基于特征基函数的高效算法及其在电磁散射中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空、航天、航海等电子技术的发展,在雷达目标隐身和反隐身技术、雷达目标特征分析以及现代电子系统中的电磁兼容性等领域经常需要对一些具有复杂结构的三维目标体做电磁建模,并力求精准且快速的分析结果,这一需求也成为了计算电磁学领域的研究热点。本文在此背景下对计算电磁学中的一个分支进行了研究,以表面积分方程为理论基础,通过矩量法的求解方式,提出了一种新的计算方法——自适应修正特征基函数法。整篇文章紧紧围绕这一新的方法,研究该方法的加速技术以及对不同类型目标体电磁散射分析的适应性,最终的目的是通过开发通用的电磁计算程序来切实可行的解决电磁工程中复杂的电磁目标特性。本文中,对该方法的研究主要分为两大部分,第一部分是方法本身的研究,包括方法的提出,加速技术等,第二部分是方法的拓展,包括将自适应修正特征基函数法应用到均匀介质体、介质与理想导体混合体的电磁散射研究中,并详细讨论了该方法在windows环境下的并行实现等。
     在第一部分中,首先提出了一种新的计算方法——自适应修正特征基函数法(AMCBFM),该方法对目标体的阻抗矩阵进行分块,通过等效电流或者磁流系数的自适应修正技术,克服了已有方法中对基函数阶数的选取不能自由控制的缺点,采用一种简单的电流误差判断方式方便快捷地控制计算精度。并讨论了不同参数,包括分块数目、基函数阶数等对计算效率的影响,找出了较为合适的取值,数值结果表明本方法具有较高的计算效率。在此基础上,将基于Dual-MGS的QR分解技术与AMCBFM结合,通过判断块间互阻抗矩阵的数值秩来确定是否进一步计算其他块间互阻抗矩阵,大大降低了内存需求,提高了计算速度。同时,将基于MBPE的有理函数插值技术与AMCBFM结合,成功的应用到了电大尺寸目标体的单站RCS求解以及宽带特性研究中,讨论了部分参数比如第三采样点、精度误差、分段采样等对计算效率的影响,数值结果表明采用该插值方法后,所需要的采样点数目大大减少。
     在第二部分中,主要围绕AMCBFM进行拓展研究。首先简单介绍了适用于均匀介质体的PMCHW方程组,该方程组基于场等效性原理和表面积分方程。与AMCBFM结合,用来分析均匀介质体的电磁散射,讨论了块间重叠区域、基函数阶数的选取等对计算效率的影响。建立了用于介质与理想导体混合体的表面积分方程组EFIE-PMCHW,与AMCBFM结合,分析了完全涂敷介质的理想导体,部分涂敷介质的理想导体等目标体的电磁散射问题,讨论了介质厚度,介电常数等参数对计算效率的影响,通过分析微带天线、微带天线阵等目标体的电磁散射进一步验证了方法的正确性和高效性。最后,在windows环境下,实现了AMCBFM方法的并行运算,采用动静态结合负载平衡的并行方式,克服了在静态负载平衡并行算法中由于不同类型计算机节点处理数据的效率不同而导致计算效率低下的缺点,同时具备了动态负载平衡算法的灵活性。通过QR-AMCBFM实行并行技术后,进一步提高了计算效率,本文亦实现了介质与理想导体混合体电磁散射的并行计算,结果显示对于处理更大电尺寸的目标体电磁散射问题具有很好的适用性。
With the development of electronic technologies for aeronautics, astronautics and navigation, the techniques of radar target stealth and anti-stealth, RCS and electromagnetic compatibility are required for accurate analysis on 3-D objects with complex structures. Because of the request, this is becoming a hot topic in electromagnetic field. In this dissertation, the research on one branch of computational electromagnetic has been studied. Based on the surface integral equations expanded by moment method, a new method called adaptively modified characteristic basis function method (AMCBFM) is proposed. The whole study clue is based on this method in order to seek one effective approach to analyze the electromagnetic characteristic of some intricate targets. The universal programs and accelerative technologies are required to slove the complex electromagnetic characteristics of different oblects.
