微异养混合养下隐藏嗜酸菌DX1-1自养积累PHB基因表达差异及代谢机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚-β-羟基丁酸酯(poly-β-hydroxybutyrate,以下简称为PHB)是细胞内的一类生物聚酯,是制备“生物可降解塑料”的理想原料。隐藏嗜酸菌株DX1-1(CCTCC M208056)筛自有机质严重缺乏的酸性矿坑水中,是一种兼养性铁还原和硫氧化菌,具备累积体内PHB的能力。
     为了阐明培养条件对菌株DX1-1生长和PHB累积相关代谢途径的影响机制,开发菌株DX1-1在生长和PHB合成相关的有用基因资源,本文开展了如下研究工作:(1)比较研究了菌株DX1-1在自养(元素硫和/或硫酸铁)、异养(葡萄糖)、微异养(限制性葡萄糖+硫和/或硫酸铁)的混合养条件下的9K基础培养基中的生长和PHB累积情况;(2)克隆和分析了菌株DX1-1生长和PHB累积相关代谢系统功能基因;(3)采用Realtime PCR比较分析了菌株DX1-1在不同能源底物条件下生长和PHB累积相关功能基因的差异表达。取得如下研究结果。
     在异养条件下,菌株生长良好,能累积胞内PHB,在自养条件下,菌株不累积PHB,且生长较慢,其中在仅含铁(Ⅲ)为能源底物时不生长;在加入有限碳源,如0.1%的葡萄糖的混合养条件下,菌株无论在单质硫和/或硫酸铁的无机能源基质中,都能生长良好以及累积胞内PHB,且比相同限制性浓度的葡萄糖下的异养生长更快,PHB累积更多,在96 h时菌株DX1-1的细胞量为9.89×1 08个/mL,PHB产量为2.07g/L。在这些培养条件下,菌株DX1-1生长和生产PHB递减顺序为:GSF>GS>GF>G>>S,SF>>F(培养基名称参见表2-2)。
     克隆了菌株DX1-1的1个内标基因和26个生长与PHB累积相关代谢途径基因,分别为:6个PHB积累基因相关基因(包括一个表达相对稳定的基因);10个二氧化碳固定相关基因;7个硫代谢相关基因;3个铁代谢相关基因。
     相关代谢基因Arcy_3030(β-羟基丁酸聚合酶),Arcy_2759(聚β-羟基丁酸解聚酶),Arcy_0824(核酮糖二磷酸羧化酶),Arcy_0626(乙酰辅酶A合成酶), Arcy_1318(硫酸腺苷转移酶,亚基2)Arcy 2800(磷酸腺苷磷酸硫酸酯),Arcy_2799(亚硫酸盐还原酶p亚基),Arcy_0256(ABC型周质铁转运蛋白复合体)在限制性葡萄糖异养的混合养条件下较自养和异养条件均有明显上调。表明在0.1%的有限葡萄糖浓度的混合养情况下,细胞的PHB代谢相关基因更为活跃且利用了空气中的CO2进行了PHB的累积,意味着少量葡萄糖可以促进菌株DX1-1以自养方式积累PHB。
Poly-β-hydroxybutyrate (PHB) is a kind of polyester that stored in microbial cells. It is a ideal materiel for producing "bio-degradation plastic". Acdiphilium cryptum DX1-1 (CCTCC M208056) was isolated from acidic mine drainage, a site strictly lacking in onganic nutrients. It is a faculty strain capable of accumulation intracellular PHB with ferric iron reduction and sulfur oxidation as well as heterotrophic metabolism.
     In order to explore the genes related PHB synthesis of it and clarify the molecular mechanism of the effect of culture conditions on PHB accumulation of it, the present work focusing on A. cryptum DX1-1 accumulating PHB are as follows:the growth and accumulation of PHB in heterotrophy, autotrophy and mixotrophy that were provided glucose, sulfur and/or ferric iron, and glucose+sulfur and/or ferric iron as the energy substrates, respectively; cloning, sequencing and homology comparison analysis of related genes of A. cryptum DX1-1 metabolic system; related genes were investigated by RT-qPCR analysis of the differential expressions of genes encoding the key enzymes of PHB, carbon, sulfur, and ferrum metabolisms in heterotrophy, autotrophy and mixotrophy as different energy substrates. And the primary results are as follows:
     A. cryptum DX1-1 grows well and accumulates great amount of PHB in heterotrophic condition but grows slow and doesn't accumulate PHB in autotrophy, and it can not grow in ferric iron as its only energy source. After adding limited organic carbon source like 0.1% glucose, DX 1-1 also grows better and accumulates more PHB in sulfur and/or ferric iron as the energy substrates than with the some concertration glucose in heterotrophy. The cell amount is up to 9.89×108mL, and the accumulation of PHB is 2.07 g/L in mixtrophic condition as sulfur and ferric iron as the energy substrates. In all conditions, In these culture conditions, the growth and PHB production of the strain decreased in the order in terms of energy substrates:GSF>GS>GF>G>>S, SF>>F (abbreviations see Table 2-2).
