DHHC型锌指蛋白基因OsDHHC1在水稻株型构建中的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水稻基因组测序的完成,很多水稻基因的功能已经陆续被报道,但DHHC锌指蛋白基因在水稻中的具体功能还研究甚少,大部分基因功能未见报道。因,本文对水稻中DHHC型锌指蛋白开展了生物信息学分析及基因功能研究,获得如下主要研究结果:
     (1)采用同源对比的方式克隆了1个新的DHHC型锌指蛋基因OsDHHC1。通同源对比的方式找到了水稻中与调控拟南芥的分枝基因At5g04270编码的氨基序列高度相似的DHHC型锌指蛋白基因Os02g0819100,长度约800bp。采用RT-PCR技术克隆Os02g0819100基因时发现了一条大小约800bp的弱带和一条700bp左右的亮带,测序结果显示这条亮带是从Os02g0819100基因开放阅读框里掉112-259位点之间的147bp后剩余序列的拼接结果。它有完整的开放阅读框且够通读。但是该基因在NCBI数据库中没有收藏,说明这是我们克隆获得的一新基因,将其命名为OsDHHC1,并明确了OsDHHC1是Os02g0819100在水稻内的另一种剪接方式。
     利用生物信息学方法分析了OsDHHC1和Os02g0819100的核酸及其编码氨酸序列,利用同源建模方法构建了OsDHHC1和Os02g0819100蛋白的三维结构型。研究发现OsDHHC1和Os02g0819100都是膜蛋白,其中OsDHHC1存在3主要的跨膜结构域和一个次要的跨膜结构域,而Os02g0819100有四个主要的跨结构域和一个次要的跨膜结构域。2个蛋白都具有DPG、DHHC-CRD和TTxE 3S-酰基转移酶的motif和S-酰基转移酶的活性中心,预测该蛋白应该具有S-酰转移酶活性。
     (2)揭示了OsDHHC1基因的时空表达特性及其编码蛋白的亚细胞定位,初步察了OsDHHC1基因在胁迫应答中所发挥的作用。明确了OsDHHC1是Os02g0819100在水稻体内的另一种剪接方式,但主要以OsDHHC1的剪接方式在物体内发挥作用。分析发现该基因的启动子上存在很多与光、冷、热、旱、盐胁迫和ABA响应相关的顺式作用元件。Q-PCR结果显示ABA处理2周龄的幼后,该基因的2种剪接方式mRNA的总表达量相比处理前增加了45倍,说明基因的转录受ABA的诱导。GFP融合蛋白在洋葱表皮细胞中的瞬时表达分析显,OsDHHC1和Os02g0819100这2个蛋白都定位在细胞膜上。OsDHHC1::GUS验结果表明所克隆的OsDHHC1基因上游的1639bp的DNA片段具有完整的OsDHHC1基因的启动子活性,能够调控OsDHHC1基因的时空表达特异性,控制基因在胚和叶脉中高量表达。
     (3)利用体外重组蛋白和酵母形态观察2种方式证明了OsDHHC1和Os02g0819100蛋白都具有S-酰基转移酶活性。第一种方式是构建了载体pColdTF-OsDHHC1和pColdTF-Os02g0819100,并对这2个基因编码蛋白进行了大肠杆菌表达,纯化得到了大量可溶的重组蛋白,然后采用生物素(biotin-HPDP)标记法证明了2个蛋白具有S-酰基转移酶活性。另一种方式是构建了载体PYES263-OsDHHC1和PYES263-Os02g0819100,并转化S-酰基转移酶缺失的酵母菌株ak1△,通过酵母形态观察确定了这2个基因的S-酰基转移酶的活性。
     (4)构建了pCAMBIA1301-OsDHHC1,pCAMBIA1301-Os02g0819100过表达载体和OsDHHC1-RNAi18干扰载体,通过农杆菌浸染愈伤组织的方法转化水稻中花11。过表达的转化纯合子表型表明OsDHHC1转基因植株的分蘖数比野生型增加了23%-31%,亩产比野生型增加了9.6%,而Os02g0819100转基因植株没有较野生型在分蘖和产量上都没有明显的变化。干扰OsDHHC1-RNAi18植株的转化纯合子表型显示OsDHHC1表达量降低对分蘖数和产量没有明显的影响。同时我们构建了PEGAD-OsDHHC1的过表达载体转化拟南芥,纯合子表型与前述表型一致。这些结果说明OsDHHC1的主要功能是通过增加分蘖(枝)来构建合理株型从而增加作物的产量。
     (5)阐明了OsDHHC1的功能域是含有DHHC锌指结构域的motif。将OsDHHC1基因分成OsDHHC1A,OsDHHC1B和OsDHHC1C等3段,分别克隆到PEGAD表达载体上并转化拟南芥,纯合子表型显示包含有DHHC结构域的OsDHHC1A的转基因植株的分支数比野生型增加了3-6倍,与OsDHHC1的全长CDS过表达拟南芥的表型一致,由此可知该基因的功能域应该是含有DHHC结构域的OsDHHC1A片段。
     综上所述,本研究首次克隆了1个新的DHHC型锌指蛋白基因OsDHHC1,系统地研究了该基因的功能,并发现了它是Os02g0819100基因在水稻体内的另一种剪接方式,但主要以OsDHHC1这种剪接方式在水稻体内发挥促进水稻分蘖、构建合理株型以增加水稻产量的功能。明确了该基因在胚和叶脉里高量表达,且受ABA诱导表达。通过两种方式证明了OsDHHC1具有S-酰基转移酶的活性。在拟南芥中分段表达OsDHHC1基因的结果显示其功能域是含有DHHC锌指结构域的motif。该基因的功能研究为将来利用基因工程构建合理株型从而提高作物产量提供了理论依据,具有一定的理论价值和现实的指导意义。
Followed by the genome sequence complemented, functions of many genes have been reported one after another in rice. But there are few investigations about the role of rice DHHC-type zinc finger protein genes, and even most of them were not reported as yet. Therefore, a series of bioinformatic analysis and function researches on rice DHHC zinc finger protein gene were conducted in this project. The main results obtained are as follows:
