光和赤霉素对拟南芥光形态建成及木质素生物合成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高等植物体内,至少存在三种光受体捕捉光信号:光敏素,蓝光/UV-A受体和UV-B受体,每一种光受体吸收不同光谱的光。光经信号转导后进入植物生长发育阶段影响一系列生长过程如种子萌发,幼苗生长以及开花时间等。拟南芥幼苗生长过程已成为研究植物光信号转导到形态建成机制的模式系统。隐花素(cryptochrome)是植物感受蓝光的蓝光受体,它介导蓝光调节植物的光形态建成反应,如抑制下胚轴伸长、促进子叶伸展及调节开花等。除了光受体的作用外,已知许多激素包括生长素,赤霉素(Gibberellin,GA),乙烯和细胞分裂素也能调节植物生长。光对GA水平的改变也会影响植物生长过程,还不清楚蓝光下GA调节植物光形态建成反应。
     为了研究蓝光下赤霉素对拟南芥光形态建成的影响,我们用模式植物拟南芥过表达35S::GFP-GA2ox8-1、35S::GFP-GA2ox8-8的突变体株系和以cry1cry2突变体为背景的T-DNA插入突变体scc7-D(suppressors of cry1cry2 7-dominant)作为研究对象进行分析,在蓝光下,过表达GA2ox8基因的scc7-D、35S::GFP-GA2ox8-1、35S::GFP-GA2ox8-8的突变体表现出抑制下胚轴伸长,较大的茎尖角度和子叶张开角度等表型。由于缺少蓝光受体cry1和cry2,cry1cry2、scc7-D突变体表现出对蓝光不敏感,花青素和叶绿素的含量分析结果也说明隐花素能通过介导蓝光调节GA控制部分去黄化表型。去黄化表型分析结果与光调节基因CHS、RBCS、CAB2基因表达水平的分析结果一致,同时蓝光下GA水平降低的植物中不正常表达光依赖基因。这些研究结果都说明了隐花素通过调节GA抑制光形态建成,至少是在幼苗早期的阶段。
     光是植物生长重要的环境因素。为了研究光和赤霉素对木质素生物合成的影响,本文从植物的光受体着手,以拟南芥的几种不同光受体突变体:红光、远红光受体突变体(phyA,phyB,phyAphyB),蓝光受体突变体(cry1,cry2,cry1cry2)和赤霉素生物合成突变体(scc7-D,35S::GFP-GA2ox8-1,35S::GFP-GA2ox8-8)为材料,采用溴乙酰紫外分光光度法测定不同的光受体突变体的木质素含量,同时采用间苯三酚染色,观察这些光受体突变体的茎切片。通过上述分析方法研究了不同光受体突变对木质素生物合成的影响。结果发现,与野生型相比,远红光受体突变体和红光受体突变体的木质素含量偏低,蓝光受体突变体则偏高。这些研究结果说明远红光和红光促进木质素生物合成,蓝光抑制木质素的合成。用RT-PCR和Q-PCR分析木质素生物合成途径酶基因的表达,发现光敏素phyA,phyB介导远红光/红光调节木质素合成是通过调节4CL3基因表达,而蓝光受体cry1、cry2不是通过4CL3基因调节木质素合成,可能存在其它信号通路调节木质素生物合成。此外,用外源赤霉素短时处理拟现芥叶柄的实验,证明了赤霉素可以影响木质素的合成。
In higher plants, there are at least three kinds of light receptors to capture light signal: phytochrome, cryptochromes and phototropin, which receptor absorb different spectrum of light. The light signal transduction and then entered the stage of plant growth and development, such as seed germination, seedling growth and flowering time. The growth process of Arabidopsis seedlings has become a model system for researching photomorphogenic mechanism. Cryptochromes are blue light receptors that regulate various photomophogenic responses in plant, including inhibition of hypocotyl elongation, stimulation of cotyledon expansion, and regulation of flowering time. It is not clear about how cryptochromes mediate blue light regulating photomophogenic responses, such as inhibition of hypocotyl elongation. Many hormones, including IAA, Gibberellin(GA), ethylene and cytokinin also regulate plant growth as well as light. In addition, light also regulates plant growth by changing GA levels.At present, it is not clear about photomophogenic mechanism how blue light regulate plant grow.
