盐地碱蓬甜菜红素的鉴定及其生物合成的生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐地碱蓬在滨海的潮间带或者部分涝洼积水地带在整个生长期植株地上部分皆为紫红色,而在地势较高或者距离海边较远的地方植株则呈现绿色。作为一种真盐生植物,盐地碱蓬的耐盐机理已得到了比较广泛的研究。但是,盐地碱蓬红色素为哪一类色素?这类色素的特性及生物学意义如何等至今尚未见报道。本课题主要是对盐地碱蓬红色素进行分离鉴定,并对影响红色素合成的主要环境因子以及红色素合成的生理机制进行深入研究。
     研究结果表明:盐地碱篷红色素溶于水而不溶于纯有机溶剂、在酸性条件下稳定且为红色、在碱性条件下不稳定且为黄色、最大吸收峰为538 nm,根据这些特性我们初步确定该类红色素为甜菜红素(Betacyanins)。盐地碱篷甜菜红素在体外对高温、强光、碱和氧化剂敏感,而在低温、黑暗、酸性环境和没有氧化剂的条件下稳定。盐地碱篷甜菜红素体外清除超氧阴离子自由基的能力不如VC,而清除羟自由基的能力远高于VC。
     光照抑制盐地碱蓬体内甜菜红素合成,黑暗、低温、高盐环境有利于盐地碱蓬甜菜红素积累,其中萌发期黑暗处理是诱导甜菜红素积累的最重要因子之一。盐地碱蓬种子暗培养3天得到的幼苗是紫红色,光照条件下培养3天得到的幼苗则是绿色。
     用不同浓度的H_2O_2浇灌盐地碱蓬种子、喷洒5天苗龄盐地碱蓬幼苗的叶片、注射10天苗龄幼苗的叶片,测定其对盐地碱蓬甜菜红素含量的影响。结果显示不同方式的H_2O_2处理对盐地碱蓬不同器官的甜菜红素含量影响明显不同,H_2O_2浇灌后根中的H_2O_2含量增加最大,而叶片中甜菜红素含量增加最明显,但是叶片中的H_2O_2含量和根系中的甜菜红素含量增加却不显著。H_2O_2喷雾和注射虽然能明显提高叶片中的H_2O_2含量,但是对叶片甜菜红素含量却没有显著影响。器官中的H_2O_2含量和甜菜红素含量不成正比,叶片甜菜红素含量主要受到根系H_2O_2含量而不是叶片和茎H_2O_2含量的影响。因此,我们得出结论:H_2O_2浇灌引起的过氧化胁迫信号首先被根系感知,然后根系合成了某种可以传递到叶片并直接诱导甜菜红素合成的物质。
     培养基中添加不同浓度的Ca~(2+)可以促进暗培养条件盐地碱蓬甜菜红素含量,钙螯合剂EGTA、离子通道抑制剂LaCl_3、CaM蛋白抑制剂CPZ和W7都可以抑制黑暗诱导的甜菜红素积累,但是这些处理对光培养条件下甜菜红素含量没有影响。黑暗和光照条件下盐地碱蓬甜菜红素含量都随内源钙的降低而降低。虽然CPZ和W7对光照条件CaM蛋白活性有抑制作用,但对光照条件下甜菜红素含量却没有明显影响。这些研究结果说明外源Ca~(2+)及CaM系统只参与了黑暗诱导的甜菜红素合成过程,内源钙同时参与了黑暗和光照条件下盐地碱蓬甜菜红素的合成过程。
     在盐地碱蓬体内,酪氨酸酶活性只在黑暗条件下培养得到的明显积累甜菜红素的幼苗中检测到,而在光照条件下培养得到的幼苗中则检测不到,黑暗似乎是保持酪氨酸酶活性必需的条件。而且,当黑暗条件下培养得到的紫红色芽苗转入光照条件下后,酪氨酸酶的活性伴随着甜菜红素含量下降而逐渐降低。这说明酪氨酸酶参与了黑暗诱导的盐地碱蓬甜菜红素的合成。光照和黑暗调节盐地碱蓬甜菜红素合成和降解是通过调控酪氨酸酶活性实现的。
     盐地碱蓬幼苗中CRY2蛋白在黑暗条件下积累,在蓝光条件下降解,这不仅和蓝光条件下甜菜红素含量下降的趋势一致,而且还和甜菜红素合成的关键酶酪氨酸酶的活性降低一致,这说明蓝光条件下CRY2蛋白在甜菜红素的降解过程中起着非常重要的作用,CRY2蛋白的降解是启动这种调控作用的关键。
As a halophyte, physiological and molecular responses of Suaeda salsa to salinity stress have been extensively studied. But nothing is known about the identification and the biosynthesis regulation of the red pigments in S. salsa. This paper focuses on the identification of the red pigments and the effects of abiotic stressors on their accumulation in S. salsa.