     (1) In this project, we cloned a DHHC znic finger protein gene OsDHHC1 based on homologous blast. Method using amino acid sequence homology screening, we found that rice DHHC znic finger protein Os02g0819100 with about 800bp CDS shared high homology with At5g04270, which involved in regulating shoot branchs in Arabidopsis. When we cloned Os02g0819100 by RT-PCR, we found two bands in the gel, the long one with about 800 bp and the short one with about 700 bp, importantly, the short band was very bright but the long band was very dim. The sequence result showed that the bright band come from the Os02g0819100 gene which removes 147bp between 112-259 sites of the CDS. At the same time, amino acid sequence deduced from the short band has a complete open reading frame and can be able to fully red. Moreover, it is a new gene which has not been recorded in the NCBI database, and we named it as OsDHHC1. So the result suggested that OsDHHC1 is the alterative-splicing mode of Os02g0819100 in rice.
     By using the bioinformatics methods the cDNA sequence and amino acid sequence of OsDHHC1 and Os02g0819100 were analysed. By using the method of homology modeling the three-dimensional structure models of OsDHHC1 and Os02g0819100 were built. Bioinformatics analysis showed that the two proteins are membrane proteins. OsDHHC1 had three major transmembrane structures and a secondary transmembrane structure, but Os02g0819100 had four major transmembrane structures and a secondary transmembrane structure. The two proteins contain three sulfur acyltransferase motifs: DPG, DHHC-CRD and TTxE. More significantly, the predicted result showed the two proteins had the existence of active sulfur acyltransferase activity center, which implied that the two proteins should have the sulfur acyltransferase activity.
     (2) Temporal and spatial expression and subcellular localization of OsDHHC1 gene in rice were clarified, and what role it plays in the resposnses to stresses was also elucidated. The result indicated that OsDHHC1 is the other alterative-splicing mode of Os02g0819100 in rice, but OsDHHC1 plays the key role in rice plants. Bioinformatics analysis showed that the promoter of the gene had many cis acting elements related stress such as light, cold, hot, drought, salt and ABA. Q-PCR analysis revealed that the expression of the gene increased 45 times after ABA treatment compared with no treatment, which indicated that ABA stress could induce OsDHHC1’s transcription. GFP fusion protein in onion epidermal cell transient expression analysis showed OsDHHC1 and Os02g0819100 protein localized in the plasmid membrane. The results of pOsDHHC1::GUS showed that the cloned 1639bp sequence in the upstream of OsDHHC1 gene possessed a complete promoter activity and specificity of temporal and spatial gene expression patterns, which controled the high level expression of OsDHHC1 in embryo and veins.
     (3) The sulfur acyltransferase activity of OsDHHC1 and Os02g0819100 was demonstrated by two ways of recombinant proteins in vitro and yeast morphology. By using of pColdTF vector, the recombinant prokaryotic expression vector pColdTF-OsDHHC1 and pColdTF-Os02g0819100 were successfully constructed and two purified soluble recombinant proteins were got. With biotin (biotin-HPDP) labeling, we confirmed the existence of S-acyltransferase activity in the two proteins. Furthermore, by using PYES263-OsDHHC1 and PYES263-Os02g0819100 to transform the aim gene into sulfur acyltransferase-deleted yeast strain ak1△mutant, we improved the S-acyltransferase activity by investigating the phenotype changes of transgenic yeast cell. All these results indicated that OsDHHC1 and Os02g0819100 had sulfur acyltransferase activity.