     To determine the effect of GA on photomorphogenesis in Arabidopsis under blue light, overexpression lines 35S::GFP-GA2ox8-1, 35S::GFP-GA2ox8-8 lines in wild type (WT) Col-4 background and an activation-tagging mutant scc7-D (suppressor of cry1cry2) were used in this research. Our results indicated that compared to cry1cry2, scc7-D showed a phenotype of inhibition of hypocotyl elongation, cotyledons opening and remaining larger hook angle under blue light; 35S::GFP-GA2ox8-1, 35S::GFP-GA2ox8-8 overepression lines also have short hypocotyls and opening cotyledons contrast with WT. cry1cry2 and scc7-D displayed insensitive to blue light are the result of lacking of cry1 and cry2. It was demonstrated that cryptochromes mediate GA regulation of de-etiolated seedlings by analysing chlorophyll and anthocyanin content of seedlings. In agreement with this, light-dependent gene expression, such as CHS、RBCS、CAB2, showed misregulating of light-depended gene in Arabidopsis with reduced GAs level in blue light. These results suggest that cryptochrome may regulate GA response to supresss photomorphogenesis, at least at its early stages.
     Light is an important environmental factor in plant growth. To study the light and GAs effecting on lignin biosynthesis, many Arabidopsis mutants including red/far-red-light receptor mutants (phyA, phyB , PhyAphyB), blue-light receptor mutants (cry1, cry2, cry1cry2) and GA Biosynthesis mutants (scc7-D, 35S::GFP-GA2ox8-1, 35S::GFP-GA2ox8-8) were used in our paper. The method of bromine acetyl was adopted in measuring different lignin contents in light receptor mutants, and the section of the stem were observed by phloroglucinol staining. We investigated the effects on lignin biosynthesis in different light receptor mutants through above methods. The results showed that compared with WT, lignin contents in red/far-red-light receptor mutants were lower, but the blue-light receptor mutants were higher. These results preliminary suggested that red/far-red-light promoted the lignin biosynthesis, whereas blue light inhibited the lignin biosynthesis. By analysis genes in lignin biosynthesis through RT-PCR and Q-PCR, we found that phyA, phyB-mediated far-red light or red light regulate lignin biosynthesis through regulating 4CL3 expression, but for cry1, cry2 regulating lignin biosynthesis,there may be other signaling pathway not by 4CL3 gene. Additionally, short-term GA3 treatment of petioles of mature plant also proved that GA may also effct the lignin biosynthesis.
引文
[1] 王绍明,李学禹.中国拟南芥属植物种质资源及其地理分布.石河子大学学报 (自然科学版),2001,5(2):102-108
    [2] 陆晓春,薛庆中.插入诱变在拟南芥基因克隆中的应用.中国生物工程杂志,2002,22(4):66-69
    [3] Meinke D W,Cherry J M,Dean C,et al.Arabidopsis thaliana:A model plant for genome analysis.Science,1998,282(5389):678-682
    [4] Senger H,Schmidt W.Diversity of photoreceptors.Kendrick R E, Kronenberg G H M.Photomorphogenesis in Plants.2nd ed.Dordrecht: Kluwer Academic Publishers, 1994, 11(30):301-322
    [5] McNellis T W, Deng X W . Light control of seedling morphogenetic pattern.Plant Cell,1995,7(11):1749-1761
    [6] Lin C.Photoreceptors and Regulation of Flowering Time.Plant Physiol,2000, 123(1):39-50
    [7] Lin C.Plant blue-light receptors.Trens Plant Sci,2005,5(8):337-342
    [8] Ahamd M,Cashmore A.RHY4 gene of A.thaliana encodes a protein with characteristics of a blue-light photoreceptor.Nature,1993,366 (6451):162-166
    [9] Imaizumi T , Kanegae T , Wada M . Cryptochrome nucleocyto-plasmic distribution and gene expression are regulated by light quality in the fern Adiantum capillusveneris.Plant Cell,2000,12(1):81-96
    [10] Ahmad M,Cashmore A R.HY4 gene of A. thaliana encodes a protein with characteristics of a blue-ight photoreceptor.Nature,1993,366(6451):162-166
