拟南芥光周期调控开花突变体的筛选及基因和蛋白质的鉴定分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,植物的开花成为了研究的热点。现在发现已经确定至少存在4条调控植物开花时间的信号途径:即光周期途径、春化途径、自主途径和赤霉素途径。日照长度(即光周期)是影响开花时间的主要因素之一。光周期中隐花素CRY1、CRY2等光受体位于光周期途径的上游,直接感受光信号后诱导生物钟成分及转录因子的表达而促进开花。研究表明cry1突变体在各种光照条件下都比野生型更迟开花;cry2突变体在长日照下延迟开花,对光周期敏感。cry1cry2双突变体的晚花的表型更为明显。
     为了更深入地研究隐花素调控光周期开花的作用机制,本文以拟南芥蓝光受体突变体cry1cry2为实验材料,采用激活标签技术构建了T-DNA插入突变体库,并从中筛选到与开花时间相关的突变体,其中SCC106-D、SCC60-D为晚花突变体;SCC105-4-D、SCC147-3-D为早花突变体,并采用IPCR和TAIL-PCR等方法得到了突变体T-DNA插入的基因组旁邻序列。
     采用半定量RT-PCR对突变体T-DNA插入位点两侧的候选基因的mRNA水平进行了初步分析,结果发现在SCC106-D突变体中,T-DNA左边界附近的At3g57760基因的转录量比野生型和cry1cry2突变体中均高;在SCC60-D突变体中,T-DNA右边界的AT4G27240和AT4G27260两个基因的转录量比野生型和cry1cry2突变体中均高;在SCC105-4-D突变体中, T-DNA右边界的AT5G19950基因的转录量比野生型和cry1cry2突变体中均高;在SCC147-3-D突变体中, T-DNA两个插入位点的左边界AT2G34160、AT4G18197、AT4G18205和AT4G18210基因的转录量比野生型和cry1cry2突变体中均高。获得了一些与开花相关的候选基因。
     通过不同光照下突变体下胚轴和根长的测量与分析,结果发现无论是在暗处理、红光还是蓝光下,SCC106-D突变体的下胚轴和主根都要明显的短于cry1cry2。说明SCC106-D突变体表现为组成型光形态建成。而SCC60-D突变体在蓝光下下胚轴和主根没有明显的变化,而在红光下下胚轴和主根变化较为明显,说明SCC60-D突变体对红光比较敏感。
     通过双向电泳分离T-DNA插入突变体SCC106-D与拟南芥蓝光受体突变体cry1cry2的总蛋白,得到了高重复性的双向凝胶电泳图谱。通过初步的斑点配比,获得了两种材料的差异蛋白质点图谱;并选取37个差异较明显的蛋白质点进行MALDI-TOF-TOF-MS质谱分析,利用肽质量指纹图数据在数据库中进行检索,有22个蛋白质点得到了可靠的鉴定。通过鉴定得到一些与能量代谢,次生代谢和调控等相关的蛋白。这些差异蛋白与突变体的表型形成有一定的关系,包括晚开花的表型。本文的研究结果,为进一步研究这些隐花素介导的光周期开花信号传导途径奠定了基础。
In recent years,the flowering of plants has been the research focus.4 pathways that regulate flowering time were discovered:photoperiod pathway,jarovization pathway,self-determination pathway and GA pathway.Photoperiod is one of the major factors which control the flowering time.The CRY1,CRY2 that located on the upstream of photoperiod pathway take the light signal directly,induce the biological clock factors and expression of transcription factors to accelerate the flowering.The result showed mutant cry1 took more time to come into flower than the col-4 under several illumination conditions;the flowering time of mutant cry2 was delayed with the treatment of longtime illumination;the phenotype of mutant cry1cry2 was especially obviously.
     In order to further study the mechanism which cyptochrome regulate the photoperiod for flowering,the mutant cry1cry2 were used as the material in this article. A library of Arabidopsis mutants was constructed by activation tagging method, which several mutants that related to flowering time were obtained from. SCC106-D,SCC60-D was late flowering mutant and SCC105-4-D,SCC147-3-D was early flowering mutant.IPCR and TAIL-PCR were used to identify the flanking genomic sequences of mutated target genes.