     This dissertation includes two aspects in principle. One part is the study on the new method, including its principium and related accelerative technologies, and the other part is the applications for analyzing electromagnetic scattering problems on homogeneous dielectric objects as well as mixed homogeneous dielectric and PEC objects. The parallel algorithm executed in windows environment is also discussed.
     In the first portion, the AMCBFM is proposed. This method divides the studied objects into many blocks and uses an adaptively modified technique to overcome the shortcoming which is not convenient to choose the levels of characteristic basis functions (CBFs) in the conventional characteristic basis function methods (CBFMs). And a simple way is applied to control the current error precision. Some different parameters including the number of blocks and the levels of CBFs are discussed to find out the effect on the computational efficiency, and the appropriate values are turned up. The results from the method agree well with that from the conventional methods. Subsequently, the QR factorization based on Dual-MGS is combined with AMCBFM to reduce the RAM storage and improve the computational speed. Moreover, it is successful to use the model based parameters estimation (MBPE) technology and AMCBFM in analyzing the monostatic RCS and wideband response of large electric objects. And the influence of several parameters on the results, such as the third sampling point, precision error and subsection sampling, is discussed and it shows that the number of sampling points reduces sharply.
     In the second portion, the studies on the further application of AMCBFM are carried out. The PMCHW equations for homogenous dielectric objects are reviewed, which are based on the equivalent principles and surface integral equations. After combined with AMCBFM, the new method, PMCHW-AMCBFM, is proposed. Moreover, the overlap domain between adjacent blocks and the levels of CBFs are also investigated to seek the suitable values. Subsequently, the surface integral equations, EFIE-PMCHW, for the electromagnetic scattering problem of mixed homogenous dielectric and PEC objects are introduced and combined with AMCBFM triumphantly called as EFIE-PMCHW-AMCBFM. And the electromagnetic scattering of microstrip antennas and microstrip antenna arrays are analyzed accurately, which validates the validity and veracity of this method. At last, the dynamic-static load balance parallel algorithm based on AMCBFM is executed in windows environment. This algorithm overcomes the disadvantages of static load balance parallel algorithm and has the advantages of dynamic load balance parallel algorithm. And the algorithm combined with QR-AMCBFM and EFIE-PMCHW-AMCBFM is implemented to solve the electromagnetic scattering problems aroused by various large electric objects effectively.
引文
[1] R Mittra, A look at some challenging problems in computational electromagnetics, Antennas and Propagation Magazine, IEEE, 2004, 46(5): 18-32
    [2] A F Peterson, S L Ray, R Mittra, Computational Methods for electromagnetics, New York: IEEE Press, 1998
    [3] Born M, Wolf E, Principle of Optics, Oxford: Pergamon, 6th Edition, 1980
    [4] Cornbleet S, Geometrical optics reviewed: A new light on an old subject, Proceedings of the IEEE, 1983, 71(4): 471-502
    [5] Adachi S, The nose-on echo area of axially symmetric thin bodies having sharp apices, Proceedings of the IEEE, 1965, 53(8): 1067-1068
    [6] Mentzer J W, Scattering and Diffraction of Radio Wave, New York: Pergamon,1955
    [7] Keller J B, Geometrical theory of diffraction, J. Opt. Soc. Amer.,1962,52:116-130
    [8] LuebbersR J, FooseW A, Reyner G, Comparison of GTD propagation model wide-band path loss simulation with measurements, IEEE Transactions on Antennas and Propagation, 1989, 37(4): 499-505
    [9] Kouyoumjian R G, Pathak P H, A uniform geometrical theory of diffraction for an edges in a perfectly conducting surface, Proc. IEEE.1974, 62(11): 1448-1461
