隐藏嗜酸菌对嗜酸氧化亚铁硫杆菌的As~(3+)抗性基因表达与浸矿作用的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)是一种重要的浸矿功能菌,同时也是目前研究最多的浸矿菌之一。Acidiphilium cryptum是一个浸矿辅助菌,它可以还原Fe(Ⅲ)并利用A. ferrooxidans合成的有机物。通过这种方式,它可以消除这些有机物的抑制和毒害作用并为A. ferrooxidans提供Fe(Ⅱ)作为能源。由于两种菌均生长于酸性矿坑水,环境特殊恶劣,因此能够耐受高浓度的重金属如铜、砷等。Acidiphilium cryptumDX1-1在促进A. ferrooxidans生长的同时是否也对A. ferrooxidans砷抗性相关基因的转录表达也产生一定的影响是本文研究的重点。
     本文研究了两株菌A. ferrooxidans CMS和Acidiphilium cryptumDXl-1对Cu2+、As3+两种重金属离子的最高耐受能力。结果显示CMS菌对Cu2+的最高耐受浓度高于DX1-1菌,而DX1-1菌对As3+的最高耐受浓度高于CMS菌。实验表明DX1-1菌的加入对CMS菌的亚铁氧化活性以及As3+抗性有显著促进作用。
     研究了在重金属胁迫下A. ferrooxidans菌株CMS和Acidiphilium cryptumDX1-1单独及混合浸矿作用,结果发现DX1-1菌本身浸矿效果较差,但能够明显提高CMS菌的浸矿效率。重金属离子的加入导致浸矿率下降,且重金属离子浓度越高,浸矿率越低。
     通过Real-timePCR研究了在不同砷环境中以及Acidiphilium cryptumDX1-1作用下抗砷基因arsH在A. ferrooxidans ATCC23270中的差异表达。结果表明抗砷基因arsH对As3+的胁迫较为敏感,在细菌砷的抗性机制中很可能起着重要作用。单独培养时,随着生长环境中As3+浓度的增加,ATCC23270菌株中的arsH表达量上调。砷离子浓度越高,上调越明显。ATCC23270菌株与DX1-1菌株混合培养时,与单独培养较为相似,随生长环境中As3+浓度的增加,ATCC23270菌株中的arsH基因表达量上调。砷离子浓度越高,上调越明显。但上调倍数低于相同砷离子浓度下ATCC23270菌株单独培养时的上调倍数。DX1-1菌株的加入一定程度上影响了ATCC23270菌株中arsH基因的转录表达。
     生物信息学分析表明,水平基因转移不仅在同纲不同种的菌株之间发生,也发生在不同纲的种之间。稀释曲线显示环境中仍然存在大量的含arsH基因抗砷细菌有待于发现。arsH基因对微生物砷抗性起重要作用,然而作用机制仍有待于进一步研究证明。同时分析发现含arsH基因抗砷细菌的特殊功能十分广泛,包括感染病原、植物共生、分解高分子聚合物、产叶绿素以及抗重金属。
     综合以上结果表明抗砷基因arsH在细菌砷抗性中发挥着重要的作用,Acidiphilium cryptumDX1-1能够促进A. ferrooxidans的生长,同时提高砷抗性。这些研究为进一步研究抗砷基因arsH的功能,以及Acidiphilium cryptumDX1-1与A. ferrooxidans的相互作用奠定了基础。
Acidithiobacillus ferrooxidans, an important microorganism in bioleaching, is also one of the most studied organisms in the bioleaching microbial community. While Acidiphilium cryptum is an assistant bioleaching bacterium, which can reduce Fe(Ⅲ) and utilize organic matter formed by A. ferrooxidans. In this way, it can eliminate the inhibition and toxicity effect of these organic matters and produce Fe(Ⅱ) as energy for A. ferrooxidans. Because of the rude living environment, they are resistant to many heavy metals including arsenite and copper. Both of them have arsH gene, which is not common and its function is not very clear so far. The aim of this paper is to investigate the influence of Acidiphilium cryptum DX1-1on As resistance gene arsH expression of A. ferrooxidans.
     In this paper, the tolerance on two heavy metal ions Cu2+、As3+ of A. ferrooxidans CMS and Acidiphilium cryptum DX1-1 was studied. The results showed that strain CMS's tolerance on Cu2+ was higher than strain DX1-1, while strain DX1-1's tolerance on As3+ was higher than strain CMS. Meanwhile strain DX1-1 can promote the living activity and As resistance of strain CMS.