     (4) By constructing over-expression vector pCAMBIA1301-OsDHHC1, pCAMBIA1301-Os02g0819100 and the interference vector OsDHHC1-RNAi18 to transform rice Zhonghua 11, stable transgenic lines were generated through Agrobacterium-mediated transformation. Homozygous of overexpressed OsDHHC1 transgenic plants displayed that the number of tillers increased 23%-31% and seed yield increased by 9.6% per acre compared with wild type. However, there's no a noticeable change in the number of tillers and seed yield in overexpressed Os02g0819100 or RNAi transgenic plants. In addition, we constructed PEGAD- OsDHHC1 expression vectors and transformed it into Arabidopsis, and transgenic homozygous Arabidopsis were consistent with the above in the phenotype of tillers and seed yield. So it seemed that OsDHHC1 had the function to augment crop production through increasing tillering (branch) and controlling ideal plant architecture.
     (5) We have illustrated that the function domain of OsDHHC1 is the motif which contains DHHC zinc finger fragment. In order to confirm its function domain, OsDHHC1 gene was divided into three sections: OsDHHC1A, OsDHHC1B and OsDHHC1C, and then the three fragments accompanied with OsDHHC1 were cloned into the expression vector PEGAD and transformed into Arabidopsis, respectively. The phenotype showed that only OsDHHC1A homozygous transgenic plants had a 3-6 folds increase in the numbers of branches compared with wild-type, which was very similar with the transgenic Arabidopsis overexpressing the full-length CDS of OsDHHC1. This result indicated that the motif which contains DHHC zinc finger fragment was OsDHHC1's function domain.
     In conclusion, we first cloned a novel of DHHC type zinc finger protein gene OsDHHC1 made a systematic study on its function in this project. Firstly, OsDHHC1 was the other alternative splicing mode of Os02g0819100 gene in rice, importantly, OsDHHC1 played the key role in regulating number of tillers, constructing ideal architecture and increasing seed yield in rice. Secondly, OsDHHC1 had high expression level in the embryo and veins in rice and its transcription was induced by ABA. Thirdly, analysis of recombinant proteins in vitro and yeast morphology indicated OsDHHC1 had sulfur acyltransferase activity. Finally, the different phenotypes of three types of transgenic Arabidopsis which overexpressed three different truncated fragments of OsDHHC1 revealed that the function domain of OsDHHC1 is the motif which contains DHHC zinc finger fragment. Therefore, researches on the function of OsDHHC1 gene in rice may provide the theory basis and guidance for further constructing the ideal architecture to increase crop yields.
引文
[1]周畅,李麓芸. C2H2型锌指蛋白的研究进展.生命科学研究, 2004, 8(3): 215-220
    [2]赵楠,赵飞,李玉花.锌指蛋白结构及功能研究进展.生物技术通讯, 2009,20(1): 131-134
    [3] Miller J, Mclachlan A D, Klug A, et al. Repetitive zinc-binding domains in the protein transcription factorⅢA from Xenopus cocytes. European Molecular Biology Organization Reports, 1985, 4(6): 1609-1614
    [4] Lee M S, Gippen G P, Soman K V, et a1. Three-dimensional golufion structure of a single zinc finger DNA-binding domain. Science, 1989, 245: 635-637
    [5]余晓丹,沈晓明.锌指蛋白结构和功能研究进展.国外医学(卫生学分册), 2004, 31(3): 171-175
    [6] Frankel A D, Pabo C O. Fingering too many proteins. Cell, 1988, 53(5): 675
    [7] Krishnal S S, Majumdarl I, Grishin N V. Structural classification of zinc fingers. Nucleic Acids Research, 2003, 31(2): 532-550
    [8] Berg J M, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science, 1996, 271: 1081-1085
    [9] Wolfe S A, Nekhdova L, Pabo C O. DNA recognition by Cys2His2 zinc finger proteins. Annual Review of Biophysics and Biomolecular Structure, 2000, 29: 183-212
    [10] Elred-Eficksen M, Rould M A, Nekludova L, et al. Zif268 protein-DNA complex refined at 1.6A: a model system for understanding zinc finger-DNA interactions. Structure, 1996, 4(10): l171-1180
    [11] Huang J, Sun S J, Xu D Q, et al. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochemical and Biophysical Research Communications, 2009, 389: 556-561
    [12] Sun S J, Guo S Q, Yang X, et al. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. Journal of Experimental Botany, 2010, 61(10): 2807-2818
    [13] McBryant S J, Vcldhoen N, Gedulin B, et a1. Interaction of the RNA binding fingers of Xenopus transcription factorⅢA with specific regions of 5Sribosomal RNA. Journal of Molecular Biology, 1995, 248(1): 44