    [10] Bouche D P, Bouquet J J, Manenc H, Mittra R, Asymptotic computation of the RCS of low observable axisymmetric objects at high frequency, IEEE Transactions on Antennas and Propagation, 1992, 40(10): 1165-1174
    [11] Boersma J, A uniform asymptotic theory of diffraction, Antennas and Propagation Society International Symposium, 1975, 13: 397-397
    [12] Marzougui A M, Franke S J, Scattering from rough surfaces using the shooting and bouncing rays' (SBR) technique and comparison with the method of moments solutions, Antennas and Propagation Society International Symposium, 1990: 1540-1543
    [13] Luk K M, Cullen A L, Three-dimensional Gaussian beam reflection from short-circuited isotropic ferrite slab, IEEE Transactions on Antennas and Propagation, 1993, 41(7): 962-966
    [14] Gu Changqing, Shu Yongze, Xu Jinping, A subdomains splicing technique for IPO approach, Antennas, ISAPE 2000. 5th International Symposium on Services Systems and Services Management, 2000: 75-78
    [15] Yee S K, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antenna Propagat. 1996, 14(5): 302-307
    [16] Staker S W, Holloway C L, Bhobe A U, Piket-May M, Alternating-direction implicit (ADI) formulation of the finite-difference time-domain (FDTD) method: algorithm and material dispersion implementation, IEEE Transactions on Electromagnetic Compatibility, 2003, 45(2): 156-166
    [17] Chen J, Wang J, A Novel WCS-FDTD Method With Weakly Conditional Stability, IEEE Transactions on Electromagnetic Compatibility, 2007, 49(2): 419-426
    [18] Namiki T, Ito K, Numerical simulation using ADI-FDTD method to estimate shielding effectiveness of thin conductive enclosures, IEEE Transactions onMicrowave Theory and Techniques, 2001, 49(6): 1060-1066
    [19] Pisharody G, Weile D S, Electromagnetic scattering from homogeneous dielectric bodies using time-domain integral equations IEEE Transactions on Antennas and Propagation, 2006, 54(2): 687-697
    [20] Fumeaux C, Baumann, D, Vahldieck R, Finite-volume time-domain analysis of a cavity-backed Archimedean spiral antenna, IEEE Transactions on Antennas and Propagation, 2006, 54 (3): 844-851
    [21] Jiao D, Jian-Ming Jin, A general approach for the stability analysis of the time-domain finite-element method for electromagnetic simulations, IEEE Transactions on Antennas and Propagation, 2002, 50(11): 1624-1632
    [22] IcPyo Hong, Namll Yoon, HanKyu Park, Numerical dispersive characteristics and stability condition of the multi-resolution time-domain (MRTD) method, International Symposium on Electromagnetic Compatibility Proceedings, 1997: 455-458
    [23] Bushyager N, Tentzeris M M, Intracell modeling of lumped elements using the composite-cell MRTD, IEEE MTT-S International technique Microwave Symposium Digest, 2004, 2: 1041-1044
    [24] Q Cao, Y Chen, P K Wai, MRTD electromagnetic scattering analysis Microwave and Optical Technology Letters, 2001, 28(3): 189-195
    [25] Qunsheng Cao, Yinchao Chen, Mittra R., Multiple image technique (MIT) and anisotropic perfectly matchedlayer (APML) in implementation of MRTD scheme for boundary truncationsof microwave structures, IEEE Transactions on Microwave Theory and Techniques, 2002, 50(2): 1578-1589
    [26] Qing Huo Liu, Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm, IEEE TransactionsonGeoscience and Remote Sensing,1999, 37(2): 917 - 926
    [27] Ming-Sze Tong, Krozer V, Applications of pseudo-spectral time domain (PSTD) method with unsplit anisotropic PML technique, IEEE on Antennas and Propagation Society International Symposium, 2002 3: 294-297
    [28] Jin J M, The Finite Element Method in Electromagnetic, New York: Wiley, 1993
    [29] Dong Xingqi, An Tongyi, A new FEM approach for open boundary Laplace's problem, IEEE Transactions on Microwave Theory and Techniques, 1996, 44(1): 157-160
    [30] Gyimesi M, Tsukerman I, Lavers D, Pawlak T, Ostergaard D, Hybrid finite element-Trefftz method for open boundary analysis, IEEE Transactions on Magnetics, 1996, 32(3): 671-674