     The results showed that these red pigments were insoluble in organic solvents but free in water, the pigments were red-violet and stable under acidic condition while yellow and unstable under alkaline condition, and they absorbed the highest value at wavelength near 538 nm. These results suggested that these red pigments in S. salsa are not anthocyanins but betacyanins.
     The betacyanins extracted from S. salsa were sensitive to high temperature, high intensity of light, alkali and oxidant in vitro, and keep stable under low temperature, dark, acidic and free of oxidants conditions. The scavenging superoxide (O2-) ability of the betacyanins from S. salsa was lower than that of vitamin C, while the scavenging hydroxyl radical (OH·) ability of the betacyains was much higher than that of vitamin C in vitro.
     Light suppressed betacyanin accumulation and enhanced their decomposition in vivo. Darkness, low temperature and high salinity enhanced betacyanin accumulation, and darkness at the germination phase is one of the most important environmental factors for the betacyanin accumulation in S. salsa.
     Seeds, 5-d and 10-d old seedlings of C_3 halophyte S. salsa were watered, sprayed and infiltrated with 0, 0.10%, 0.33% and 1.00% H_2O_2 solution to examine whether H_2O_2 is involved in the betacyanin accumulation. H_2O_2 treatments led to the most significant betacyanin accumulation in the shoots of S. salsa seedlings when seeds were watered with H_2O_2 solution. The increase of betacyanin content was the highest and that of H_2O_2 content was the lowest in leaves, while the increase of betacyanin content was the lowest and that of H_2O_2 content was the highest in roots of seedlings obtained from seeds watered with H_2O_2 solution. When leaves of 5-d and 10-d old seedlings were sprayed and infiltrated with H_2O_2 solution, the H_2O_2 content was enhanced significantly, but the increase of betacyanin content was not notable in leaves, and the content of betacyanin and H_2O_2 was also at a lower level in roots. The H_2O_2 content in organs of S. salsa seedlings was not proportional to betacyanin content, and the betacyanin accumulation in leaves was correlated with the H_2O_2 production in roots rather than that in leaves and stems. These results suggested that the oxidative stress signal leading to betacyanin production in H_2O_2 treatments may be perceived by roots initially, then the signal was transferred to leaves; the signal transduction was performed and betacyanin accumulation was induced in leaves of S. salsa.
     Seeds of S. salsa were cultured both in the dark and light for three days. Addition of Ca~(2+) in the 1/2 MS nutrient solution promoted betacyanin accumulation in the dark, and Ca~(2+ depletion by EGTA suppressed the darkness-induced betacyanin accumulation in shoots of S. salsa. Ca2+ channel blocker (LaCl_3) also inhibited the darkness-induced betacyanin accumulation. The highest activity of CaM and the maximum betacyanin content decreased by 51% and 45% in shoots of S. salsa seedlings treated with a potent CaM antagonist, chlorpromazine (CPZ), in the dark, respectively. Furthermore, another CaM antagonist, W7, also inhibited the activity of CaM and the dark-dependent betacyanin accumulation, whereas its less active structural analog, W5, had little effect on the responses to dark of S. salsa. These results suggest that Ca~(2+), Ca~(2+)-regulated ion channels and CaM play an important role in the darkness-induced betacyanin accumulation in shoots of C_3 halophyte S. salsa.