     After the identification of the T-DNA insertion site,the semi-quantitative RT-PCR was used to analyse expression of the mutant genes as the first step towards the function of mutant genes,the results indicated that the expression of the flanking genomic sequences was enhanced compared with the col-4 and cry1cry2 mutant,for instance,the At3g57760 gene in mutant SCC106-D,the AT4G27240 and AT4G27260 genes in mutant SCC60-D,the AT5G19950 gene in mutant SCC105-4-D,the AT2G34160,AT4G18197,AT4G18205 and AT4G18210 genes in mutant SCC147-3-D. some candidate genes related with flowering were obtained.
     By measuring and analyzing the length of hypocotyl and root under different wavelengths of light we found that mutant SCC106-D was not hypersensitive to different wavelengths of light,but mutant SCC60-D was hypersensitive to red light. These results showed the mutant SCC106-D was constitutively photomorphogenic. The protein of T-DNA insertion mutant SCC106-D and mutant cry1cry2 was separated by two-dimensional electrophoresis,different spots were obtained and identified.Thirty seven protein spots,which were differentially expressed in the cry1cry2 and SCC106-D,were identified by the method:MALDI-TOF-TOF-MS peptide fingerprint analysis of the protein spots and protein database searching. Twenty two of them were identified succesfully.By identification of these spots,some protein related with energy metabolism,secondary metabolism and regulation were obtained.The result showed in the paper laid the foundation for further study of photoperiod regulation by cyptochrome.
引文
[1] Meinke D W,Cherry J M,Dean C,et al.Arabidopsis thaliana:A model plant for genome analysis[J].Science,1998,282:678-682
    [2] The Arabidopsis Genome Initiative.Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J].Nature,2000,408:796-815
    [3] Mouradov A,Cremer F,Coupland G.Control of flowering time:interacting pathways as a basis for diversity[J].Plant Cell,2002,14(Suppl):S111-S130
    [4] Simpson G,Dean C.Arabidopsis,the Rosetta stone of flowering time?[J].Science, 2002,296(5566):285-289
    [5] Seth J D.Photoperiodism.The coincidental perception of the season[J].Curr Biol,2002,12:(24):841-843
    [6] 孟繁静,韩玉珍,傅永福等.植物花发育的分子生物学[M].北京:中国农业出版社,2000: 86-105,12
    [7] Bai S N,Tan K H.Is the information of leaf specical in stem apical meristem morphological formation events[J].Chinese Science Bulletin,2001,469:788-792
    [8] Adams S R,Pearson S,Hadley P.Improving quantitative flowering models through a better understanding of the phases of photoperiod sensitivity[J]. Experimental Botany,2001,52:655-662
    [9] Adams S R,Pearson S,Hadley P,et al.The effects of temperature and light integral on the phases of photoperiod sensitivity in Petunia×hybrida[J].Annals of Botany,1999,83:263-269
    [10] Adams S R,Munir M,Vald S,et al.Using flowering times and leaf numbers to model the phases of photoperiod sensitivity in Antirrhinum majus L[J].Annals of Botany,2003,92:689-696
    [11] Tang X H,Li W A.Studies on the stage of development in rice Ⅱ:effect on the stage of development in rice from several condition[J].Crops Journal,1965,3 3:283-287
    [12] Duan SH J,Diao X M,Zhao L Y.Electronic scanning observation of developmental morphology of inflorescence in foxtail millet[J].Acta Bot Boreal -Occident Sin,1998,18(3):406-410
    [13] Jacqmard A,Gadisseur I,Bernier G.Cell division and morphological changes in the shoot apex of Arabidopsis thaliana during floral transition[J].Ann BotLond,2003,91(5):571-576
    [14] Onouchi H,Igeno M I,Perilleux C,et al.Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering- time genes[J].Plant Cell,2000,12(6):885-900