    [31] Harrington R F, Field Computation by Moment Methods, New York: Macmillan, 1968
    [32] Rao S M, Wilton D R, Glisson A W, Electromagnetic scattering by surfaces of arbitrary shape, IEEE Transaction Antennas Propagation, 1982, 30(5): 409-418
    [33] Bocheng Chen, Ip Wh, The study on the two characters in a kind of Markov chain's CRM model, International Conference on Services Systems and Services Management, 2005, 1: 230-232
    [34] Qin Li, Leung Tsang, Pak, K S, Chi Hou Chan, Bistatic scattering and emissivities of random rough dielectric lossy surfaces with the physics-based two-grid method in conjunction with the sparse-matrix canonical grid method, IEEE Transactions on Antennas and Propagation, 2000, 48(1): 1-11
    [35] Mori A, De Vita F, Freni A, A modification of the canonical grid series expansion in order to increase the efficiency of the SMCG method, IEEE Geoscience and Remote Sensing Letters, 2005, 2(1): 87-89
    [36] K F Sabet, J C Cheng, L P B Katehi, Efficient wavelet-based modeling of printed circuit antenna arrays, IEE Microwave Antennas Propagation, 1999 (146): 289-304
    [37] R L Wagner, W C Chew, A study of wavelet for the solution of electromagnetic integral equations,IEEE Trans. Antennas Propagation, 1995: 802-810.
    [38] F X Canning, Improved impedance matrix localization method , IEEE Trans. Antennas Propagation, 1993: 659-667
    [39] Tran T V, McCowen A, An improved pulse-basis conjugate gradient FFT method for the thin conducting plate problem, IEEE Transactions on Antennas and Propagation, 1993, 41(2): 185-190
    [40] Yuan Zhuang, Ke-Li Wu, Chen Wu, Litva, J, A combined full-wave CG-FFT method for rigorous analysis of large microstrip antenna arrays, IEEE Transactions on Antennas andPropagation, 1996, 44(1): 102-109
    [41] Catedra, M F, Gago, E, Nuno, L, A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform, IEEE Transactions on Antennas and Propagation, 989 37(5): 528-537
    [42] Quek F K H, Kirbas C, Charbel F T, AIM: attentionally based interaction model for the interpretation of vascular angiography, IEEE Transactions on Information Technology in Biomedicine, 1999, 3(2): 151-157
    [43] Bindiganavale S S, Volakis J L, Anastassiu H, Scattering from planar structures containing small features using the adaptive integral method (AIM), IEEE Transactions on Antennas and Propagation, 1998, 46(12):1867-1878
    [44] Wei-Bin Ewe, Le-Wei Li, Mook-Seng Leong, Fast solution of mixed dielectric/conducting scattering problem using volume-surface adaptive Integral method, IEEE Transactions on Antennas and Propagation, 2004, 52(11): 3071-3077
    [45] Jing-Li Guo, Jian-Ying Li, Qi-Zhong Liu, Analysis of arbitrarily shaped dielectric radomes using adaptive integral method based on volume integral equation, IEEE Transactions on Antennas and Propagation, 2006, 54(7): 1910-1916
    [46] Engheta N, Murphy W D, Rokhlin V, Vassiliou M.S., The fast multipole method (FMM) for electromagnetic scattering problems, IEEE Transactions on Antennas and Propagation, 1992, 40(6): 634-641
    [47] Geng N, Sullivan A, Carin L, Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space, IEEE Transactions on Antennas and Propagation, 2001, 49(5): 740-748
    [48] R. Coifman, V Rokhin, S Wandzura, The fast multiple method for the wave equation: A pedestrian prescription, IEEE antennas Propagation Magzine, 1993: 7-12
    [49] Wei Bing Lu, Tie Jun Cui, Efficiency Analysis of a Novel FMM-CG-FFT Algorithm for Full-Wave Simulation of Finite-Sized Periodic Structures, IEEE on Antennas and Propagation Society International Symposium, 2006: 4027-4030
    [50] J Song, C Lu, W C Chew, Multilevel fast multiple algorithm for electromagnetic scattering by large complex objects, IEEE Trans. Antennas Propagation, 1997, pp: 1488-1493
    [51] Zhiqin Zhao, Ling Li, Smith J, Carin L, Analysis of scattering from very large three-dimensional rough surfaces using MLFMM and ray-based analyses, IEEE on Antennas and Propagation Magazine, 2005, 47(3): 20-30