     Bioleaching research of A. ferrooxidans CMS and Acidiphilium cryptum DX1-1 showed that the leaching efficiency of strain DX1-1 was worse than strain CMS, but when mixed culture together the leaching efficiency of strain CMS is much better. Adding heavey metal caused the leaching efficiency decline. And the higher concentration of heavey metal, the lower leaching efficiency.
     Real-time PCR was used to detect the differential expression of arsH in A. ferrooxidans ATCC23270 in different concentrations of As3+ and differential expression of arsH when culture with Acidiphilium cryptum DX1-1 or not. The results showed that arsH gene expression was sensitive to As3+, and it may have important role in As resistance. The arsH gene expression was enhanced while the As3+ concentration increased. When strain ATCC23270 was cultured with strain DX1-1, the arsH gene expression was lower than that when strain ATCC23270 was cultured itself. To some extent, strain DX1-1 influenced the arsH gene expression of strain ATCC23270.
     Bioinformatic analysis of the diversity of arsH genes in arsenic-resistant bacteria revealed that the horizontal gene transfer (HGT) is occurred not only among the species within the same phyla but also among the species of different phyla. Rarefaction curves indicate that current efforts on arsenic resistant bacteria isolation and sampling are largely inadequate. Researches indicate that arsH plays an important role in bacteria resistance to arsenite, but there is still much work to do to make clear its exact function. Among these arsH containing species, many have special functions like infecting pathogens, plant symbiosis, macromolecular polymer degradation, chlorophyll production, and heavy metal resistance.
     All of these results confirmed that arsH plays an important role in As resistance. Acidiphilium cryptum DX1-1 can enhance the living activity and As resistance of A. ferrooxidans. These results lead us to a further step for understanding the mechanism of As resistance in this extremophilic microorganism, and interrelationship of Acidiphilium cryptum DX1-1 and A. ferrooxidans.
引文
[1]Rohwerder T, Gehrke T, Kinzler K, et al. Bioleaching review part A:Progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiology Biotechnology,2003,63(3):239-248.
    [2]Rawlings D E. Heavy metal mining using microbes. Annual Review of Microbiology,2002,56(1):65-91.
    [3]Valdes J, Pedroso I, Quatrini R, et al. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics,2008,9(1): 597-621.
    [4]Olson G J, Brierley J A, Brierley C L. Progress in bioleaching:applications of microbial processes by the minerals industries. Applied Microbiology Biotechnology,2003,63(3):249-257.
    [5]殷志勇,成海芳,张文彬.生物技术在湿法冶金领域的应用现状及研究趋势.湿法冶金,2006,25(3):113-116.
    [6]袁源,汪模辉,王建伟.硫化矿微生物冶金及其强化技术的研究进展.湿法冶金,2007,26(4):175-183.
    [7]杨显万,沈庆峰,郭玉霞.微生物湿法冶金[M].北京:冶金工业出版社,2003:2-100.
    [8]Rudolf W. Helbronner A. Oxidation of zinc sulfides by microorganisms. Soil Science,1922,14(6):459-464.
    [9]Rudolf W. Oxidation of pyrites by microorganisms and their use for making mineral phosphates available. Soil Science,1922,14(2):135-147.
    [10]Colmer A R, Hinckle M E. The role of microorganisms in acid mine drainage. A Preliminary Report. Science,1947,106(1):253-256.
    [11]Temple K L, Delchamps E W. Autotrophic bacteria and the formation of acid in Bituminous coal mines. Applied Microbiology,1953,1(1):255-258.
    [12]Leathen W W, Kinsel N A, Braley S A. Ferrobacillus ferrooxidans:A chemosynthetic autotrophic bacterium. Bacterial,1956,72(5):700-704.
    [13]Bryner L C. Microorganisms in leaching of sulfide minerals. Industrial and engineering chemistry,1954,46(10):2587-2592.
    [14]Zimmerley S R, Wilson D G, Prater J D. Cyclic leaching process employing iron oxidizing bacteria. United States patent,1958, (1):829-964.
    [15]刘汉钊,张永奎.微生物在矿物工程上应用新进展.国外金属选矿,1999,(12):9-12.
    [16]吕人豪.酸煤矿水中氧化硫硫杆菌的分离及其特征.微生物学报,1964,10(4):467-475.
    [17]刘清,徐伟昌,聂春龙,招国栋.我国浸矿微生物研究的发展概况.南华大学学报,2003,17(1):21-24.