     Referring to genome of A. cryptum JF-5 (JGI, http://genome.orn 1.gov/cgi-bin/JGI_microbial/kegg categories.cgi), twenty-six useful homologous genes as well as the 16S rDNA gene to A. cryptum DX1-1 were successfully cloned, including 6 genes of PHB metabolism,10 gemes of carbon metabolism,7 genes of sulfur metabolism and 3 genes of ferrum metabolism. The sequences of the PCR products of these genes are basically matched to that of strain JF-5.
     After RT-PCR analysis of the differential expressions under different energy source, the result showed that in the mixotrophic cultures all the key enzyme-encoding genes of PHB, carbon, sulfur and ferrum metabolisms are basically up-regulated, especially PHB polymerase (Arcy_3030), isocitrate dehydrogenase (Acry_0565), Rubiscase (Acry_0565), ribose 5-phosphate isomerase (Acry_1272), ribulose 5-phosphate 3-epimerase (Acry_0827), phosphoadenosine phosphosulfate reductase (Arcy_2800), and sulfite reductase (Arcy_2799) encoding genes were significantly up-graduated.
引文
[1]Steinbuchel A. Diversity of bacterial polyhydroxyalkanoic acids[J]. FEMS Microbiolgy Letters,1995,128:219-228.
    [2]RENM B, STEINBUCHEL A. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis [J]. International Journal of Biological Macromolecules,1999,25:3-9.
    [3]郁新颜.食品包装的卫生安全分析[J].包装工程,2005,26(10):43-46.
    [4]廖正品.中国塑料制品行业发展趋势与市场分析[J].国外塑料,2008,26(4):22-30.
    [5]CHEN GQ, WU Q, XI JZ, et al. Microbial production of biopolyesters-polyhydroxyalkanoates [J]. Progress of Natual Science,2000,10:843-850.
    [6]Budde CF, Riedel SL, Hubner F, Risch SL, Hubner F, Risch S, Popovic MK, Rha C, Sinskey AJ. Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium[J]. Appl Microbiol Biotechnol 2011; 89:1611-1619.
    [7]Fernanda MK, Alexandre PV, Rita CPA. Enzymatic recovery and purification of polyhydroxybutyrate produced by Ralstonia eutropha. J Biotechnol,2006,122: 453-462.
    [8]Mejia MA, Segura D, Espin G., Galindo E, Pena C. Two-stage fermentation process for alginate production by Azotobacter vinelandii mutant altered in poly-beta-hydroxybutyrate (PHB) synthesis [J]. J Appl Microbiol 2010,108: 55-61.
    [9]Shen XW, Yang Y, Jian J, Wu Q. Production and characterization of homopolymer poly(3-hydroxyvalerate) (PHV) accumulated by wild type and recombinant Aeromonas hydrophila strain 4AK4. Bioresour Technol 2009; 100:4296-4299.
    [10]Santhanam A, Sasidharan S. Microbial production of polyhydroxy alkanotes (PHA) from Alcaligens spp. and Pseudomonas oleovorans using different carbon sources. Afr J Biotechnol 2010; 9:3144-3150.
    [11]石海平.微生物发酵制取聚β-羟基丁酸研究简介[J].食品与发酵工业.1997,(24)2:79-82
    [12]Bennett, J.C. and Tributsch, H. (1978) Bacterial leaching patterns on pyrite crystal surfaces[J]. Journal of Bacteriology,134,310-317.
    [13]Schubert P. Cloning of the Alcallgenes eutroghus genes for synthesis of poly-β-hydroxybu tyrle acid (PHB) and synthesis of phb in Escherchia Coli [J]. Journal of Bacteriology,1988,12:5837-5847.
    [14]Liebergesell M, Sonomoto K, Madkour M, et al. Purification and characterization of the poly(hydroxyalkanoic acid) synthase from Chromatium vinosum and localization of the enzyme at the surface of poly(hydroxyalkanoic acid) granules[J]. European Journal of Biochemistry,1994,226,71-80.
    [15]Mirtha EF, Lopez NI, Mendez BS, et al. Isolation and partial characterization of Bacillus megaterium mutants deficient in poly(3-hydroxybutyrate) synthesis[J]. Canadian Journal of Microbiology,1995,41(1):77-79.
    [16]Ackermann JU, Babel W, Reddy CSK, et al. Growth associated synthesis of poly(hydroxybutyricacid) in Methylobacterium rhodesianum[J]. Bioresource Technology,1997,87:144-149.