    [52]牛臻弋,复杂移动平台环境中天线辐射问题的快速算法研究[博士论文],东南大学,2006年。
    [53]胡俊,聂在平,王军等,三维电大目标散射求解的多层快速多极子方法,电波科学学报, 2004, 19(5): 509-514
    [54] Rui P L, Chen R S, Wang D X, Yung E K N, A Spectral Multigrid Method Combined With MLFMM for Solving Electromagnetic Wave Scattering Problems, IEEE Transactions on Antennas and Propagation, 2007, 55(9): 2571-2577
    [55] Velamparambil S, Weng Cho Chew, Jiming Song, 10 million unknowns: is it that big, IEEE on Antennas and Propagation Magazine, 2003, 45(2): 43-58
    [56] Graglia R D, Wilton D R, Peterson A F, Higher order interpolatory vector bases for computational electromagnetics, IEEE Transactions on Antennas and Propagation, 1997, 45(3): 329-342
    [57] Gang Kang, Jiming Song, Weng Cho Chew, Donepudi K C, Jian-Ming Jin, A novel grid-robust higher order vector basis function for the method of moments, IEEE Transactions on Antennas and Propagation, 2001, 49(6): 908-915
    [58] Wildman R A, Weile D S, An accurate broad-band method of moments using higher order basis functions and tree-loop decomposition, IEEE Transactions on Antennas and Propagation, 2004, 52(11): 3005-3011
    [59] Donepudi K C, Jian-Ming Jin, Weng Cho Chew, A higher order multilevel fast multipole algorithm for scattering from mixed conducting/dielectric bodies, IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2814-2821
    [60] Craeye C, A Fast Impedance and Pattern Computation Scheme for Finite Antenna Arrays, IEEE on Antennas and Propagation, 2006, 54(10): 3030-3034
    [61] Stevanovic I, Mosig J R, Using symmetries and equivalent moments in improving the efficiency of the subdomain multilevel approach, Antennas and Wireless Propagation Letters, 2005, 4: 158-161
    [62] Ivica Stevanovik, Juan R, Mosig, Subdomain Multilevel Approach with Fast MBF Interactions, IEEE, Antennas and Propagation Society International Symposium, 2004(1): 367-370
    [63] C.A.巴拉尼斯,天线理论-分析与设计,北京-电子工业出版社(第二版),1988,6
    [64] James R M, On the use of Fourier series/FFT's as global basis functions in thesolution of boundary integral equations for EM scattering, IEEE Transactions on Antennas and Propagation, 1994, 42(9): 1309-1316
    [65] Wei Bing Lu, Tie Jun Cui, Xiao Xing Yin, Zhi Guo Qian, Wei Hong, Fast algorithms forlarge-scale periodic structures using subentire domain basis functions, IEEE Transactions on Antennas and Propagation, 2005, 53(3): 1154-1162
    [66] Wei Bing Lu, Tie Jun Cui, Zhi Guo Qian, Xiao Xing Yin, Wei Hong, Accurate analysis of large-scale periodic structures using an efficient sub-entire-domain basis function method, IEEE Transactions on Antennas and Propagation, 2004, 52(11): 3078-3085
    [67] V V S. Prakash, Raj Mittra, Characteristic basis function method: a new technique for efficient solution of method of moments matrix equations , Microwave and optical technology letter, 2003, 36(2): 95-100
    [68] Y F Sun, C H Chan, R Mittra, et al, Characteristic basis function method for solving large problems arising in dense medium scattering, Antennas and Propagation Society International Symposium, 2003, IEEE, 2003(2): 1068– 1071
    [69] S J Kwon, K Du, R Mittra, Characteristic basis function method a numerically efficient technique for analyzing microwave and RF circuits , Microwave and Optical Technology Letters, 2003, 38(6): 444-448
    [70] Junho Yeo, R Mittra, Numerically efficient analysis of microstrip antennas using the Characteristic Basis Function method (CBFM), Antennas and Propagation Society International Symposium, 2003. IEEE, 2003(4): 85-88
    [71] Xiaofeng Que, Zaiping Nie, Analysis of electromagnetic radiation and scattering using characteristic basis function method with higher order method, Microwave Conference Proceedings, 2005, 4
    [72] Junho Yeo, Numerically efficient techniques for the analysis of microwave antennas, circuits and scattering problems, Doctor of Philosophy, The Pennsylvania State University, 2003.