    [14] Lee B M, De Guzman R N, Turner B G, et a1. Dynamical behavior of the HIV-1 nucleocapsid protein. Journal of Molecular Biology, 1998, 279: 633-649
    [15] Pomeranz M C, Cyrus H, Lin P C, et al. The Arabidopsis tandem Zinc finger protein AtTZF1 traffics between the nucleus and cytoplasmic foci and binds both DNA and RNA. Plant Physiology, 2010, 152: 151-165
    [16] Lutz W, Burritt M F, Nixon D E, et al. Zinc increases the activity of vitamin D-dependent promoters in osteoblasts. Biochemical and Biophysical Research Communications, 2000, 271(1): 1-7
    [17] Yang X, Karsenty G. Transcription factors in bone: developmental and pathological aspects. Trends in Molecular Medicine, 2002, 8(7): 340-345
    [18] Maeda M, Kubo K, Nishi T, et al. Roles of gastric GATA DNA-binding proteins. The Journal of Experimental Biology, 1996, 199: 513-520
    [19] Thiel G, Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. Journal of Cell Physiology, 2002, 193(3): 287-292
    [20] Yamaji N, Huang C F, Nagao S, et al. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. The Plant Cell, 2009, 21: 3339-3349
    [21] Mackay J P, Crossley M. Zinc fingers are sticking together. Trends in Biochemical Sciences, 1998, 23(1): 1-4
    [22] Freyd G, Kim S K, Horvitz H R. Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. Nature, 1990, 344(6269): 876-879
    [23] Kadrmas J L, Beckerle M C. The LIM domain: from the cytoskeleton to the nucleus. Nature Reviews Molecular Cell Biology, 2004, 5(11): 920-931
    [24] Bienz M. The PHD finger, a nuclear protein-interaction domain. Trends in Biochemical Sciences, 2006, 31(1): 35-40
    [25] Schindler U, Beckmann H, Cashmore A R. HAT3.1, a novel Arabidopsis homeodomain protein containing a conserved cysteine-rich region. The Plant Journal, 1993, 4(1):137-150
    [26] Lovering R, Hanson I M, Borden K L, et al. Identification and preliminary characterization of a protein motif related to the zinc finger. The Proceedings of the National Academy of Sciences (USA), 1993, 90(6): 2112-2116
    [27] Wang L J, Pei Z Y, Tian Y C, et al. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Molecular Plant- MicrobeInteractions, 2005, 18(5): 375-384
    [28] Han X, Tang J F, Li Y F, et al. STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. The Plant Journal, 2009, 59: 789-801
    [29] Mitchell D A, Vasudevan A, Linder M E, et al. Protein palmitoylation by a family of DHHC protein S-acyltransferases. Journal of Lipid Research, 2006, 47(6): 1118-1127
    [30] Fukata Y, Iwanaga T, Fukata M. Systematic screening for palmitoyl transferase activity of the DHHC protein family in mammalian cells. Methods, 2006, 40: 177-182
    [31] Fernandez-Hernando C, Fukata M, Bernachtez P N, et al. Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. Cell Biology, 2006, 174(3): 369-377
    [32]秦静,于士颜,李锦军.蛋白质棕榈酰化修饰及其研究方法.生命的化学, 2008, 28(5): 595-604
    [33] Hou H T, Peter A G, Meiringer C, et al. Analysis of DHHC acyltransferases implies overlapping substrate specificity and a two-step reaction mechanism. Traffic, 2009, 10: 1061-1073
    [34] Hartman P. DHHC domain. http://en.wikipedia.org/wiki/DHHC_domain, 2011-4-13
    [35] Roth A F, Feng Y, Chen L, et al. Cysteine-rich domain protein Akr1p is a palmitoyl transferase. Cell Biology, 2002, 159: 23-28
    [36] Jessica E S, Marissa J S, Monica A S, et al. The vacuolar DHHC-CRD protein Pfa3p is a protein acyltransferase for Vac8p. Cell Biology, 2005, 170(7): 1091-1099
    [37] Drisdel R C, Alexander J K, Sayeed A, et al. Assays of protein palmitoylation. Methods, 2006, 40:127-134
    [38] Dietrich L E P, Ungerman C. On the mechanism of protein palmitoylation. European Molecular Biology Organization Reports, 2004, 5(11):1053-1057
    [39] Tsutsumi R, Fukata Y, Fukata M. Discovery of protein-palmitoylating enzymes. Pflügers Archiv European Journal of Physiology , 2008, 456:1199-1206
    [40] Swarthout J T, Lobo S, Greentree W K, et al. DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H-and N-Ras. The Journal of Biological Chemistry, 2005, 280(35): 31141-31148
    [41] Huang K, Sanders S, Singaraja R, et al. Neuronal palmitoyl acyl transferases exhibit distinctsubstrate specificity. The Journal of Federation of AmericanSocieties for Experimental Biology, 2009, 23: 2605-2615
    [42] Resh M D. Use of analogs and inhibitors to study the functional significance of protein palmitoylation. Methods, 2006, 40: 191-197