    [11] Batschauer A. A plant gene for photolyase:An enzyme catalyzing the repair of UV-light-induced DNA damage.Plant J,1993,4(4):705-709
    [12] Guo H,Yang H,Mockler T C,et al.Regulation of flowering time by Arabidopsis photoreceptors.Science,1998,279(5355):1360-1363
    [13] Imaizumi T, Kadota A, Hasebe M,et al.Cryptochrome light signals control development to suppres auxin sensitivity in the moss Physcomit rella patens.Plant Cell,2002,14(2):373-386
    [14] Kanegae T,Wada M.Isolation and characterization of homologues of plant blue-light photoreceptor (cryptochrome) genes from the fern Adiantumcapillus-veneris.Mol Gen Genet,1998,259(4):345-353
    [15] Lin C,Cashmore A R.Cryptochrome and plant photomorphogenesis.In: Regulation of Plant Growth and Development by Light,Briggs W R,Heath R L , and Tobin E M , eds(Rockville , M D : American Society of Plant Physiologists),1996, 110:30-39
    [16] Small D G,Min B,Lefebvre P A.Characterization of a Chlamydomonas reinhardtii gene encoding a protein of the DNA photolyase/blue light photoreceptor family.Plant Mol Biol,1995,28(3):443-454
    [17] Hoffman P D,Batschauer A,Hays J B. PHH1,a novel gene from Arabidopsis thaliana that encodes a protein similar to plant blue-light photoreceptors and microbial photolyases.Mol Gen Genet,1996,253(1-2):259 - 265
    [18] Perrotta G,Ninu L,Flamma F,et al.Tomato contains homologues of Arabidopsis cryptochromes 1 and 2.Plant Mol Biol,2000,42(5): 765-773
    [19] 余淑文,汤章城.植物生理与分子生物学(第二版).北京:科学出版社, 1998,pp:634
    [20] Yang H,Wu Y,Tang R H,et al.The C termini of Arabidopsis cryptochromes mediate a constitutive light response.Cell,2000,103(5):815-827
    [21] Sancar A.Structure and function of DNA photolyase.Biochemistry,1994,33(1):2-9
    [22] Lin C,Ahmad M,Gordon D,et al.Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue UV-A,and green light.Pro Natl Acad Sci U S A,1995a,92(18):8423-8427
    [23] Mockler T C,Guo H,Yang H,et al.Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction.Development,1999,126(10):2073-2082
    [24] Todd M,Yang H,Yu X,et al.Regulation of photoperiodic flowering by Arabidopsis photoreceptors.PNAS,2003,100(4):2140-2145
    [25] Lin C,Yang H,Guo H,et al.Enhancement of blue-light sensitivity of Arabidopsis seedings by a blue light receptor cryptochrome 2.Proc Natl Acad Sci USA,1998,95(5):2686-2690
    [26] Shalitin D, Yang H, Mockler T C, et al. Regulation of Arabidopsis cryptochrome 2 by blue light-dependent phosphorylation.Nature,2002,417(6890):763-767
    [27] Mas P,Devlin P F,Panda S,et al.Functional interaction of phytochrome B and cryptochrome 2.Nature,2000,408(6809):207-211
    [28] Borthwick H A,Hendricks S B,Parker M W.The reaction controlling floral innitiation.Proc Natl Acad Sci U S A,1952,38(11):929-934
    [29] Grennan A K.Gibberellin metabolism enzymes in rice.Plant physiology,2006,141(2):524-526
    [30] 曹仪植.拟南芥.北京:高等教育出版社,2004:157-170
    [31] Chamovitz D A,Wei N,Osterlund M T,et al.COP9complex,a novel multisubunit nuclear regulator involved in light control of a plant developmental switch.Cell,1996,86(1):115-121
    [32] Clack T, Mathews S, Sharrock RA.The phytochrome apoprotein family in Arabidopsis encoded by five genes:the sequence and expression of PHYD and PHYE.Plant Mol Biol,1994,25(3):413-427
    [33] Pratt L H . Phytochormes-differential porperties , experssion patterns and molecular evolution.Photochem Photobiol,1995,61(1):10-21
    [34] Franklin K A,Davis S J,Stoddart W M,et al. Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis.Plant Cell,2003,15(9):1981-1989
    [35] Monte E, Alonso JM, Ecker JR, et al.Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways.Plant Cell,2003,15(9):1962-1980