    [18]何正国,李雅芹,周培瑾.氧化亚铁硫杆菌的铁和硫氧化系统及其分子遗传学.微生物学报,2000,40(5):563-565.
    [19]彭艳平,余水静.我国生物冶金研究的发展概况.矿业快报,2006,25(12):8-10.
    [20]高金昌.生物冶金技术在黄金工业生产中的应用现状及发展趋势.黄金,2008,29(10):36-40.
    [21]王淀佐,李宏煦,阮仁满.硫化矿的生物冶金及其研究进展.矿冶,2002,11(1):8-12.
    [22]Dopson M, Lindstrom E B. Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite. Microbiology Ecology,2004,48(1):19-28.
    [23]Romero J, Yanez C, Vasquez M, et al. Characterization and identification of an iron-oxidizing, Leptospirillum-like bacterium, present in the high sulfate leaching solution of a commercial bioleaching plant. Research Microbiology, 2003,154(5):353-359.
    [24]Rawlings D E. The molecular genetics of Thiobacillus ferrooxidans and other mesophilic, acidophilic, chemolithotrophic, iron-or sulfur-oxidizing bacteria. Hydrometallurgy,2001,59(2):187-201.
    [25]陈勃伟,温建康.生物冶金中混合菌的作用.金属矿山,2008,382(4):13-17.
    [26]Robbins E I. Bacteria and archaea in acidic environments and a key to morphological identification. Hydrobiologia,2000,433(1):61-89.
    [27]Hallberg K B, Johnson D B. Novel acidophiles isolated from moderately acidic mine drainage waters.Hydrometallurgy,2003,71(1):139-148.
    [28]Kelly D P, Wood A P. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillusgen. nov. and Thermithiobacillus gen. nov. International Journal of Systematic and Evolutionary Microbiology,2000,50(1):511-516.
    [29]Waksman S A, Joffe I S. Microorganisms concerned with the oxidation of sulphur in soil Ⅱ:Thiobacillus thiooxidans,a new sulphur xidizing organism isolated from the soil. Journal of Bacteriology,1922,7(1):239-256.
    [30]ColmerA R, Hinkle M E. The role of microorganism in acid mine drainage:a preliminary report. Science,1947,106(2751):253-256.
    [31]Coram N J, Rawlings D E. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilumsp.Nov. dominates South African commercial biooxidation tanks that operate at 40 ℃. Applied and Environmental Microbiology,2001,68(2):838-845.
    [32]Harrison A P Jr. Acidiphilium cryptum gen. nov., sp.Nov., heterotrophic bacterium from acidic mineral environments. International Journal of Systematic Bacteriology,1981,31(1):327-332.
    [33]Hallberg K B, Lindstrom E B. Characterization of Thiobacillus caldussp.Nov., amoderately thermophilic acidophile. Microbiology,1994,140(1):3451-3456.
    [34]Clark D A, Norris P R. Acidimicrobium ferrooxidansgen. nov., sp. Nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology, 1996,142(4):785-790.
    [35]Golovacheva R S, Karavaiko G I. A new genus of thermophilic sporeforming bacteria, Sulfobacillus. Microbiology,1978,47(1):658-664.
    [36]Huber G, Stetter K O. Sulfolobusmetallicus, sp. Nov., a nove strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers. Systematic and Applied Microbiology,1991,14(1):372-378.
    [37]Branco R, Chung A P, Morais P V. Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24T. BMC Microbiology,2008,8(1):95-100.
    [38]Ronald S O, John F S. The Ecology of Arsenic. Science,2003,300(1):939-944.
    [39]Cai L, Rensing C, Li X Y, et al. Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers:Achromobacter sp. SY8 and Pseudomonas sp. TS44. Applied Microbiology Biotechnology,2009,83(4): 715-725.
    [40]Berg M, Tran H C, Nguyen T C, et al. Arsenic contamination of groundwater and drinking water in Vietnam:a human health threat. Environmental Science Technology,2001,35(13):2621-2626.
    [41]Nordstrom D K. Worldwide occurrences of arsenic in ground water. Science, 2002,296(1):2143-2145.
    [42]Duquesne K, Lieutaud A, Ratouchniak J, et al. Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.:from the strain isolation to the gene study. Environmental Science Technology,2008,10(1): 228-237.
    [43]Neff J M. Ecotoxicology of arsenic in marine environment. Environmental Toxicology Chemistry,1997,16(5):917-927.
    [44]张辉.土壤环境学[M].北京:化学工业出版社,2005:176-200.