    [43] Greaves J, Chamberlain L H. S-acylation by the DHHC protein family. Biochemical Society Transactions, 2010, 38: 522-524
    [44] Linder M E, Deschenes R J. Palmitoylation: policing protein stability and traffic. Nature Reviews Molecular Cell Biology, 2007, 8: 74-84
    [45] Budde C, Schoenfish M J, Linder M E, et al. Purification and characterization of recombinant protein acyltransferases. Methods, 2006, 40(2): 143-150
    [46] Hemsley P A, Kemp A C, Grierson C S. The TIP growth defective1 S-Acyl transferase regulates plant cell growth in Arabidopsis. The Plant Cell, 2005, 17: 2554-2563
    [47] Huang K, Yanai A, Kang R, et al. Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron, 2004, 44: 977-986
    [48] Xiang J, Lin J Z, Zhou B, et al. A DHHC-type zinc finger protein gene regulates shoot branching in Arabidopsis. African Journal of Biotechnology, 2010, 9(37): 7759-7766
    [49] Hemsley P A, Grierson C S. Multiple roles for protein palmitoylation in plants. Cell, 2008, 13: 295-302
    [50]陈晨.鹰嘴豆锌指蛋白基因ZF1、ZF2及ZF3的克隆与表达分析: [南京农业大学硕士论文].南京:南京农业, 2009, 1-34
    [51] Black D L. Mechanisms of altemative pre-messenger RNA splicing. Annual Review of Biochemistry, 2003, 72: 291-336
    [52] Giblert W. Why genes in pieces? Nature, 1978, 271(5645): 501
    [53] Brett D, Pospisil H, Vacarcel J, et al. Alternative splicing and genome complexity. Nature Genetics, 2002, 30(1): 29-30
    [54] Sharp P A. Split genes and RNA splicing. Cell, 1994, 77(6): 805-815
    [55] Modrek B, Lee C. A genomic view of alternative splicing. Nature Genetics, 2002, 30(1): 13-19
    [56] Kampa D, Cheng J, Kapranov P, et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Geneome Research, 2004, 14(3): 331-342
    [57]杨兆林.昆虫cac基因RNA编辑与选择性剪切研究: [浙江大学硕士论文].杭州,浙江大学, 2008, 1-36
    [58] Sussex I M, Kerk N M. The evolution of plant architecture. Current Opinion in Plant Biology, 2001, 4: 33-37
    [59] Wang Y H, Li J Y. Molecular basis of plant architecture. Annual Review of Plant Biology, 2008, 59: 253-279
    [60] Du L M, Mao C Z, Mao W H. Molecular mechanism of shoot branching in plants. Chinese Journal of Biochemistry and Molecular Biology, 2008, 24(2): 120-126
    [61] Schumacher K, Schmitt T, Rossberg M, et al. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. The Proceedings of the National Academy of Sciences (USA), 1999, 96(1): 290-295
    [62] Schmitz G, Tillmann E, Carriero F, et al. The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. The Proceedings of the National Academy of Sciences (USA), 2002, 99(2): 1064-1069
    [63] Greb T, Clarenz O, Schafer E, et al. Molecular analysis of the Lateral Suppressor gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes & Development, 2003, 17(9): 1175-1187
    [64] Keller T, Abbott J, Moritz T, et al. Arabidopsis Regulator of Axillarymeristems1 controls a leaf axil stem cell niche and modulates vegetative development. The Plant Cell, 2006, 18 (3): 598-611
    [65] Talbert P B, Adler H T, Parks D W, et al. The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development, 1995, 121(9): 2723-2735
    [66] Tantikanjana T, Yong J W, Letham D S, et al. Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes & Development, 2001, 15 (12): 1577-1588
    [67] Reintanz B, Lehnen M, Reichelt M, et al. Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. The Plant Cell, 2001, 13(2): 351-367
    [68] Skirpan A, Culler A H, Gallavotti A, et al. BARREN INFLORESCENCE2 interaction with ZmPIN1a suggests a role in auxin transport during maize inflorescence development. Plant Cell Physiology, 2009, 50(3): 652-657
    [69] Li X, Qian Q, Fu Z, et al. Control of tillering in rice. Nature, 2003, 422 (6932): 618-621
    [70] Komatsu K, Maekawa M, Ujiie S, et al. LAX and SPA: major regulators of shootbranching in rice. The Proceedings of the National Academy of Sciences (USA), 2003, 100(20): 11765-11770
    [71] Jiao Y Q, Wang Y H, Xue D W, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 2010, 42(6): 541-544
    [72] Miura K, Ikeda M, Matsubara A, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics, 2010, 42(6): 545-548
    [73] Beveridge C A, Ross J J, Murfet I C. Branching in pea action genes RMS3 and RMS4. Plant Physiology, 1996, 110(3): 859-865
    [74] Sorefan K, Booker J, Haurogne K, et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes & Development, 2003, 17(12): 1469-1474
    [75] Bennett T, Sieberer T, Willett B, et al. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Current Biology, 2006, 16: 553-563