    [36] 张鸿明,赵实,高荣孚等.光敏素分子特性及其信号转导机制.武汉植物学研究,2003,21(3):537-543
    [37] Reed J W,Nagatani A,Elich T D,et al.Phytochrome A and phytochrome B have over lapping but distinct functionsin Arabidopsis development. Plant Physiol,1994,l10 (4):11 39-114
    [38] Casal J J,Boccalandro H.Co-action between phytochrome B and HY4 in Arabidopsis.Planta,1995,197(2):2 13-218
    [39] Quail P H,Boylan M T,Parks B M,et al.Phytochromes:photosensory perception and signal transduction.Science,1995,268(5211):675-680
    [40] Shinomura T,Nagatani A,Chory J,et al.The induction of seed germination in Arabidopsis thalianais regulated principall by phytochrome B and secondarily by phytochrome A.Plant Physiol,1994,l04(2):363-371
    [41] Koomneef M,Kendrick R E.Photomorphogenic mutants of higher plants.In: Kendrick R C, Kronenberg G H(eds) Photomorphogenesisin Plants (2nd) Dordercht:Kluwer Academic Publishersp,1994,pp:610-628
    [42] Whitelam G C,Johnson E,Peng J,et al.Phytochrome A null mutants ofArabidopsis display a wide-type phenotype in white light.Plant Cell,1993, 5(7):757-768
    [43] Liscum E,Briggs W R.Arabidopsis mutants lacking blue light dependent inhibition of hypocotyls elongation.Plant Cell,1991,3(7):685-694
    [44] ParksB M,Quail P H.Phytochrome dificient hy1 and hy2 long hypocotyl mutants of Arabidopsis are deficient in chromophore phytochrome biosynthesis.Plant Cell,1991,3(11):1177-1186
    [45] Somers D E,Sharrock R A,Tepperman J M,et al.The hy3 long hypocotyl mutant of Arabidopsisis deficient in phytochrome B.Plant Cell,1991,3(12):1263-1274
    [46] Reed J W,Nagpal P,Poole D S,et al.Mutations in the gene for the red/far-red light receptor phytochrome B alter Cell elongation and physiological responses throughout Arabidopsis development.Plant Cell,1993,5(2):147-157
    [47] Casal J J,Cerdan P P,Staneloni R J,et al.Different phototransduction kinetics of phytochrome A and phytochrome B in Arabidopsis.Plant Physiol,1998, 116(4):1533-1538
    [48] Casal J J,Mazzella M A.Conditional synergism between cryptochromel and phytochrome B is shown by the analysis of phyA,phyB and hy4 simple,double,and triple mutant in Arabidopsis.Plant Physiol,1998,118(1):19-25
    [49] Silverstone A L,Sun T P.Gibberellins and green revolution.Trends Plant Sci,2000,5(1):l-2
    [50] Hedden P,Phillips A L.Gibberellin metabolism:new insights revealed by the genes.Trends Plant Sci,2000,5(12):523-530
    [51] Olszewski N,Sun T P,Gubler F.Gibberellin signaling:biosynthesis,catabolism,and response pathways.Plant Cell,2002,14(Suppl):61-80
    [52] Sun T P , Gubler F . Molecular mechanism of gibberellin signaling in plants.Annu Rev Plant Biol,2004,55:197-223
    [53] Lange T.Molecular biology of gibberellin synthesis.Planta,1998,204(4):409-419
    [54] Grennan A K.Gibberellin metabolism enzymes in rice.Plant physiology,2006,141(2):524-526
    [55] 韩碧文.突变体在植物激素研究中的应用.北京农业大学学报.1993,19(4):84-90
    [56] Hedden P,Kamiya Y.GIBBERELLIN BIOSYNTHESIS:Enzymes, Genes and Their Regulation.Annu Rev Plant Physiol Plant Mol Biol,1997,48:431-460
    [57] Ueguchi-Tanaka M , Ashikari M , Nakajima M , et al . GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin.Nature,2005,437(7059):693-698
    [58] Nakajima M,Shimada A,Takashi Y,et al.Identification and characterization of Arabidopsis gibberellin receptors.Plant J,2006,46(5):880-889
    [59] Peng J,Harberd N P.Gibberellin deficiency and response mutations suppress the stem elongation phenotype of phytochrome-deficient mutants of Arabidopsis.Plant Physiol,1997,113(4):1051-1058
    [60] Silverstone A L,Mak P Y,Martinez E C,et al.The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana.Genetics,1997,146(3):1087-1099