    [73] Soon Jae Kwon, Numerically efficient techniques for the analysis of MMIC structures, Doctor of Philosophy, The Pennsylvania State University, 2004
    [74] Henderson L, Thiele G, A hybrid MM-geometrical optics technique for the treatment of wire antennas mounted on a curved surface, IEEE Transactions on Antennas and Propagation, 1982, 30(6): 1257-1261
    [75] Zhuqian Gong, Boxun Xiao, Guoqiang Zhu, Hengyu Ke, Improvements to the hybrid MoM-PO technique for scattering of plane wave by an infinite wedge, IEEE Transactions on Antennas and Propagation, 2006, 54(1): 251-255
    [76] S Zhongxiang, J L Volakis, A hybrid physical optics-moment method for large nose radome antennas, Antennas Propagat Soc Int Symp AP-S Dig 4 (1999), 2554–2557.
    [77] Thiele G, Newhouse T, A hybrid technique for combining moment methods with thegeometrical theory of diffraction, IEEE Transactions on Antennas and Propagation, 1988, 23(1): 62-69
    [78] Sahalos J, Thiele G, On the application of the GTD-MM technique and its limitations, IEEE Transactions on Antennas and Propagation, 1981, 29(5): 780-786
    [79] G. Tiberi, S Rosace, A Monorchio, et al, Electromagnetic scattering from large faceted conducting bodies by using analytically derived characteristic basis functions, Antennas and Wireless Propagation Letters, IEEE, 2003, 2(1): 290-293
    [80] E Lucente, A Monorchio, RMittra, Generation of Characteristic Basis Functions by using Sparse MoM Impedance Matrix to Construct the Solution of Large Scattering and Radiation Problems, Antennas and Propagation Society International Symposium, IEEE, 2006: 4091-4094
    [81] J X Wan, J Lei, CH Liang, An Efficient Analysis of Large-Scale Periodic Microstrip Antenna Arrays Using the Characteristic Basis Function Method, Progress In Electromagnetics Research, PIER 50, 61-81, 2005
    [82] R Mittra, V V S Prakash, J Yeo, Some novel techniques for efficient analysis of large arrays and frequency selective radomes, The Institute of Electrical Engineers, IEE, 2003, 462-465.
    [83] M Kuzuoglu, Fast Solution of Electromagnetic Boundary Value Problems by the Characteristic Basis Functiond FEM Approach, IEEE Antennas Propagation Soc. Inc. Symp., 2003, 1072-1075
    [84] J X Wan, C H Liang, J Lei, A Fast Analysis of Scattering from Microstrip Antennas Over a Wide Band, Progress In Electromagnetics Research, Piers, 2005, 50: 187-208
    [85] R Mittra, V V S Prakash, J Yeo, Some novel techniques for efficient analysis of large arrays and frequency selective radomes, The Institute of Electrical Engineers, IEE, 2003: 462-465.
    [86] V V S Prakash, RCS Computation over a Frequency Band using the Characteristic Basis and Model Order Reduction Method, Antennas and Propagation Society International Symposium, IEEE, 2003, 4: 89-92.