    [76] Stirnberg P, Chatfield S P, Ottoline Leyser H M. AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis. Plant Physiology, 1999, 121(3): 839-847
    [77] Aguilar-Mart?ínez J A, Poza-Carrión C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. The Plant Cell, 2007, 19: 458-472
    [78] Catterou M, Dubois F, Smets R, et al. Hoc: An Arabidopsis mutant overproducing cytokinins and expressing high in vitro organogeniccapacity. The Plant Journal, 2002, 30 (3): 273-287
    [79] Napoli C. Highly branched phenotype of the petunia dad1-1 mutant is reversed by grafting. Plant Physiology, 1996, 111(1): 27-37
    [80] Simons J L, Napoli C A, Janssen B J, et al. Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant Physiology, 2007, 143: 697-706
    [81] Tantikanjana T, Yong J W H, Letham D S, et al. Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes & Development, 2001, 15: 1577-1588
    [82] Foo E , Turnbull C G, Beveridge C A. Long-distance signaling and the control of branching in the rms1 mutant of pea. Plant Physiology, 2001, 126(1): 2203-2209
    [83] Arite T, Iwata H, Ohshima K, et al. DWARF10, an RMS1/MAX4/DAD1ortholog, controls lateral bud outgrowth in rice. The Plant Journal, 2007, 51(6): 1019-1029
    [84] Ishikawa S, Maekawa M, Arite T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiology, 2005, 46(1): 79-86
    [85] Zou J, Zhang S, Zhang W, et al. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. The Plant Journal, 2006, 48(5): 687-698
    [86] Takeda T, Suwa Y, Suzuki M, et al. The OsTB1 gene negatively regulates lateral branching in rice. The Plant Journal, 2003, 33(3): 513-520
    [87] Mao C, Ding W, Wu Y, et al. Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytologist, 2007, 176(2): 288-298
    [88] Booker J, Sieberer T, Wright W, et al. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3P4 to produce a carotenoid2 derived branch-inhibiting hormone. Development Cell, 2005, 8(3): 443-449
    [89] Jiang B B, Miao H B, Chen S M, et al. The Lateral Suppressor-Like Gene, DgLsL, Alternated the Axillary Branching in Transgenic Chrysanthemum (Chrysanthemum×morifolium) by Modulating IAA and GA Content. Plant Molecular Biology Reports, 2010, 28:144-151
    [90] Yuan L H, Pan J S, Wang G, et al. The Cucumber Lateral Suppressor gene (CLS) is functionally associated with axillary meristem initiation. Plant Molecular Biology Reports, 2010, 28: 421-429
    [91] Schmitz G, Theres K. Shoot and inflorescence branching. Current Opinion in Plant Biology, 2005, 8: 506-511
    [92] Sato Y, Hong S K, Tagiri A, et al. A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis. The Proceedings of the National Academy of Sciences (USA), 1996, 93: 8117- 8122
    [93] Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386: 485-488
    [94] Lukens L, Doebley J. Molecular evolution of the teosinte branched gene among maize and related grasses. Molecular Biology Evolution, 2001, 18: 627-638
    [95] Hubbard L, McSteen P, Doebley J, Hake S. Expression patterns and mutant phenotype of teosinte branched 1 correlate with growth suppression in maize and teosinte. Genetics, 2002, 162: 1927-1935
    [96] Muller D, Schmitz G, Theres K. Blind homologous R2R3 Myb genes control thepattern of lateral meristem initiation in Arabidopsis. The Plant Cell, 2006, 18 (3): 586-597
    [97] Schmitz G, Theres K. Genetic control of branching in Arabidopsis and tomato. Current Opinion in Plant Biology, 1999, 2: 51-55
    [98] Ritter M K, Padilla C M, Schmidt R J. The maize mutant barren stalk1 is defective in axillary meristem development. American Journal of Botany, 2002, 89(2): 203-210
    [99] Gallavotti A, Zhao Q, Kyozuka J, Meeley R B, Ritter M K, Doebley J F, Pe M E, Schmidt R J. The role of barren stalk1 in the architecture of maize. Nature, 2004, 432: 630-635
    [100] Oikawa T, Kyozuka J. Two-Step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. The Plant Cell, 2009, 21: 1095-1108
    [101] Hasson A, Plessis A, Blein T, et al. Evolution and diverse roles of the Cup-shaped Cotyledon genes in Arabidopsis leaf development. The Plant Cell, 2011, 110: 118-126
    [102] Raman S, Greb T, Peaucelle A, et al. Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana. The Plant Journal, 2008, 55:65-76
    [103] Leyser O. Regulation of shoot branching by auxin. Trends in Plant Science, 2003, 8 (11): 1360-1385