    [61] Peng J,Harberd N P.The role of GA-mediated signalling in the control of seed germination.Curr Opin Plant Biol,2002,5(5):376-381
    [62] Chow B,McCourt P.Plant hormone receptors:perception is everything. Genes Dev,2006,20(15):1998-2008
    [63] Bishopp A,Mahonen A P,Helariutta Y.Signs of change:hormone receptors that regulate plant development.Development,2006,133(10):1857-1869
    [64] Reed J W , Foster K R , Morgan P W , et al . Phytochrome B affects responsiveness to gibberellins in Arabidopsis.Plant Physiol,1996,112(1):337-342
    [65] Xu Y L,Gage D A,Zeevaart J A.Gibberellins and stem growth in Arabidopsis thaliana. Effects of photoperiod on expression of the GA4 and GA5 loci.Plant Physiol,1997,114(4):1471-1476
    [66] O'Neill D P,Ross J J,Reid J B.Changes in gibberellin A(1) levels and response during de-etiolation of pea seedlings.Plant Physiol,2000,124(2):805-812
    [67] Hedden P.The genes of the Green Revolution.Trends Genet,2003,19(1):5-9
    [68] Peng J,Richards D E,Hartley N M,et al.'Green revolution'genes encode mutant gibberellin response modulators.Nature,1999,400(6741):256-261
    [69] Sasaki A,Ashikari M,Ueguchi-Tanaka M,et al.Green revolution: a mutant gibberellin-synthesis gene in rice.Nature,2002,416(6882):701-702
    [70] Spielmeyer W,Ellis M H,Chandler P M.Semidwarf (sd-1), "green revolution" rice,contains a defective gibberellin 20-oxidase gene.Proc Natl Acad Sci U S A,2002,99(13):9043-9048
    [71] Sakamoto T,Miura K,Itoh H,et al.An overview of gibberellin metabolismenzyme genes and their related mutants in rice.Plant Physiol,2004,134(4):1642-1653
    [72] Wang H,Ma L G,Li J M,et al.Direct interaction of Arabidopsis cryptochromes with COP1 in light control development.Science,2001,294(5540):154-158
    [73] Yang H Q,Tang R H,Cashmore A R.The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1.Plant Cell,2001,13(12):2573-2587
    [74] Ang L H,Chattopadhyay S,Wei N,et al.Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development.Mol Cell,1998,1(2):213-222
    [75] Holm M,Ma L G,Qu L J,et al.Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis.Genes Dev,2002,16(10):1247-1259
    [76] Foo E J,Platten D,Weller J L,et al.PhyA and cry1 act redundantly to regulate gibberellin levels during de-etiolation in blue light.Physiologia Plantarum,2006,127(1):149-156
    [77] Platten J D,Foo E,Elliott R C,et al.Cryptochrome 1 contributes to blue-light sensing in pea.Plant Physiol,2005,139(3):1472-1482
    [78] Zhao XY,Yu XH,Foo E,et al.A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation.Plant Physiol,2007,145(1):106-118
    [79] Ma L,Li J,Qu L,et al.Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways.Plant Cell, 2001,13(12):2589-2607
    [80] Folta K M,Pontin M A,Karlin-Neumann G,et al.Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light.Plant J,2003,36(2):203-214
    [81] Ohgishi M,Saji K,Okada K,et al.Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis.Proc Natl Acad Sci U S A,2004,101(108):2223-2228
    [82] Kasemir H,Mohr H.Coaction of three factors controlling chlorophyll and anthocyanins yatnesis.Planta,1982,156(3):282-288
    [83] Neff M M,Chory J.Genetic interactions between phytochrome A,phytochrome B,and cryptochrome 1 during Arabidopsis development.Plant Physiol,1998,118(1):27-36
    [84] Kuno N,Muramatsu T,Hamazato F,et al.Identification by Large-Scale Screening of Phytochrome-Regulated Genes in Etiolated Seedlings of Arabidopsis Using a Fluorescent Differential Display Technique . Plant Physiol,2000,122(1):15-24
    [85] BormnanJ E, Vogelmami T C. Efect of UV-B radiation of leaf optical properties measured with fibre optics.J Exp Bot,1991,42 (237):547-55