     Seeds of the halophyte S. salsa were cultured in the dark for three days and betacyanin accumulation was induced significantly in cotyledons of S. salsa seedlings. Accumulated betacyanin in cotyledons of the dark-grown seedlings decomposed with time in light. As the betacyanin content declined, the hydroxylation and oxidation activity of tyrosinase extracted from cotyledons of the dark-grown seedlings decreased with time in light. The apparent molecular mass of tyrosinase in cotyledons of S. salsa seedlings was about 60 kDa estimated by SDS-PAGE, enzyme activity staining and Western blotting. Furthermore, the tyrosinase only synthesized in the cotyledons of dark-grown S. salsa seedlings, and declined with time in light, which was paralleled by the decreases of tyrosinase activity and betacyanin content in light. This result suggests that the specific tyrosinase is positively correlated with betalain biosynthesis, and betacyanin biosynthesis is induced by dark via synthesis of tyrosinase in S. salsa.
     Seeds of the halophyte S. salsa were cultured in 24 h dark and 14 h blue light/10 h dark to examine the role of blue light and the blue-light absorbing photoreceptor cryptochrome 2 (CRY2) in betacyanin accumulation, hypocotyl elongation and cotyledon opening in S. salsa seedlings. Darkness significantly promoted betacyanin accumulation and hypocotyl elongation, but inhibited cotyledon opening. Blue light suppressed betacyanin accumulation and hypocotyl elongation, but stimulated cotyledon opening. Betacyanin in S. salsa seedlings decomposed with time in blue light. Western blot analysis showed that CRY2 protein accumulated both in hypocotyls and cotyledons of S. salsa seedlings grown in dark, but degraded with time in blue light, which was paralleled by a decrease of tyrosine hydroxylation activity of tyrosinase, a key enzyme involved in the betalain biosynthesis pathway. These results suggested CRY2 protein mediates betacyanin decomposition via inactivation of tyrosinase in S. salsa seedlings, and the blue-light-dependent degradation of CRY2 protein is crucial to its function.
引文
[1] 赵可夫. 1998. 中国盐生植物. 北京: 科学出版社
    [2] Li PH, Chen M, Wang BS. 2002. Effect of K+ nutrition on growth and activity of leaf tonoplast V-H+-ATPase and V-H+-PPase of Suaeda salsa under NaCl stress. Acta Bot Sin, 44: 433-440
    [3] Li PH, Wang ZL, Zhang H, Wang BS. 2004. Cloning and expression analysis of the B subunit of V-H+-ATPase in the leaves of Suaeda salsa under NaCl stress. Acta Bot Sin, 46: 93-99
    [4] Wang BS, Lüttge U, Ratajczak R. 2001. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot, 52: 2355-2365
    [5] Wang BS, Lüttge U, Ratajczak R. 2004. Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of C3 halophyte. J Plant Physiol, 161: 285-293
    [6] Han N, Shao Q, Lu CM, Wang BS. 2005. The leaf tonoplast V-H+-ATPase activity of a C3 halophyte Suaeda salsa is enhanced by salt stress in a Ca-dependent mode. J Plant Physiol, 162: 267-274
    [7] Steglich W, Strack D. 1990. Betalains. In: Brossi, A. (Ed.), The Alkaloids, Chemistry and Pharmacology. Academic Press, London, pp. 1-62
    [8] Stafford HA. 1994. Anthocyanins and betalains: evolution of the mutually exclusive pathways. Plant Sci, 101: 91-98
    [9] Clement JS, Mabry TJ. 1996. Pigment evolution in the Caryophyllales: a systematic overview. Bot Acta, 109: 360-367
    [10] Stintzing FC, Carle R. 2004. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci & Technol, 15: 19-38
    [11] Strack D, Vogt T, Schliemann W. 2003. Recent advances in betalain research. Phytochem, 62: 247-269
    [12] Cai YZ, Sun M, Corke H. 2005. Characterization and application of betalain pigments from plants of the Amaranthaceae. Trends Food Science & Technol, 16: 370-376
    [13] 王茹菊. 2002. 浅谈色素及甜菜色素特点和作用. 中国甜菜糖业, 2: 38-39
    [14] Schliemanna W, Caib Y, Degenkolbc T, Schmidtc J, Corkeb H. 2001. Betalains of Celosia argentea. Phytochem, 58: 159-165