    [87] Xiaofeng Que, Zaiping Nie, Analysis of electromagnetic radiation and scattering using characteristic basis function method with higher order method, Microwave Conference Proceedings, APMC 2005, Asia-Pacific Conference Proceedings 2005
    [88] X Liming, N Zaiping, H Jun, Investigations on solving electromagnetic scattering by characteristic basis function method, Computational Electromagnetics and Its Applications, IEEE, 2004: 48-51
    [89] J F Ma, R Mittra, Analysis of scattering characteristics of electrically large objects using a CBFM-based procedure, Antennas and Propagation Society International Symposium, IEEE, 2005(3): 105-108
    [90] G Tiberi, S Rosace, A Monorchio, et al, Electromagnetic scattering from large faceted conducting bodies by using analytically derived characteristic basis functions, Antennas and Wireless Propagation Letters, IEEE, 2003, 2(1): 290-293
    [91] E Lucente, A Monorchio, R Mittra, Generation of Characteristic Basis Functions by using Sparse MoM Impedance Matrix to Construct the Solution of Large Scattering and Radiation Problems, Antennas and Propagation Society International Symposium, IEEE, 2006: 4091-4094
    [92] Raj Mittral, Ji-Fu Mal, Eugenio Lucente, Agostino Monorhio, CBMOM-An Iteration Free MoM Approach For Solving Large Multiscale EM Radiation and Scattering Problems, Antennas and Propagation Society International Symposium, IEEE, 2005, 4: 2-5.
    [93] Gianluigi Tiberi, Serena Rosace, Agostino Monorchio, Electromagnetic Scattering From Large Faceted Conducting Bodies by Using Analytically Derived Characteristic Basis Functions, IEEE antenas and wireless propagation letters, 2003, 2: 290-293
    [94] Gianluigi Tiberi, Serena Rosace, Agostino Monorchio, A Matrix-Free Spectral Rotation Approach to the Computation of Electromagnetic Fields Generated by a Surface Current Distribution, IEEE antennas and wireless propagation letters, 2005, 4: 121-123
    [95] Gianluigi Tiberi, Giuliano Manara, Raj Mittra, A Spectral Domain Integral Equation Method Utilizing Analytically Derived Characteristic Basis Functions for the Scattering From Large Faceted Objects, IEEE Trans. Antennas Propagation, 2006, 54(9): 2508-2514
    [96] S Kapur, D Long, IES3: A fast integral equation solver for efficient 3-dimensional extraction, in Proc, IEEE/ACM Int. Conf. Computer- Aided Design, Nov. 1997: 448–455.
    [97] S MmSeo, J F Lee, A single-level low rank IE-QR algorithm for PEC scattering problems using EFIE formulation, IEEE Trans. Antennas Propag., 2004, 52(8): 2141-2146.
    [98] Robert J Burkholder, Jin-Fa Lee, Fast Dual-MGS Block-Factorization Algorithm for Dense MoM Matrices, IEEE Trans. Antennas Propagation, 2004, 52(7): 1693-1699
    [99] Dipanjan Gope, Vikram Jandhyala, Efficient solution of EFIE via low-rank compression of multilevel predetermined interactions, IEEE Trans. Antennas Propag., 2005, 53(10): 3324-3333
    [100] C Delgado, R Mittra, F Catedra, Analysis of Fast Numerical Techniques Applied to the Characteristic Basis Function Method, IEEE, Antennas and Propagation Society International Symposium 2006: 4031-4034
    [101] D Gope, S Chakraborty, V Jandhyala, Enhanced efficiency, hybrid FMM-QR fast parasitic extractor for conductors and dielectrics, in Proc, IEEE/ACM Design and Automation Conf., 2004: 94-799.
    [102] Breuer, P Borderies, J L Poirier, A multilevel implementation of the QR compression for method of moments, IEEE Trans. Antennas Propag., vol. 2003, 51(9):2520–2522, Sep..