    [86] Taylor R M,Nikaielo R M,Jordon B R,et al.Ultraviolet-B-induced DNA lesions and removal in wheat(Triticum aestivuml) leaves. Plant Cell and Enviroment,1996,(2):171-181
    [87] 郎杰.光对 GA3 大麦叶段叶绿素含量的影响.植物研究,1996,16(2):224-227
    [88] Weatherwax S C,Ong M S,Degenhardt J,et al.The interaction of light and abscisic acid in the regulation of plant gene expression.Plant Physiol,1996, 111(2):363-370
    [89] Cohen L,Arzee T.Mimicry by cytokinin of phyotochrome-regulated inbibition of chloroplast development in etiolated cucumber cotyledons.Physiol Plant,1998,72(1):57-64
    [90] Bracale M,Longo G P,Rossi G,et al.Early changes in morphology and polypeptide pattern of plastids from water melon cotyledons induced by benzyladenine or light are very similar.Physiol Plant,1988,72(7):94-10
    [91] Beggs C J,Wellmann E. Photocontrol of flavonoid biosynthesis.In:Kendrick R E,Kronenbery G H M (eds) Phtomorphogenesis in Plants(2nd) Kluwer Dordrecht Boston London,1994,pp:733-751
    [92] 王曼,王小菁.蓝光、近紫外光的受体及其对 CHS 表达诱导的研究.植物学通报,2000,19(4):265-271
    [93] Bowler C, Neuhaus G, Yamagata H,et al.Cyclic GMP and calcium mediate phytochrome phototransduction.Cell,1994a,77(1):73-81
    [94] Christie J M, Jenkins G I. Distinct UV-B and UV-A/blue light Signal transduction pathways induce chalcone synthase gene.Plant Cell,1996,8(9):1555-1567
    [95] Jordan B R,James P E,Mackerness S A H.Factors afecting UV-B induced charges in Arabidopsis thaliana L.gene expression:the role of development protective pigments and the chloroplast signal.Plant Cell,1998,39(7):719-777
    [96] Wade H K,Sohal A K,Jenkins G I.Arabidopsis ICX1 is a negative regulatorof several pathways regulating flavonoid biosynthesis genes.Plant Physiol,2003,131(2):707-715
    [97] Jacqueline G P,Deborah G.Lignin genetic engineering revisited.Plant Science,1999,145(2):51-65
    [98] Baucher M,Monties B,Van Montagu M,et a1.Biosyntensis and Genetic Engineering of lignin.Critical Reviews in Plant Sciences,1998,12(2):125-197
    [99] Lewis N G, Yamamotoe. Lignin: occurrence, biogenesis and biodegra- dation.Annu Rev Plant Physiol and Plant Mol Biol,1990,41(1):455-496
    [100] Chang H T,Su Y C,Chang S T.Studies on photostability effect of butyrylated,milled wood lignin using spectroscopic analyses.Polymer Degradation and Stability,2006,91(4):816-822
    [101] Boer J W,Ralph J,Baucher M.Lignin Biosynthesis.Annu Rev Plant Biol, 2003,54(1):519-546
    [102] Fernandesa D M,Winkler Hechenleitnera A A,Jobb A E,et al.Thermal and photochemical stability of poly(vinylalcohol)/modified lignin blends.Ploymer Degradation and Stability,2006,91(5):1192-1201
    [103] Richardson A , Stewart D , McDougall G J . Identification and partial characterization of a coniferyl alcohol oxidase from lignifying xylem of sitka spruce (Piceasitchensis).Planta,1997,203(29):35-43
    [104] Sederoff R R, Mackay J J, Ralph J.Unexpected variatioin in lignin.Current Opin Plant Biol,1999,2(2):145-152
    [105] Raes J,Christensen J H.Genome-Wide Characterization of the Lignification Toolbox in Arabidopsis.Plant Physiol,2003,133(3):1051-1071
    [106] FUKASAWA-AKADA T , KUNG S D , WATSON J C . Phenylalanlne ammonia-lyase gene structure,expression and evolition in Nicotiana.Plant MolBiol.,1996,30(4):711-722
    [107] 薛永常,李金花,卢孟柱等.木质素单体生物合成途径及其修订.林业科学,2003,39(6):146-153
    [108] Elkind Y,Edwards R,Mavandad M,et al.Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene . 87(22) :9057-9061
    [109] Franke R,McMichael C M,MeyerK.Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate-5-hydroxylase.Plant,2000,22(3):223-234