    [15] Cai Y, Sun M, Corke H. 2005. HPLC characterization of betalains from plants in the Amaranthaceae. J Chromatogr Sci, 43: 454-460
    [16] Fernandez-Lopez JA, Almela L. 2001. Application of high-performance liquid chromatography to the characterization of the betalain pigments in prickly pear fruits. J Chromatogr A, 913: 415-420
    [17] Stintzing FC, Schieber A, Carle R. 2002. Betacyanins in fruits from red-purple pitaya, Hylocereus polyrhizus Britton & Rose. Food Chem, 77: 101-106
    [18] Stintzing FC, Schieber A, Carle R. 2002. Identification of betalains from yellow beet (Beta vulgaris L.) and cactus pear [Opuntia ficus-indica (L.) Mill.] by high-performance liquid chromatography-electrospray ionization massspectrometry. J Agric Food Chem, 50: 2302-2307
    [19] Stintzing FC, Trichterborn J, Carle R. 2005. Characterisation of anthocyanin–betalain mixtures for food colouring by chromatic and HPLC-DAD-MS analyses. Food Chem, 94: 296-309
    [20] Stintzing FC, Conrad J, Klaiber I, Beifuss U, Carle R. 2004. Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy. Phytochem. 65: 415-422
    [21] 于明, 张谦, 过利敏, 王成. 2002. 甜菜红素理化性质及其稳定性研究. 新疆农业科学, 39 (6): 331-333
    [22] 陈连文,师建华. 2002. 埃及扁圆红甜菜色素的提取及其稳定性研究. 河北师范大学学报(自然科学版), 25(1): 62-64
    [23] Schliemann W, Kobayashi N, Strack D. 1999. The decisive step in betaxanthin biosynthesis is a spontaneous reaction. Plant Physiol, 119: 1217-1232
    [24] van Gelder CWG, Flurkey WH, Wichers HJ. 1997. Sequence and structural features of plant and fungal tyrosinase. Phytochem, 45: 1309-1323
    [25] Steiner U, Schliemann W, B?hm H, Strak D. 1999. Tyrosine involved in betalain biosynthesis of higher plants. Planta, 208: 114-124
    [26] Gandía-Herrero F, Escribano J, Garcia-Carmona F. 2005. Characterization of the monophenolase activity of tyrosinase on betaxanthins: the tyramine-betaxanthin/dopamine-betaxanthin pair. Planta, 222: 307-318
    [27] Garcia-Carmona F, Gandía-Herrero F, Escribano J. 2005. Betaxanthins as substrates for tyrosinase. An approach to the role of tyrosinase in the biosynthetic pathway of betalains. Plant Physiol, 138: 421-432.
    [28] 丁大鹏, 马文丽, 郑文岭. 2005. 酪氨酸酶抑制剂的研究进展. 实用医学杂志, 12: 1364-1366
    [29] 孙秀坤, 许爱娥. 2005. 黑素细胞内酪氨酸酶翻译后加工运输障碍与某些色素病的关系. 国外医学·皮肤性病学分册, 31(1): 50-52
    [30] 肖和, 张信江, 李大铁. 2005. 三氧化二砷对A375人恶性黑素瘤细胞株酪氨酸酶活性及黑素生成的影响. 中华皮肤科杂志, 38(1): 38-40
    [31] Vogt T, Grimm R, Strack D. 1999. Cloning and expression of a cDNA encoding betanidin 5-O-glucosyltransferase, a betanidin- and flavonoid-specific enzyme with high homology to inducible glucosyltransferases from the Solanaceae. Plant J, 19: 509-519
    [32] Vogt, T. 2002. Substrate specificity and sequence analysis define a polyphyletic origin of betanidin 5- and 6-O-glucosyltransferase from Dorotheanthus bellidiformis. Planta, 214: 492-495
    [33] Hans J, Brandt W, Vogt T. 2004. Site-directed mutagenesis and protein 3D-homology modelling suggest a catalytic mechanism for UDP-glucose-dependent betanidin 5-O-glucosyltransferase from Dorotheanthus bellidiformis. Plant J, 39: 319-333
    [34] Hinz UG, Fivaz J, Girod PA, Zr?d JP. 1997. The gene coding for the DOPA dioxygenase involved in betalain biosynthesis in Amanita muscaria and its regulation. Mol Gen Genet, 256: 1-6
    [35] Christinet L, Burdet FX, Zaiko M, Hinz U, Zr?d JP. 2004. Characterization and functional identification of a novel plant 4,5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora. Plant Physiol, 134: 265-74
    [36] Winkel-Shirley B. 2001. Flavonoid biosynthesis: A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol, 126: 485-493
    [37] Winkel-Shirley B. 2001. It takes a garden. How work on diverse plant species has contributed to an understanding of flavonoid metabolism. Plant physiol, 127: 1399-1404
    [38] Johnson CS, Kolevski B, Smyth DR. 2002. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell, 14: 1359-13578.