    [15] Suarez-Lopez P,Wheatley K,Robson F,et al.CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis[J].Nature,2001,410 (6832):1116-1120
    [16] Cerdan P D,Chory J.Regulation of flowering time by light quality[J].Nature,2003, 423(6942):881-885
    [17] Blazquez M A,Ahn J H,Weigel D.A thermosensory pathway controlling flowering time in Arabidopsis thaliana[J].Nat Genet,2003,33(2):168-171
    [18] Huq E,Tepperman J M,Quail P H.GIGANTE is a nuclear protein involved in phytochrome signaling in Arabidopsis[J].Proc Natl Acad Sci USA,2000,97(17): 9789-9794
    [19] Soppe W J,Jacobsen S E,Alonso-Blanco C,et al.The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene[J].Mol Cell,2000,6(4):791-802
    [20] Kinoshita T,Miura A,Choi Y,et al.One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation[J].Science,2004,303(5657):521- 523
    [21] Borner R,Kampmann G,Chandler J,et al.A MADS domain gene involved in the transition to flowering in Arabidopsis [J].Plant J,2000,24:591-599
    [22] Kobayshi Y,Kaya H,Goto K,et a1.A pair of related genes with antagonistic roles in mediating flowering signals[J].Science,1999,286:1960-196
    [23] Simpson G G,Dean C.Arabidopsis,the Rosetta stone of flowering time?[J].Science,2002,296(5566):285-289
    [24] Bagnall D J,King R W,Hangarter R P.Blue light promotion of flowering is absent in hy4 mutants of Arabidops is[J].Planta,1996,200:278-280
    [25] Ahamd M,Cashmore A.RHY4 gene of Arabidopsis thaliana encodes a protein with characteristics of a blue-light photoreceptor[J].Nature,1993,366:162-166
    [26] Sancar A.Structure and function of DNA photolyase[J].Biochemistry,1994,33:2- 9
    [27] Mockler T C,Guo H,Yang H,et al.Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction[J]. Development,1999,126:2073-2082
    [28] Todd M,Yang H,Yu X,et al.Regulation of photoperiodic flowering by Arabidopsis photoreceptors[J].PNAS,2003,100:2140-2145
    [29] Lin C,Yang H,Guo H,et al.Enhancement of blue-light sensitivity of Arabidopsis seedings by a blue light receptor cryptochrome 2[J].Proc Natl Acad Sci USA, 1998,95:2686-2690
    [30] Mas P,Devlin P F,Panda S,et al.Functional interaction of phytochrome B and cryptochrome 2[J].Nature,2000,408:207-211
    [31] 瞿绍洪,张文俊,景健康等.玉米转座子 Ac 在单倍体烟草中转座的研究.遗传学报[J],1998,25(2):150-154
    [32] 廖鸣娟,董爱华,王正栋等.植物转座子及其在功能基因组学中的应用[J].遗传, 2000,22(5):345-3488
    [33] Chang C,Kwok S F,Bleecker A B,et al.Arabidopsis ethylene response gene etrl:similarity of product to two-component regulators[J].Science,1993,262:539- 544
    [34] Schneuwly S,Klemenz R,Gehring W J.Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia[J].Nature,1978,325: 816-818
    [35] Weigel D,Ahn J H,Bldzquez M A,et al.Activation tagging in Arabidopsis[J].Plant Physiol,2000,122:1003-1014
    [36] Wu N H.Principle of gene engineering(the Second Volume)(the Second Edition) [M].Beijing:Seciences Publishing Company,2001:241-251
    [37] 郑继刚,李成梅,肖英化等.激活标签法及其在植物基因工程上的应用[J].遗传, 2003,25(4):471-474
    [38] 陈其军,肖玉梅,王学臣等.植物功能基因组研究中的基因敲除技术[J].植物生理学通讯,2004,40(1):121-126
    [39] 李志邈,张海扩,曹家树等.拟南芥激活标记突变体库的构建及突变体基因的克隆[J].植物生理与分子生物学学报,2005,31(5):499-506
    [40] Weigel D,Ahn J H,Blazquezm A,et al.Activation tagging in Arabidopsis[J].Plant Physiol,2000,122:1003-1013
    [41] Nakazawa M,Ichikawa T,Ishikawa A,et al.Activation tagging,a novel tool to dissect the functions of a gene family[J].Plant J,2003,34:741-750
    [42] Qin G,Kang D,Dong Y,et al.Obtaining and analysis of flanking sequences from T-DNA transformants of Arabidopsis[J].Plant Science,2003,165(5):941-949
    [43] 张健,徐金相,孔英珍等.化学诱导激活型拟南芥突变体库的构建及分析[J].遗传学报,2005,32(10):1082-1088
    [44] Cordwell S J,Basseal D J,Bellyvist B,et al.Characterisation of basic proteins from Spiroplasma melliferun using novel immobilised pH gradients[J]. Electrophoresis,1997,18:1393-1398