    [110] Lee V D, Meyer K, Chapple C,et al.Antisense suppression of 4-coumarate: coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition.Plant Cell,1997,9(11):1985-1998
    [111] Kajita S,Hishiyama S,Tomimura Y,et al.Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-coumarate:coenzyme A ligase is depressed.Plant Physiol,1997,114(3): 871-879
    [112] Hu W J,Harding S A,Lung J,et al.Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic tree.Nat Biotechnol,1999,17(8):808-812
    [113] Rugger M,Myer K,Casumano J C.Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis.Plant Physiol,1999,119(1):101-110
    [114] Franke R,McMichael C M,Meyer K.Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase.Plant,2000,22(3):223-234
    [115] Barriere Y,Argiller O,Chabbert B.Breeding silage maiz with brown-midrib genes:Feeding value and biochemical characteristics.Agronomie,1994,14(1):15-25
    [116] Mackay J J,Malley D M,Presnell T,et al.Inheritance,gene expression and lignin characterization in a mutant pine deficient in cinnamoyl alcohol dehydrogenase.Proc Natl Acad Sci U S A,1997,94(21):8255-8260
    [117] Li L G,Popko J L,Zhang X H.A novel multifunctional O- methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine.Proc Natl Acad Sci USA,1997,94(10):5461-5466
    [118] Stewart T,Yahiaouid A,Dougalln M C,et al.Fourier-transform infrared and raman spectroscopic evidence for the incorporation of cinnamaldehydes into the lignin of transgenic tobacco (Nicotiana tabacumL.) plants with reduce expression of cinnamyl alcohol dehydrogenase.Planta,1997,201(8):311-318
    [119] 胡新生,韩一凡,邱德有. 树木木质素含量的遗传变异研究进展.林业科学研究,1999,12(6):563-571
    [120] Hu W J,Scott A,Harding,et al.Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees.Nature Biotechnology, 1999,17(8):808-812
    [121] Zhang X H,Vincent LC.Molecular cloning of 4-coumarate:coenzyme A ligasein loblolly pine and the role of this enzyme in the biosynthesis of lignin in compression wood.Plant Physiol,1997,113(1):65-74
    [122] Goffner D,Joffroyl,Grima-Pettenat J,et al.Purification and characterization of isoforms of cinnamyl alcohol dehydrogenase from Eucalyptus xylem.Planta,1992,188(1):48-53
    [123] Whiting P,Goring D.Chemical characterization of tissue fractions from the middle lamella and secondary wall of black spruce tracheids. Wood Sci Techno,1982,16(1):261-267
    [124] Louisa A,Rogers et al.Light,the circadian clock,and sugar perception in the control of lignin biosynthesis.J Exp Bot,2005,56(416):1651-1663
    [125] 欧阳光察,薛应龙.植物苯丙烷代谢的生理意义及调控.植物生理学通讯,1988,24(3):9-16
    [126] 杨正国,候凤莲.光照对玉米苯丙氨酸解氨酶活性的影响.吉林林学院学报,1997,13(3):151-153
    [127] 江昌俊,余有本.苯丙氨酸解氨酶的研究进展.安徽农业大学学报,2001,28(4):425-430
    [128] 刘卫红,程水源.光照及机械损伤对银杏叶苯丙氨酸解氨酶活性的影响. 湖北农业科学,2003,3:73-75
    [129] 谢灵玲,赵武玲,沈黎明.光照对大豆叶片苯丙氨酸裂解酶(PAL)基因表达及异黄酮合成的调节.植物学通报,2000,17(5):443-449
    [130] Aloni R,Tollier M T,Monties B.The Role of Auxin and Gibberellin in Controlling Lignin Formation in Primary Phloem Fibers and in Xylem of ColeusBlumei Stems.Plant Physiol,1990,94(4):1743-1747
    [131] Carpin S , Crèvecoeur M , Greppin H , et al . Molecular cloning and tissue-specific expression of an anionic peroxidase in zucchini.Plant Physiol,1999,120(3):799- 810
    [132] 刘学群,杜爱玲.暗期红光、远红光间断处理对小麦叶片细胞壁成分的影响.华中农业大学学报,1996,15 (3):221-224
    [133] Sophia B,Henning T,Uwe S.Impact of altered gibberellin metabolism on biomass accumulation,lignin biosynthesis,and photosynthesisin transgenic tobacco plants.Plant Physiol,2004,135(1):254-265
    [134] 赵小英.蓝光抑制拟南芥下胚轴伸长和诱导种子萌发的生化分析:湖南大学博士学位论文.湖南大学图书馆:湖南大学,2006,51-65
    [135] Harberd N P,King K E,Carol P,et al.Gibberellin:Inhibitor of an inhibitor of...?.Bioessays,1998,20(12):1001-1008
    [136] Hooley R.Gibberellins:Perception,transduction and responses.Plant Mol Biol,1994,26(5):1529-1555