    [39] Winkel-Shirley B. 2002. Biosynthesis of flavonoids and effects of stress. Curr opin plant biol, 5: 218-223
    [40] Farzad M, Griesbach R, Weiss MR. 2002. Floral color change in Viola cornuta L.: a model system to study regulation of anthocyanin production. Plant Sci, 162: 225-231
    [41] Fukuchi-Mizutani M, Okuhara H, Fukui Y. 2003. Biochemical and molecular characterization of a novel UDP-glucose: Anthocyanin 3′-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from Gentian. Plant Physiol, 132: 1652-1663
    [42] Mabry TJ. Betalains. In: Bell EA, Charwood BV, editors. Encyclopedia of plant physiology. Secondary plant products, 8. Springer, Berlin, 1980, pp. 513-533
    [43] Vogt T, Ibdah M, Schmidt J, Wray V, Nimtz M, Strack D. 1999. Light induced betacyanin and flavonols accumulation in bladder cells of Mesembryanthemum crystallinum. Phytochem, 52: 583-592
    [44] Mabry TJ. 2001. Selected topics from forty years of natural products research: betalains to flavonoids, antiviral proteins, and neurotoxic nonprotein amino acids. J Nat Prod, 64: 1596-1604
    [45] Sepúlveda-Jiménez, G., Rueda-Benítez, P., Porta, H., and Rocha-Sosa, M. 2004. Betacyanin synthesis in red beet (Beta vulgaris) leaves induced by wounding and bacterial infiltration is preceded by an oxidative burst. Physiol Mol Plant Pathol, 4: 125-133
    [46] Bothe H. 1976. Salzresistenz bei Pflanzen. Biologie in unserer Zeit, 6: 3-9
    [47] Butera D, Tesoriere L, Di Gaudio F, Bongiorno A, Allegra M, Pintaudi AM, Kohen R, Livrea MA. 2002. Antioxidant activities of sicilian prickly pear (Opuntia ficus indica) fruit extracts and reducing properties of its betalains: betanin and indicaxanthin. J Agric Food Chem, 50: 6895-6901
    [48] Cai Y, Sun M, Corke H. 2003. Antioxidant activity of betalains from plants of the Amaranthaceae. J Agric Food Chem, 51: 2288-2294
    [49] Parkinson TM, Brown JP. 1981. Metabolic fate of food colorants. Annu Rev Nutr, 1: 175-205.