    [17]Borque D, Pomerleau Y, Groleau D. High cell density production of polyb-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens production of high molecular mass PHB[J]. Applied Microbiology and Biotechnology,1995,44:67-376.
    [18]Eggink G, deWaard P, Huijberts GN. Formation of novel poly(hydroxyalkanoates) from long-chain fatty acids[J]. Canadian Journal of Microbiology,1995,41:14-21.
    [19]Yamane T, Chen XF, Ueda S. Growth associated production of poly(3-hydroxyvalerate) from n-pentanol by a methylotrophicbacterium, Paracoccus denitrificans[J]. Applied and Environmental Microbiology,1996,62: 380-384.
    [20]Tan LKP, Kumar KS, Theanmalar M, et al. Saponified palm kernel oil and its major free fatty acids as carbon substrates for the production of polyhydroxyalkanoates in Pseudomonas putida PGA1[J]. Applied Microbiology and Biotechnology,1997,47:207-211.
    [21]Song JJ, Yoon SC. Biosynthesis of novel aromaticc opolyesters from insoluble 11-phenoxyundecanoic acid by Pseudomonas putida BM01[J]. Applied and Environmental Microbiology,1996,62:536-544.
    [22]Takeda M, Matsuoka H, Hamana H, et al. Biosynthesis of poly-β-hydroxybutyrate by Sphaerotilus natans[J]. Applied Microbiology and Biotechnology,1995,43:31-34.
    [23]HG Schlegel, G Gottschalk and R von Barthan, Formation and utilization of poly-β-hydroxybutyric acid by knallgas bacteria (Hydrogenomonas)[J]. Nature 1961,61:463-465
    [24]OP Peoples, AJ Sinskey. Poly-beta-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding beta-ketothiolase and acetoacetyl-CoA reductase[J]. Journal of Biological Chemistry,1989,264:15298-15303
    [25]Adam G. Transcriptional analysis of Ralstonia eutropha genes related to poly-(R)-β-hydroxybutyrate homeostasis during batch fermentation[J]. Applied Microbiology and Biotechnology (2005) 68:663~672
    [26]陈接锋,许徐萍.产聚p-羟基丁酸球衣菌分离筛选及发酵和提取的研究.福建师范大学硕士学位论文,福建师范大学生物工程学院,2003年5月.
    [27]陈琦,易祖华,黄和容.利用葡萄糖发酵产聚p羟基丁酸菌株的选育[J].微生物学通报,1994,21(6):333-335.
    [28]赵良启,田杰生,吴柏和,等.自养黄杆菌合成羟基丁酸和羟基戊酸共聚体的发酵研究[J].微生物学报,1996,36(5):351-359.
    [29]王丽,清水浩.真养产碱菌由丁酸积累聚p-羟基丁酸的研究[J].微生物学报,1993,33(1):48-53.
    [30]文欣,庄国强,郑士民.真养产碱菌利用高果糖浆积累聚β-羟基丁酸的研究[J].微生物学报,1995,35(2):115-120.
    [31]陈流.利用葡萄糖发酵产聚B一羟基丁酸菌株的选育[J].微生物学通报,1994,21(6):333-335.
    [32]王淑芳,郭天瑛,杨超等.微生物合成的p-羟基丁酸酯与p-羟基己酸酯共聚物/聚乳酸共混材料(PHBHHx/PLA)的力学性能与生物降解性研究[J],离子交换与吸附.2006,22(1):1-8
    [33]许开天,陈国强,许松玲等.新型树状高分子及其制备方法[S].中国专利,ZL2006100770420,2007-10-31.
    [34]许开天,陈国强,黎松等.新型嵌段高分子及其制备方法[S].中国专利,ZL2006100770416,2007-10-31.
    [35]许开天,陈国强,潘觉宇等.一种食品包装用高阻隔性水胶及制备方法[S].中国专利,2007100287336,2007-11-14
    [36]Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates:biological polyesters[J]. Progress in Polymer Science 2000,25:1503-1555.
    [37]于慧敏,杨胜利.重组大肠杆菌VG1(PTU14)产PHB的补实分批培养[J].化 工学报,2002,7:742-746.
    [38]于慧敏,杨胜利.可生物降解塑料聚β-羟基丁酸酯(PHB)的研究和发展利用基因工程菌VG1(pTUl4)产聚β—羟基丁酸酯的研究[J].微生物学报,2000,3:284-289.
    [39]Valentin HE, Dennis D. Production of poly (3-hydroxybutytrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol.1997,58:33-8.
    [40]Suriyamongkol P, Weselake R, Narine S,, Moloney M. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants —A review. Biotechnol Adv,2007,25:148-175.