    [137] Lange T , Hedden P, Graebe J E . Expression cloning of a gibberellin 20-oxidase,a multifunctional enzyme involved in gibberellin biosynthesis.Proc Natl Acad Sci USA,1994,91(18):8552-8556
    [138] Martin D N,Proebsting W M,Parks T D,et al.Feed-back regulation of gibberellin biosynthesis and gene expression in Pisum sativum L.Planta,1996,200(2):159-166
    [139] Tanaka-Ueguchi M,Itoh H,Oyama N,et al.Over-expression of a tobacco homeobox gene, NTH15, decreases the expression of a gibberellin biosynthetic gene encoding GA 20-oxidase.Plant J,1998,15(3):391-400
    [140] Eriksson M E,Moritz T.Daylength and spatial expression of a gibberellin 20-oxidase isolated from hybrid aspen (Populus tremula L.×P.tremuloides Michx).Planta,2000,214(6):920-930
    [141] Ahmad M,Cashmore A R.HY4 gene of Arabidopsis thaliana encodes a protein with characteristics of a blue-light photoreceptor.Nature,1993,366(6451):162-166
    [142] Lin C.Blue light receptors and signal transduction.Plant Cell,2002,14 (Suppl):S207-S225
    [143] Meadus1 W J.A semi-quantitative RT-PCR method to measure the in vivo effect of dietary conjugated linoleic acid on porcine muscle PPAR gene expression.Biological Procedures Online,2003,5(1):20-28
    [144] Marone M,Mozzetti S,Ritis D D,et al.Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample.Biological Procedures Online,2001,3(1):19-25
    [145] Mockler T C,Yu X,Shalitin D,et al.Regulation of flowering time in Arabidopsis by K homology domain protein.Proc Nat Acad Sci U S A,2004,101(34):12759-12764
    [146] Schomburg F M,Bizzell C M,Lee D J,et al.Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants.Plant Cell,2003,15(1):151-163
    [147] Kendrick R E , Kronenberg G H M . eds . Photocontrol of flavonoid biosynthesis. In:KendrickR E, Kronenbery GHM (eds) Phtomorphogenesis in Plants (2nd).Kluwer Dordrecht Boston London,1993,pp:565-582
    [148] Wei N,Kwok S F,von Arnim A G,et al.Arabidopsis COP8,COP10,and COP11 genes are involved in repression of photomorphogenic development in darkness.Plant Cell,1994,6(5):629-643
    [149] Ma L, Zhao H, Deng X W. Analysis of the mutational effects of the COP/DET/FUS loci on genome expression profiles reveals their overlapping yet not identical roles in regulating Arabidopsis seedling development.Development,2003,130(5):969-981
    [150] Alabadí D,Gil J,Blázquez M A,et al.Gibberellins repress photomor- phogenesis in darkness.Plant Physiol,2004,134(3):1050-1057
    [151] Sun T,Goodman H M,Ausubel F M.Cloning the Arabidopsis GA1 locus by genomic subtraction.Plant Cell,1992,4(2):119-128
    [152] 苏国兴,刘友良.光经多胺氧化酶调节大豆下胚轴木质素的合成.http://www.paper.edu.cn
    [153] Romualdo S F,Ronald D H.Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method . American Chemical Society, 2001 , 49(7) : 3133-3139
    [154] 李靖,程舟,杨晓伶等.紫外分光光度法测定微量人参木质素的含量.中药材,2006,29(3):239-241
    [155] Romoualdo S F , Ronald D H . Comparison of the Acetyl Bromide Spectrophotometric Method with Other Analytical Lignin Methods for Determining Lignin Concentration in Forage Samples.J Agric Food Chem,2004,52(12):3713-3720
    [156] Fukushima R S,Dehority B A.Feasibility of using lignin isolated from forages by solubilization in acetyl bromide as a standard for lignin analyses.Anim Sci,2000,78(12):3135-3143
    [157] Campbell M M,Ellis B E.Fungal elicitor mediated responses in pine cell cultures I:Induction of phenylpropanoid metabolism.Plant,1992,186(3): 409-417
    [158] Besseau S,Hoffmann L,Geoffroy P,et al.Flavonoid Accumulation in Arabidopsis Repressed in Lignin Synthesis Affects Auxin Transport and Plant Growth.Plant Cell,2007,19(1):148-162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700