    [50] Bednar CM, Kies C, Carlson, M. 1991. Nitrate-nitrite levels in commercially processed and home processed beets and spinach. Plant Foods for Human Nutrition,41: 261-268
    [51] Gangolli SD, Van den Brandt PA, Feron VJ, Janzowsky C, Koeman JH, Speijers GJA, Spiegelhalder B, Walker R, Wishnok JS. 1994. Nitrate, nitrite and N-nitroso compounds. Eur J Pharmacol, 292: 1-38
    [52] Steinmetz KA, Potter JD. 1996. Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc, 96: 1027-1039
    [53] Mo??hammer MR, Stintzing FC, Carle R. 2005. Development of a process for the production of a betalain-based colouring foodstuff from cactus pear. Inno Food Sci Emer Technol, 6: 221-231
    [54] Mo??hammer, MR, Stintzing FC, Carle R. 2005. Colour studies on fruit juice blends from Opuntia and Hylocereus cacti and betalain-containing model solutions derived therefrom. Food Res Int, 38: 975-981
    [55] Stintzing FC, Herbach KM, Mosshammer MR, Carle R, Yi W, Sellappan S, Akoh CC, Bunch R, Felker P. 2005. Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J Agric Food Chem, 53: 442-451
    [56] 郑荣梁. 1992. 自由基化学. 北京:高等教育出版社
    [57] Kapadia GJ, Tokuda H, Konoshima T, Nishino H. 1996. Chemoprevention of lung and skin cancer by Beta vulgaris (beet) root extract. Cancer Lett, 100: 211-214
    [58] Mitchell SC. 2001. Food idiosyncrasies: beetroot and asparagus. Drug Metab Dispos, 29: 539-543
    [59] Frank T, Stintzing FC, Carle R, Bitsch I, Quaas D, Strass G, Bitsch R, Netzel M. 2005. Urinary pharmacokinetics of betalains following consumption of red beet juice in healthy humans. Pharmacol Res, 52: 290-297
    [60] Allegra M, Furtm??ller PG, Jantschko W, Zederbauer M, Tesoriere L. 2005. Mechanism of interaction of betanin and indicaxanthin with human myeloperoxidase and hypochlorous acid. Biochem Biophys Res Commun, 332: 837-844
    [61] Tesoriere L, Butera D, D'Arpa D, Di Gaudio F, Allegra M, Gentile C, Livrea MA. 2003. Increased resistance to oxidation of betalain-enriched human low density lipoproteins. Free Radic Res, 37: 689-96
    [62] Tesoriere L, Butera D, Pintaudi AM, Allegra M, Livrea MA. 2004. Supplementation with cactus pear (Opuntia ficus-indica) fruit decreases oxidative stress in healthy humans: a comparative study with vitamin C. Am J Clin Nutr, 80: 391-395
    [63] Tesoriere L, Butera D, Allegra M, Fazzari M, Livrea MA. 2005. Distribution of betalain pigments in red blood cells after consumption of cactus pear fruits and increased resistance of the cells to ex vivo induced oxidative hemolysis in humans. J Agric Food Chem, 53: 1266-1270
    [64] Beggs CJ, Kuhn K, B?cker R, Wellman E. 1987. Phytochrome induced flavonoid biosynthesis in mustard (Sinapis alba L.) cotyledons: Enzymic control and differential regulation of anthocyanin and quercetin formation. Planta, 172: 121-126
    [65] Koes RE, Spelt CE, Mol JNM. 1989. The chalcone synthase multigene family ofPetunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction. Plant Mol Biol, 12: 213-225
    [66] Toguri T, Umemoto N, Kobayashi O, Ohtani T. 1993. Activation of anthocyanin synthesis genes by white light in eggplant hypocotyl tissues and identification of an inducible p-450 cDNA. Plant Mol Biol, 23: 933-946
    [67] Murray JR, Smith AG, Hackett WP. 1994. Differential dihydroflavonol reductase transcription and anthocyanin pigmentation in the juvenile and mature phases of ivy (Hedera helix). Planta, 194: 102-109
    [68] Procissi A, Dolfini S, Ronchi A, Tonelli C. 1997. Light-dependent spatial and temporal expression of pigment regulatory genes in developing maize seeds. Plant Cell, 9: 1547-1551