    [45] Karas M,Hillenkamp F.Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons[J].Anal Chem,1988,60:2299-2301
    [46] Fenn J B,Mann M,Meng C K,et al.Electrospray ionization for mass spectrometry of large biomolecules[J].Science,1989,246:64-71
    [47] Gygi S P,Rist B,Gerber S A,et al.Quantitative analysis of protein mixture using isotope coded affinity tags[J].Nat Biotecnol,1999,17:949-999
    [48] Tonge R,Shaw J,Middleton B,et al.Validation and development of fluorescent two-dimensional differential gel electrophoresis proteomics technology[J]. Proteomics,2001,1:377-396
    [49] Wallach D,Boldin M P,Kovalenko A V,et al.The yeast two-hybrid screening technique and its use in the study of protein-protein interactions in apoptosis[J].Curr Opin Immunlo,1998,10:131-136
    [50] Husi H,Ward M A,Choudhary J S,et al.Proteomic analysis of NMDA receptor- adhesion protein signaling complexes[J].Nature Neuroscience,2000,3:661-3669
    [51] Link A J,Eng J,Schieltz D M,et al.Direct analysis of protein complexes using mass spectrometry[J].Nature Biotechnology,1999,17:676-682
    [52] Oda Y,Nagasu T,Chait B T.Enrichment analysis of phosphorylated proteins as a tool for probing phosphor-proteome[J].Nat Biotechnol,2001,19:379-382
    [53] Miriam V,Dwek H A,Anthony R,et al.Proteome and glycosylation mapping identifies post-translational modification associated with aggressive breast cancer[J].Proteomics,2001,1:756-762
    [54] Figeys D,Pinto D.Proteomics on a chip:promising developments[J]. Electrophoresis,2001,22:208-216
    [55] O'Farrell P H.High resolution two-dimensional electrophoresis of proteins[J].Biol Chem,1975,250(10):4007-4021
    [56] Opiteck G J,Jorgenson J W,Moseley M A.Two-dimensional microcolumn HPLC coupled to a single-quadru pole mass spectrometer for the elucidation of seuence tags and peptide mapping[J].Microcolumn Separations,1998,10:365-375
    [57] Kaczmarek K,Walczak B,De Jong S,et al.Matching 2D gel electrophoresis images[J].Chem Inf Comput Sci,2003,43:978-986
    [58] 丁达夫,盛泉虎,谢涛.蛋白质组信息学[J].生命的化学,1998,18(6):10-16
    [59] Kamo M,Kawakami T,Miyatake N,et al.Separation and characterization ofArabidopsis thaliana proteins by two-dimensional gel electrophoresis[J]. Electrophoresis,1995,16:423-430
    [60] Gallardo K,Job C,Groot S P C,et al.Proteomic analysis of Arabidopsis seed germ ination and priming[J].Plant Physiol,2001,126:835-848
    [61] Chibani K,Ali-Rachedi S,Job C,et al.Proteomic analysis of seed dormancy in Arabidopsis[J].Plant Physiol,2006,142:1493-1510
    [62] Prime T A,Sherrier D J,Mahon P,et al.A proteomic analysis of organelles from Arabidopsis thaliana[J].Electrophoresis,2000,21:3488-3499
    [63] Santoni V,Bellini C,Cabache M.Use of 2-dimensional protein-pattern analysis for the characterization of Arabidopsis thaliana Mutants[J].Planta,1994,192: 557-566
    [64] Gallardo K,Job C,Steven P C G.Proteomics of Arabidopsis seed germination.A comparative study of wild-type and gibberellin-deficient seeds[J].Plant Physiol, 2002,4(129):823-837
    [65] Santoni V,Bellini C,Caboche M.Use of two-dimensional protein-pattern analysis for the characterization of Arabidopsis thaliana mutants[J].Planta,1994,192: 557-566
    [66] Rajjou L,Belghazi M,Huguet R,et al.Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms[J].Plant Physiol,2006,141:910-923
    [67] Giacomelli L,Rudella A,Van W K J.High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2-2.A comparative proteomics study[J].Plant Physiol,2006,141:685-701
    [68] Sorin C,Negroni L,Balliau T,et al.Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development[J].Plant Physiol,2006,140(1):349-364