    [104] Li P J, Wang Y H, Qian Q, et al. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Research, 2007, 17: 402-410
    [105] Sato S S, Mori H. Control of outgrowth and dormancy axillary buds. Plant Physiology, 2001, 127(4): 1405-1413
    [106] Beveridge C A, Weller J L, Singer S R, et al. Axillary meristem development Budding relationships between networks controlling flowering, branching and photoperiod responsiveness. Plant Physiology, 2003, 131(3): 927-934
    [107] Schachtschabel D, Boland W. Strigolactones: the first members of a new family of“shoot branching hormones”in plants? Chemistry and Biochemistry, 2009, 10: 221-223
    [108] Lincoln C, Britton J H, Estelle M. Growth and development of the axr1 mutants of Arabidopsis. The Plant Cell, 1990, 2: 1071-1080
    [109] Stirnberg P, Chatfield S P. Leyser HM. AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis. Plant Physiology, 1999, 121:839-847
    [110] Rogg L E, Lasswell J, Bartel B. A gain-of-function mutation in IAA28 suppresses lateral root development. The Plant Cell, 2001, 13: 465-480
    [111] McAvoy R, Khodakovskaya M, Li Y, Wu Y, Xue S. Phenotypic characterization of petunia plants expressing an indoleacetic acid (iaa)-lysine synthetase transgene driven by a shoot specific promoter. International Society for Horticultural Science Acta Horticulturae, 2002, 625: 379-385
    [112] Clin M G. Concepts and terminology of apical dominance. American Journal of Botany, 1997, 84(9): 1064-1069
    [113] Beveridge C A, Ross J J, Murfet C. Branching mutant rms-2 in pisum sativum’crafting studies and endogenous indole-3-acetic acid levels. Plant Physiology, 1994, 104: 953-959
    [114] Pan W L, Hopkins J A G , Jackson W A. Aluminum inhibition of shoot lateral branches of Glycine max and reversal by exogenous cytokinin. Plant and Soil, 1989, 120: 1-9
    [115] Stirnberg P, van De Sande K, Leyser H M. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development, 2002, 129 (5): 1131-1141
    [116] Beveridge C A. Long-distance signalling and a mutational analysis of branching in pea. Journal of Plant Growth Regulation, 2000, 32(2): 193-203
    [117] Lazar G, Goodman H M. MAX, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis. The Proceedings of the National Academy of Sciences (USA), 2006, 103(2): 472-476
    [118] Hellmann H, Estelle M. Plant development: regulation by protein degradation. Science, 2002, 297(5582): 793-797
    [119] Johnson X, Brcich T, Dun E A , et al. Branching genes are conserved across species genes controlling a novel signal in pea are regulated by other long-distance signals. Plant Physiology, 2006, 142(3): 1014-1026
    [120] Zou J, Zhang S, Zhang W, et al. The rice HIGH TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. The Plant Journal, 2006, 48(5): 687-698
    [121] Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455: 195-200
    [122] Gomez-Roldan V, Fermas S, Brewer P B, et al. Strigolactone inhibition of shoot branching. Nature, 2008, 455:189-193
    [123] Ferguson B J, Beveridge C A. Roles for auxin, cytokinin, and strigolactone inregulating shoot branching. Plant Physiology, 2009, 149: 1929-1944
    [124] Brewer P B, Dun E A, Ferguson B J, et al. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiology, 2009, 150: 482-493
    [125] Rameau C. Strigolactones, a novel class of plant hormone controlling shoot Branching. Comptes Rendus Biologies, 2010, 333: 344-349
    [126] Liang J L, Zhao L J, Challis R, et al. Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum). Journal of Experimental Botany, 2010, 61 (11): 3069-3078
    [127] Akiyama K, Hayashi H. Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Annals Botany, 2006, 97(6): 925-931
    [128] Lopez-Raez J A, Charnikhova T, Gomez-Roldan V, et al. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytologist, 2008, 178(4): 863-874
    [129] Crawford S, Shinohara N, Sieberer T, et al. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development, 2010, 137: 2905-2913
    [130] Booker J, Auldridge M, Wills S, et al. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Current Biology, 2004, 14 (14): 1232-1238
    [131] Chen C Y, Zou J H, Zhang S Y, et al. Strigolactones are a new-defined class of plant hormones which inhibit shoot branching and mediate the interaction of plant-am fungi and plant-parasitic weeds. Science in China Series C: Life Sciences , 2009, 52(8): 693-700
    [132]程式华,曹立勇,陈深广等.后期功能型超级杂交稻的概念及生物学意义中国水稻科学, 2005, 19(3): 280- 284.