    [69] 沙爱华, 黄俊斌, 林兴华, 张端品. 2004. 水稻白叶枯病成株抗性与过氧化氢含量及几种酶活性变化的关系. 植物病理学报, 34 (4): 340-345
    [70] Inze D, Van Montagu M. 1995. Oxidative stress in plants. Curr Opin Biotechnol, 6: 153-158
    [71] Hancock JT, Desikan R, Neill SJ. 2001. Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans, 29: 345-350
    [72] Costet L, Dorey S, Fritig B, Kauffmann S. 2002. A pharmacological approach to test the diffusible signal activity of reactive oxygen intermediates in elicitor-treated tobacco leaves. Plant Cell Physiol, 43: 91-98
    [73] Capone R, Tiwari BS, Levine A. 2004. Rapid transmission of oxidative and nitrosative stress signals from roots to shoots in Arabidopsis. Plant Physiol Biochem, 42: 425-428
    [74] Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ, Knight MR. 1994. Oxidative signals in tobacco increase cytosolic calcium. Plant Cell, 6: 1301-1310
    [75] Levine A, Pennell R, Alvarez M, Palmer R, Lamb CJ. 1996. Calciummediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol, 6: 427-437
    [76] Neill S, Desikan R, Hancock J. 2002. Hydrogen peroxide signaling. Curr Opin Plant Biol, 5: 388-395
    [77] Foyer CH, López-Delgado H, Dat JF, Scott IM. 1997. Hydrogen peroxide- and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant, 100: 241-254
    [78] Kovtun Y, Chiu WL, Tena G, Sheen J. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA, 97: 2940-2945
    [79] Grant JJ, Yun BW, Loake GJ. 2000. Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J, 24: 569-582
    [80] Sepúlveda-Jiménez G, Rueda-Benítez P, Porta H, Rocha-Sosa M. 2005. A red beet (Beta vulgaris) UDP-glucosyltransferase gene induced by wounding, bacterial infiltration and oxidative stress. J Exp Bot, 56: 605-611
    [81] 黄号栋, 杨静, 龚明. 2003. 用磷酸二酯酶定量检测植物钙调素方法的改进. 植物生理学通讯, 39(2): 156-159
    [82] Chifflet S, Torrigia S, Chiesa R. 1988. A method for determination of inorganic phosphate in the presence of labile organic phosphate and high concentration of protein: application to lens ATPases. Anal Biochem, 168: 1-4
    [83] Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem, 72: 248-254
    [84] Vitrac X, Larronde F, Krisa S, Decendit A, Deffieux G, Mérillon JM. 2000. Sugar sensing and Ca2+-calmodulin requirement in Vitis vinifera cells producing anthocyanins. Phytochem, 53: 659-665
    [85] Sudha G, Ravishankar GA. 2003. The role of calcium channels in anthocyanin production in callus cutures of Daucus carota. Plant Growth Regul, 40: 163-169
    [86] Knight MR, Campbell AK, Smith SM, Trewavas AJ. 1991. Transgenic plant aequorin reports the effects of touch and coldshock and elicitors on cytoplasmic calcium. Nature, 352: 524-526
    [87] Knight H, Trewavas AJ, Knight MR. 1997. Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J, 12: 1067-1078
    [88] Plieth C, Hansen UP, Knight H, Knight MR. 1999. Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J, 18: 491-497
    [89] Sanders D, Brownlee C, Harper J. 1999. Communicating with calcium. Plant Cell, 11: 691-706
    [90] Yamasaki H, Sakihama Y, Ikehara N. 1997. Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol, 115: 1405-1412
    [91] 余冰宾. 2004. 生物化学实验指导. 北京: 清华大学出版社
    [92] Nellaiappan K, Vinayagam A. 1986. A rapid method for detection of tyrosinase activity in electrophoresis. Stain Technol, 61: 269-272
    [92] Piattelli M. 1981. The betalains: structure, biosynthesis, and chemical taxonomy. In: Conn EE (ed) The biochemistry of plants. Academic, New York, pp. 557-575