    [45]Yoshida T, Yamauchi H, Sun GF. Chronic health effects in people exposed to arsenic via the drinking water:dose-response relationships in review. Toxicology Applied Pharmacology,2004,198(1):243-252.
    [46]Nickson R, McArthur J, BurgessW, et al. Arsenic poisoning of Bangladesh groundwater. Nature,1998, (395):3381.
    [47]Chowdhury T R, Basu G K, Mandal B K, et al. Arsenic poisoning in the Ganges delta. Nature,1999, (401):545-5461.
    [48]Welch A H, Lico M S, Hughes J L. Arsenic in Ground Water of the Western United States. Ground Water,1988,26(3):333-3471.
    [49]庄金陵.砷对世界地下水源的污染.矿产与地质,2003,17(2):177-1781.
    [50]周宏春.长江中下游沿岸地区砷的水文地球化学环境.工程勘察,1992,(5):36-391.
    [51]Itziar A, Javier H A, Carlos G. Plants against the global epidemic of arsenic poisoning. Environment International,2004, (30):949-951.
    [52]李永敏,郭华明,王焰新,等.地方性水砷中毒成因、防治与研究现状.环境保护,2001,(6):44-461.
    [53]Mukhopadhyay R, Rosen B P. Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect,2002,110(1):745-748.
    [54]Rosen B P. Biochemistry of arsenic detoxification. FEBS Letters,2002,529(1): 86-92.
    [55]Oremland R S, Stolz J F. The ecology of arsenic. Science,2003,300(5621): 939-944.
    [56]Oremland R S, Stolz J F. Arsenic, microbes and contaminated aquifers. Trends in Microbiology,2005,13(2):45-49.
    [57]Stolz J F, Basu P, Santini J M, et al. Arsenic and selenium in microbial metabolism. Annual Review Microbiology,2006,60(1):107-130.
    [58]Qin J, Rosen B P, Zhang Y, et al. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proceeding of the National Academy of Science,2006, 103(7):2075-2080.
    [59]Dembitsky V M, Levitsky D O. Arsenolipids. Progress in Lipid Research,2004, 43(5):403-448.
    [60]Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry,2002,17(5):517-568.
    [61]Inskeep W P, Maser R E, Hamamura N,et al. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environmental Microbiology,2007, 9(4):934-943.
    [62]Jackson C R, Dugas S L, Harrison K G. Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils. Soil Biology Biochemistry,2005, 37(12):2319-2322.
    [63]Malasarn D, Saltkov C W, Campbell K M, et al. arrA is a reliable marker for As(V) respiration. Science,2004,306(5696):455-460.
    [64]Cervantes C, Ji G, Ramirez J L, et al. Resistance to arsenic compounds in microorganisms. FEMS Microbiology,1994,15(4):355-367.
    [65]Abdrashitova S A, Abdullina G G, Ilialetdinov A N. Role of arsenites in lipid peroxidation in Pseudomonas putida cells oxidizing arsenite. Mikrobiologiya, 1986,55(1):212-216.
    [66]Patel P C, Goulhen F, Boothman C, et al. Arsenate detoxification in a Pseudomonad hypertolerant to arsenic. Archieves Microbiology,2007,187(3): 171-183.
    [67]Silver S, Phung L T. Bacterial heavy metal resistance:new surprises. Microbiology,1996,50(1):753-789.
    [68]蔡林,王革娇.抗砷性微生物及其抗砷分子机制研究进展.微生物学通报,2009,36(8):1253-1259.
    [69]Ahmann D, Roberts A L, Krumholz L R, et al. Microbe grows by reducing arsenic. Nature,1994,371(65):750-755.
    [70]Stolz J F, Oremland R S. Bacterial respiration of arsenic and selenium. FEMS Microbiology Review,1999,23(5):615-627.
    [71]Wood T C, Salavagionne O E, Mukherjee B, et al. Human arsenic methyltransferase (AS3MT) pharmacogenetics:gene resequencing and functional genomics studies. Journal of Biology Chemistry,2006,281(11):7364-7373.
    [72]Sandstorm A, Petersson S. Bioleaching of a complex sulphide ore with moderate thermophilic and extreme thermophilic microorganism. Hydrometallurgy,1997, 46(1):181-190.
    [73]Ye J, Yang H C, Rosen B P, et al. Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti. FEBS Letters,2007,581(21):3996-4000.
    [74]Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research,1997,25(24):4876-4882.
    [75]Schloss P D, Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied Environmental Microbiology,2005,71(3):1501-1506.
    [76]施晓东,常学秀.重金属污染土壤的微生物响应.生态环境,2003,12(4):498-499.