    [133] Li S B, Qian Q, Fu Z M, et al. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. The Plant Journal, 2009, 58: 592-605
    [134] Lin H, Wang R X, Qian Q, et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. The Plant Cell, 2009, 21: 1512–1525
    [135]李培金,曾大力,刘新仿等.水稻散生突变体的遗传和基因定位研究.科学通报, 2003, 48: 2271 -22741
    [136] Yu B S, Lin Z W, Li H X, et al. TAC1, a major quantitative trait locuscontrolling tiller angle in rice. The Plant Journal, 2007, 52: 891-898
    [137] Luscombe N M, Greenbaum D, Gerstein M. What is bioinformatics? An introduction and overview. 2001, 1: 83-100
    [138] Lescot M, Dehais P, Thijs G, et al. Plant CARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30(1): 325-327
    [139] Zou Z, Shin S W, Alvarez K S, et al. Mosquito RUNX4 in the immune regulation of PPO gene expression and its effect on avian malaria parasite infection. The Proceedings of the National Academy of Sciences (USA), 2008, 105(47): 18454-18459
    [140]邓克勤.植物凝集素类受体蛋白激酶LecRK-b2的生物信息学分析及基因功能研究: [湖南大学博士学位论文].长沙:湖南大学, 2009, 16-117
    [141]喻达时.拟南芥CK1A基因功能初步分析: [湖南大学硕士学位论文].长沙:湖南大学, 2009, 10-43
    [142]汪启明.拟南芥DBB亚家族基因表达的光调控和DBB1a基因功能分析: [湖南大学博士学位论文].长沙:湖南大学, 2009, 10-102
    [143]彭帅.鱼腥草HMGR基因片段的克隆及种质资亲缘关系的ISSR分析: [湖南大学硕士学位论文].长沙:湖南大学, 2007, 1-45
    [144]刘实.拟南芥菜CIPK1基因功能的初步研究: [湖南大学硕士学位论文].长沙:湖南大学, 2007, 5-37
    [145]黄绿红.拟南芥光周期调控开花突变体的筛选及基因和蛋白质的鉴定分析: [湖南大学硕士学位论文].长沙:湖南大学, 2007, 3-30
    [146]萧小鹃.植物发育突变体的蛋白质组学研究: [湖南大学博士学位论文].长沙:湖南大学, 2009, 10-102
    [147]马毅.拟南芥AKN1基因的克隆、定位及功能分析: [湖南大学硕士学位论文].长沙:湖南大学, 2007, 4-43
    [148]屠小菊.拟南芥DBB1α基因热响应的分子机理及原核表达: [湖南大学硕士学位论文].长沙:湖南大学, 2010, 3-35
    [149]赵晓英.蓝光抑制拟南芥下胚轴伸长和诱导种子萌发的生化分析: [湖南大学博士学位论文].长沙:湖南大学, 2006, 10-112
    [150]杨粤军.拟南芥隐花素蛋白质组学研究: [湖南大学博士学位论文].长沙:湖南大学, 2007, 10-112
    [151]李妍.光和赤霉素对拟南芥光形态建成及木质素合成的影响: [湖南大学硕士学位论文].长沙:湖南大学, 2008, 1-37
    [152]贺热情.油菜突变体库构建与激素反应基因克隆分析: [湖南大学硕士学位论文].长沙:湖南大学, 2009, 1-40
    [153]常丽.赤霉素氧化酶基因GA2ox1的克隆、原核表达及纯化: [湖南大学士学位论文].长沙:湖南大学, 2009, 1-28
    [154]袁昕.拟南芥AtCPK30基因的表达模式与功能分析: [湖南大学硕士学位论文].长沙:湖南大学, 2009, 2-33
    [155]林建中.拟南芥4CL3基因在类黄酮合成代谢中的功能分析: [湖南大学博士学位论文].长沙:湖南大学, 2009, 10-132
    [156] Krogh A, Larsson B, von Heijne G, et al. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. Briefings in Bioinformatics, 2001, 305 (3): 567-580
    [157] Meadus1 W J. A semi-quantitative RT-PCR method to measure the in vivo effect of dietary conjugated linoleic acid on porcine muscle PPAR gene expression. Biological Procedures Online , 2003, 5(1): 20-28
    [158] Marone M, Mozzetti S, Ritis D D, et al. Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biological Procedures Online, 2001, 3(1): 19-25
    [159] Invitrogen Company. Gateway? Cloning Technology. www.lifetech.com/ gateway, 2011-4-15
    [160] Gutierrez L, Mauriat M, Pelloux J, et al. Towards a systematic validation of references on real-time RT-PCR. The Plant Cell, 2008, 20: 1734-1735
    [161] Udvardi M, Czechowski T, Scheible W R. Eleven golden rules of real-time quantitative PCR. The Plant Cell, 2008, 20: 1736-1737
    [162] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thalina. Plant J, 1998, 16(6): 735-743
    [163] Cutler S R, Ehrhardt D W, Griffitts J S, et al. Random GFP: cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. The Proceedings of the National Academy of Sciences (USA), 2000, 97(7): 3718-3723
    [164] Wagner D, Tepperman J M, Quail P H. Overexpression of phytochrome B induces a short hypocotyl phenotype in transgenic Arabidopsis. The Plant Cell, 1991, 3: 1275-1288
    [165] Reed J W, Nagatani A, Elich T D, et al. Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiology, 1994, 104: 1139-1149
    [166] Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryzasativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 1994, 6(2): 271-282
    [167] Nishimura A, Aichi I, Matsuoka M. A protocol for Agrobacterium-mediated transformation in rice. Nature Protocols, 2007, 6 (1): 2796-2802
    [168] Ozawa K. Establishment of a high efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.). Plant Science, 2009, 176: 522-527
    [169] Jefferson R A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reports, 1987, 5: 387-450

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700