    [93] Gandía-Herrero F, Garcia-Carmona F, Escribano J. 2004. Purification and characterization of a latent polyphenol oxidase from beet root (Beta vulgaris L.). J Agric Food Chem, 52: 609-615
    [94] Chevalier T, de Rigal D, Mbéguié-A-Mbéguié D, Gauillard F, Richard-Forget F, Fils-Lycaon BR. 1999. Molecular cloning and characterization of apricot fruit polyphenol oxidase. Plant Physiol, 119: 1261-1269
    [95] Wang J, Constabel C. 2003. Biochemical characterization of two differentially expressed polyphenol oxidases from hybrid poplar. Phytochem, 64: 115-121
    [96] Dry IB, Robinson SP. 1994. Molecular cloning and characterisation of grape berry polyphenol oxidase. Plant Mol Biol, 26: 495-502
    [97] Moore BM, Flurkey WH. 1990. Sodium dodecyl sulfate activation of a plant polyphenoloxidase. Effect of sodium dodecyl sulfate on enzymatic and physicalcharacteristics of purified broad bean polyphenoloxidase. J Biol Chem, 265: 4982-4988
    [98] Gandía-Herrero F, Jimenez-Atienzar M, Cabanes J, Garcia-Carmona F, Escribano J. 2005. Evidence for a common regulation in the activation of a polyphenol oxidase by trypsin and sodium dodecyl sulfate. Biol Chem, 386: 601-607
    [99] Sakuta M, Takagi T, Komamine A. 1986. Growth related accumulation of betacyanin in suspension cultures of Phytolacca americana. J Plant Physiol, 125: 337-343
    [100] Hirano H, Komamine A. 1994. Correlation of betacyanin synthesis with cell division in cell suspension cultures of Phytolrrcca americana. Physiol Plant, 90: 239-245
    [101] Mueller LA, Hinz U, Zr?d JP. 1996. Characterization of a tyrosinase from Amanita muscaria involved in betalain biosynthesis. Phytochem, 42: 1511-1515
    [102] Vamos-Vigyazo L. 1981. Polyphenol oxidase and peroxidase in fruits and vegetables. CRC Crit Rev Food Sci Nutr, 15: 49-127
    [103] Walker JRL, Ferrar PH. 1998. Diphenol oxidases, enzyme-catalysed browning and plant disease resistance. Biotechnol Genet Eng Rev, 15: 457-498
    [104] Sommer A, Ne’eman E, Steffens JC, Mayer AM, Harel E. 1994. Import, targeting, and processing of a plant polyphenol oxidase. Plant Physiol, 105: 1301-1311
    [105] 李肖芳, 韩和平, 王旭初, 范鹏祥, 李银心. 2006. 适用于盐生植物的双向电泳样品制备方法. 生态学报, 26(6): 1848-1953
    [106] 范玉琴, 李德红. 2004. 植物的蓝光受体及其信号转导. 激光生物学报, 13(4): 314-320
    [107] 刘明, 赵琦, 王小菁, 赵玉锦, 童哲. 2005. 植物的光受体及其调控机制的研究. 生物学通报, 40(5): 10-12
    [108] 闫海芳, 周波, 李玉花. 2004. 光信号转导研究进展. 植物学通报, 21(2): 1-11
    [109] Jekins GI. 1997. UV-A and blue light signal transduction in Arabidopsis. Plant Cell Environ, 20: 773-778
    [110] Wade HK, Bibikova TN, Valentine WJ, et al. 2001. Interaction within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Plant J, 25: 675-685
    [111] Mazzella MA, Cerdan PD, Staneloni RJ, et al. 2001. Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of development. Development, 128: 2291-2299
    [112] Thum KE, Kim M, Christopher DA, et al. 2001. Cryptochrome 1, cryptochrome 2, and phytochrome A co-activate the chloroplast psbD blue light-responsive promoter. Plant cell, 13: 2747-2760
    [113] Shalitin D, Yang H, Mockler TC, Maymon M, Guo H, Whitelam GC, Lin C. 2002. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature, 417: 763-767
    [114] Shalitin D, Yu X, Maymon M, Mockler T, Lin C. 2003. Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1. Plant Cell, 15: 2421-2429
    [115] Lin C, Shalitin D. 2003. Cryptochrome structure and signal transduction. Annu Rev Plant Biol, 54: 469-496
    [116] Hemm MR, Rider SD, Ogas J, Murry DJ, Chapple C. 2004. Light induces phenylpropanoid metabolism in Arabidopsis roots. Plant J, 38: 765-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700