致隐式差分方法[J].宁夏大学学报(自然科学版),2005,26(4):297-299.
    [34] 朱生旺,魏修成.波动方程数值模拟的隐式差分法[J].石油物探,2006,45(3):151-156.
    [35] 葛永斌,吴文权,田振夫.二维波动方程的加权平均隐格式及多重网格算法[J].上海理工大学学报,2002,24(3):204-208.
    [36] 陆金甫,关治,偏微分方程数值解法[M].北京:清华大学出版社,2004.
    [37] 王福明.应用数值计算方法[M].北京:科学出版社,1992.
    [38] 居鸿宾,沈孟育.气动声学数值模拟中无反射边界处理及声源模型的建立[J].上海交通大学学报,1998,32(7):36-39.
    [39]钟芳源.叶片机械风机和压气机气动声学译文集[M].北京:机械工业出版社,1987.
    [40] McLaughlin D K,Morrison G L,Troutt T R.Experiments on the instatblity wav- es in a supersonic jet and their acoustic radiation[J].Fluid Mech,1975,69(16):72-95.
    [41] Laurence J C.Intensity,scale and spectra of turbulence in mixing region of free subsonic jet [R].NACA Rep.No.1292.1956.
    [42] 彭芳麟.数学物理方程的 MATLAB 解法与可视化[M].北京:清华大学出版社,2004.11:189-196.
    [43] 蒲俊,吉家锋,伊良忠.MATLAB 6.0 数学手册[M].上海:蒲东电子出版社,2002,1-30.
    [44] 熊彬,阮百尧.MATLAB 在有限差分法中的应用[J].桂林工学院学报,2001,21(2):103-109.
    [45] 周新祥.噪声控制及应用实例[M].北京:海洋出版社,1999.2:523-526.
    [46] 赵承庆,姜毅.气体射流动力学[M] .北京:北京理工大学出版社,1998.6:73-81.
    [47] 韩占忠,王敬,兰小平.FLUENT 流体工程仿真计算实例与应用[M].北京理工大学出版社,2004.
    [48] 王福军.计算流体动力学分析-CFD 软件原理与应用[M].北京:清华大学出版社,2004.
    [49] J D Anderson,Computational Fluid Dynamics[M]:The Basics with Applica- tions.清华大学出版社,2002.
    [50] C.A.查蒲雷金.自然科学经典著作译集-论气体射流[M].上海:上海科学出版社,1955.
    [51] 梁小筠.正态性检验(一)[J].上海统计,2001,11(8):21-25.
    [52] 周富臣.正态分布及其应用(一) [J].上海计量测试,2001,4(6):14-19.
    [53] 王二平,孙东坡,尹则高,等.非沙质河流平面二维流场冲刷模拟方法的研究[J].泥沙研究,2003,3(4):58-62.
    [54] Laufer J,Yen T C.Noise generation by a low-Mach number jet[J] .Fluid Mech, 1983,22(10):1-31.
    [55] Moore C J.The role of shear layer instability waves in jet exhaust noise[J].Fluid Mech,1977,19(5):321-367.
    [56] 张颖,戴光,韩波,等.利用声学检测方法估算气体阀门的内漏率[J].大庆石油学院学报,2005,29(4):79-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700