    [77]钟鸣,周启星.微生物分子生态学技术及其在环境污染中的应用.应用生态学报,2002,13(2):247-251.
    [78]Xu C, Shi W, Rosen B P. The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. The Journal of Biology Chemistry,1996,271(5):2427-2432.
    [79]Rosen B P. Biochemistry of arsenic detoxification. FEBS Letters,2002,529(1): 86-92.
    [80]Meng Y L, Liu Z J, Rosen B P. As(Ⅲ) and Sb(Ⅲ) uptake by GlpF and efflux by ArsB in Escherichia coli. The Journal of Biology Chemistry,2004, 279(18):18334-18341.
    [81]Zhou T, Radaev S, Rosen B P, et al. Structure of the ArsA ATPase:the catalytic subunit of a heavy metal resistance pump. Embo Journal,2000,19(17): 4838-4845.
    [82]Lin Y F, Yang J, Rosen B P. An arsenic metallochaperone for an arsenic detoxification pump. Proceeding of the National Academy of Science,2006, 103(42):15617-15622.
    [83]Lin Y F, Yang J, Rosen B P. ArsD:an As(Ⅲ) metallochaperone for the ArsAB As(Ⅲ)-translocating ATPase. J Bioenerg Biomembr,2007,39(5):453-458.
    [84]Vorontsov I I, Minasov G, Brunzelle J S, et al. Crystal structure of an apo form of Shigella flexneri ArsH protein with an NADPH-dependent FMN reductase activity. Protein Science,2007,16(11):2483-90.
    [85]Butcher B G, Deane S M, Rawlings D R. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Applied and Environmental Microbiology,2000,5(66):1826-1833.
    [86]Ryan D, Colleran E. Arsenical resistance in the IncHI2 plasmids. Plasmid,2002, 47(3):234-240.
    [87]Bhattacharjee H, Rosen B P. Arsenic Metabolism in Prokaryotic and Eukaryotic Microbes. Molecular Microbiology of Heavy Metals,2007,2(1):371-406.
    [88]Liu L, Spilker T, Coenye T, et al. Identification by subtractive hybridization of a novel insertion element specific for two wide spread epidemic Burkholderia cepacia genomovar Ⅲ strains. Journal of Clinical Microbiology,2003,41(6): 2471-2476.
    [89]Chain P S G, Denef V J, Konstantinidis K T, et al. Burkholderia xenovorans LB400 harbors a multi-replicon,9.73-Mbp genome shaped for versatility. Proceeding of the National Academy of Science,2006,103(42):15280-15287.
    [90]Kane S R, Chakicherla A Y, Chain P S G, et al. Whole-Genome Analysis of the Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1. Journal of Bacteriology,2007,189(5):1931-1945.
    [91]Sessitsch A, Coenye T, Sturz A V, et al. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. International Journal of Systematic and Evolutional Microbiology,2005,55(3):1187-1192.
    [92]Luo Y F, Xu X L, Ding Z H, et al. Complete genome of Phenylobacterium zucineum-a novel facultative intracellular bacterium isolated from human erythroleukemia cell line K562. BMC Genomics,2008,9(1):386.
    [93]Adams M D, Goglin K, Molyneaux N, et al. Comparative Genome Sequence Analysis of Multidrug-Resistant Acinetobacter baumannii. Journal of Bacteriology,2008,190(24):8053-8064.
    [94]Goodner B, Hinkle G., Gattung S, et al. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science,2001, 294(5550):2323-2328.
    [95]Salzberg S L, Sommer D D, Schatz M C, et al. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99. BMC Genomics,2008,9(1):204-210.
    [96]Lim J Y, Lee T H, Nahm B H, et al. Complete Genome Sequence of Burkholderia glumae BGR1. Journal of Bacteriology,2009,191(11):3758-3759.
    [97]Feil H, Feil W S, Chain P, et al. Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proceeding of the National Academy of Science,2005,102(31):11064-11069.
    [98]Schneiker S, Martins d S, Bartels D, et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nature Biotechnology,2006,24(8):997-1004.
    [99]Eric A W, Michelle L, Jana S, et al. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. Proceeding of the National Academy of Science,2008,105(39):15094-15099.
    [100]Moran M A, Belas R, Schell M A, et al. Ecological Genomics of Marine Roseobacters. Applied Environmental Microbiology,2007,73(14):4559-4569.
    [101]Wesley D S, Chen M, Cheung P C, et al. Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proceeding of the National Academy of Science,2008,105(6):2005-2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700