    [41]Steinbuchel A. Diversity of bacterial polyhydroxyalkanoic acids[J]. FEMS Microbiology Let,1995,128:219~228
    [42]于慧敏,沈忠耀.可生物降解塑料聚β-羟基丁酸酯(PHB)的研究和发[J].生物化工,2001,8:11-16.
    [43]Adam G. Transcriptional analysis of Ralstonia eutropha genes related to poly-(R)-β-hydroxybutyrate homeostasis during batch fermentation[J]. Applied Microbiology and Biotechnology,2005,68:663-672.
    [44]汤苏阳,艾玉峰,董兆麟等.新型生物降解塑料PHB细胞相容性研究[J].中国美容医学,2009,9(2):164-166.
    [45]赵良启,田杰生,吴柏和,等.自养黄杆菌合成羟基丁酸和羟基戊酸共聚体的发酵研究[J].微生物学报,1996,36(5):351-359.
    [46]李静,刘景江.聚(p-羟基丁酸酯)和p-羟基丁酸酯-p-羟基戊酸酯共聚物共混改性研究进展[J].功能高分子学报,2003,16:392-404.
    [47]Harrison JAP. Acidiphilium cryptum gen. nov., sp. nov., heterotrophic bacterium from acidic mineral environments [J]. International Journal of Systematic Bacteriology,1981,31:327-332.
    [48]Yukiko, M., Toshio, K., Jiro, S., Akira, H. Ultrastructure of the acidophilic aerobic photosynthetic bacterium Acidiphilium rubrum[J].Current Microbiology, 2000,40:398-401.
    [49]杨宇,徐爱玲,张燕飞,等.酸性矿坑水中一株兼性菌及其胞内聚合物的分离及表征[J].武汉大学学报(自然科学版),2007,6(53):753-758.
    [50]Xu, A.L., LI, L., Zhang, S., Xia, J.I., Yang, Y.. The optimization of culture condition for PHB accumulating by Acidiphilium cryptum DX1-1[J]. Journal of Wuhan Univ. (Nat. Sci. Ed.),2008,6:702-712.
    [51]Purushothanman M, Anderson R K L, Narayana S, et al. Industrial by-products as cheaper medium components influencing the production of polyhydroxyalkanoates-biodegradable plastics[J]. Bioprocess and Biosystems Engineering,2001,24:131-136.
    [52]Thakor N S, Patel M A, Trivedi UB, et al. Production of poly(β-Hydroxybutyrate) by comamonas testosteroni during growth on naphthalene[J]. World Journal of Microbiology & Biotechnology,2003,19: 185-189.
    [53]Hong K, Sun S, Tian W et al. A rapid method for detecting bacterial polyhydroxyalkanoates in intact cells by fourier transform infrared spectroscopy[J]. Appllid Microbiology and Biotechnology,1999,51:523-526.
    [54]Misra A K, Thakur M S, Srinivas P, et al. Screening of poly-β-hydroxybutyrate-producing microorganisms using fourier transform infrared spectroscopy[J]. Biotechnology Letters.2000,22:1217-1219.
    [55]Miller G I. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry,1959,31(3):426-428.
    [56]Kiisel K, Dorsch T, Acker G, Stackebrandt E. Microbial reduction of Fe(III) in acidic sediments:isolation of Acidiphilium cryptum JF-5 capable of coupling the oxidation of glucose to the reduction of Fe(Ⅲ) [J]. Applied and Environmental Microbiology,1999,65:3633-3640.
    [57]Ailing Xu, Jinlan Xia, Keke Liu, et al. Real-time PCR Analysis of metabolic pathway of PHB in Acidiphilium cryptum DX1-1[J], Journal of Microbiology and Biotechnology,2010,20(1):71-77.
    [58]Toghrol F, Southerland W M. Purification of Thiobacillus novellus sulfite oxidase:Evidence for the presence of heme and molybdenum[J]. Biological Chemistry,1983,258:6762-6766.
    [59]Bruser T, Selmer T, Dahl, C.'ADP sulfurylase'from Thiobacillus denitrificans is an adenylylsulfate:phosphate adenylyltransferase and belongs to a new family of nucleotidyltransferases[J]. Journal of Biological Chemistry,2000, 275:1691-1698.
    [60]Kappler U, Dahl C. Enzymology and molecular biology of prokaryotic sulfite oxidation[J]. FEMS Microbiology Letters,2001,203:1-9.
    [61]Liu Yan-yang, Chen Zhiwei, Jiang Chengying, et al. Isolation and characterization of Acidiphilium strain Teng-A and its metabolism of Fe (Ⅲ) during pure-and mixed cultivation[J]. Acta Microbiologica Sinica,2007,47 (2):350-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700