    [69] Mayfield J A,Fiebig A,Johnstone S E,et al.Gene families from the Arabidopsis thaliana pollen coat proteome[J].Science,2001,292:2482-2485
    [70] Peltier J B,Ytterberg J,Liberles D A,et al.Identification of a 350-kDa Clp Protease Complex with 10 Different Clp Isoforms in Chloroplasts of Arabidopsis thaliana[J].Biol Chem,2001,276:16318-16327
    [71] Slabas A R,Ndimba B,Simon W J,et al.Proteomic analysis of the Arabidopsis cell wall reveals unexpected proteins with new cellular locations[J].Biochem Soc Trans,2004,32:524-528
    [72] Fuller B,Stevens S M,Sehnke P C,et al.Proteomic analysis of the 14-3-3 familyin Arabidopsis[J].Proteomics,2006,6(10):3050-3059
    [73] Chivasa S,Hamilton J M,Pringle R S,et al.Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures[J].Exp Bot,2006,57(7):1553-1562
    [74] Kwon H K,Yokoyama R,Nishitani K.A proteomic approach to apoplastic proteins involved in cell wall regeneration in protoplasts of Arabidopsis suspension-cultured cells[J].Plant Cell Physiol,2005,46(6):843-857
    [75] Bong K P,Jin H C,Park S,et al.Proteomic analysis of the response of Arabidopsis chloroplast proteins to high light stress[J].Proteomic,2004,4:3560-3568
    [76] Kang J G,Pyo Y J,Cho J W,et al.Comparative proteome analysis of differentially expressed proteins induced by K+ defi-ciency in Arabidopsis thaliana[J]. Proteomics,2004,4(11):3549-3559
    [77] Lee S,Lee E J,Yang E J,et al.Proteomic identification of annexins,calcium- dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis[J].Plant Cell,2004,16(5):1378-1391
    [78] Chory J,Ecker J R,Briggs S,et al.Arabidopsis thaliana mutant resources,genetic transformation,and extensive application perspective[J].Plant Physiol,2000,123: 423-426
    [79] Kaiser J.From genome to functional genomics[J].Science,2000,288:1715
    [80] Triglia T,Peterson M G,Kemp D J.A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences[J].Nucleic Acids Research,1988,16(16):81-86
    [81] Liu Y G,Mitsukawa N,Oosumi,et al.Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR[J].Plant J,1995,8:457-463
    [82] Meadus1 W J.A semi-quantitative RT-PCR method to measure the in vivo effect of dietary conjugated linoleic acid on porcine muscle PPAR gene expression[J]. Biological Procedures Online,2003,5(1):20-28
    [83] Marone M,Mozzetti S,Ritis D D,et al.Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample[J]. Biological Procedures Online,2001,3(1):19-25
    [84] Mockler T C,Yu X,Shalitin D,et al.Regulation of flowering time in Arabidopsis by K homology domain protein[J].Proc Nat Acad Sci,2004,10:12759-12764
    [85] 张素芝,左建儒.拟南芥开花时间调控的研究进展[J].生物化学与生物物理进展,2006,33(4):301-309
    [86] 谢锦云,李小兰,陈平等.温敏核不育水稻花药蛋白质组初步分析[J].中国生物化学与分子生物学报,2003,19(2):215-221
    [87] Minarik P,Tomaskova N,Kollarova M,et al.Malate dehydrogenases-structure and function[J].Gen Physiol Biophys,2002,21(3):257-265
    [88] Paiva N L,Edwards R,Sun Y,et al.Stress responses in alfalfa(Medicago sativa L.)1l.Molecular cloning and expression of alfalfa isoflavone reductase,a key enzyme of isoflavonoid phytoalexin biosynthesis[J].Plant Molecular biology,1991,17:653-667
    [89] Dixon R A.Natural products and disease resistance[J].Nature,2001,411:843?847
    [90] Dixon R A,Achnine L,Kota P,et al.The phenylpropanoid pathway and plant defence-agenomics perspective[J].Molecular Plant Pathology,2002,3:371-390
    [91] Houston N L,Fan C,Xiang Q Y,et al.Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants,including single-domain protein disulfide isomerase-related proteins[J].Plant Physiology,2005,137:762-778
    [92] Chen W,Singh K B.The auxin,hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element[J].Plant J,1999,19(6):667-677

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700