    [103] Kezhong Zhao, Jin-Fa Lee, A Single-Level Dual Rank IE-QR Algorithm to Model Large Micro-strip Antenna Arrays, IEEE Trans. Antennas Propagation, 2004, 52(10): 2580-2585
    [104]吴晓英,复杂目标电磁散射的分析与研究[硕士论文],苏州大学,2006年
    [105] Xueguan Liu, Wenfeng Cai, Huiping Guo, et al, Efficient generation of method of moment matrices using the characteristic function method, APMC, Suzhou, 2005
    [106] Pillage L, et al, Asymptotic waveform evaluation for timing analysis, IEEE, Trans. Comput-Aided Des. Integrated circuits and Syst., 1990, 9(4): 352-366
    [107] Slone R D, et al, Multipoint Galerkin asymptotic waveform evaluation for model order reduction of fequeney domain FEM electromagnetic radiation problems, IEEE Trans on Antennas and Propagation, 200l, 49(10): l504-1513.
    [108] Peter Feldmann, Efficient linear circuit analysis by Pade approximation via the lanczos process, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1995, 14(05): 639-649
    [109] Slone R D, Well-Conditioned asymptotic waveform evaluation for finite elements, IEEE Trans Antenas and Propagation, 2003, 51(9): 2442-2447.
    [110]万继响,梁昌洪,WCAWE技术快速求解宽频带散射特性,电子学报,2004,32(6): 1001-1004
    [111]万继响,梁昌洪,矩量法快速求解全频带特性的AMWCAWE-MNM技术,电子学报,2004, 32(6): 911-914
    [112] Chiprout E, Nakhla M S, Analysis of interconnect networks using complex frequency hopping(CFH), IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1995, 14(2): 186-200
    [113] Achar R, Nakhla M, Qi-Jun Zhang, Full-wave analysis of high-speed interconnects using complex frequency hopping, IEEE Transactions onComputer-Aided Design of Integrated Circuits and Systems, 1998, 17(10): 997-1016
    [114] Sanaie R, Chiprout E, Nakhla M S, Zhang Q J, A fast method for frequency and time domain simulation of high-speed VLSI interconnects, IEEE Transactions on Microwave Theory and Techniques, 1994, 42(12): 2562-2571
    [115] Slone R D, Jin-Fa Lee, Lee R, Automating multipoint Galerkin AWE for a FEM fastfrequency sweep, IEEE Trans Magnetics, 2OO2, 38(2): 637-640
    [116] Burke G J, Using model-based parameter estimation to increase the eficiency of computing electrotrmgnetic transfer functions, IEEE Trans on Magnetics, 1989, 25(7): 2807-2809
    [117]蒋鸿林,张小苗,梁昌洪,基于有理逼近和MBPE结合恢复天线方向图,电波科学学报,2005, 20(6): 754-757
    [118]万继响,宗卫华,梁昌洪,MBPE技术快速分析导体散射的频空二维特性,2003, 30(6): 762-765
    [119] C J Reddy, Application of model based parameter estimation for rcs frequency response calculations using method of moments, USA: NASA Contractor Report 206951, 1998
    [120] Huiqing Zhai, Changhong Liang, A fast wideband analysis of radiation and scattering problems by impedance-matrix interpolation combined with progressive numerical method , Microwave and Opt. Technol. Lett., 2004, 43(1): 56-59
    [121] R Lehmensiek, An efficient adaptive frequency sampling algorithm for model-based parameter estimation as applied to aggressive space mapping , Microwave and Opt. Technol. Lett., 2000, 48(3): 383-392
    [122]万继响,张玉,项铁铭等,FMM结合改进自适应MBPE技术快速求解单站RCS,电波科学学报,2004, 19(1): 72-76
    [123]陈国良,安虹,陈崚,郑启龙,单久龙,并行算法实践,高等教育出版社,2004.1
    [124]都志辉,高性能计算并行编程技术--MPI并行程序设计,北京:清华大学出版社2001
    [125] Xianneng Shen, Application of Massively Parallel Architecture To Computational Electromagnetics, Phd. Thesis, Syracuse University, 1993
    [126] Andre Fourie, Dered Nitch, SuperNEC: Antenna and Indoor-Propagation Simulation Program, IEEE Antenna and Propagation Magazine.
    [127] Ulrich Jakobus, Application of Integral Equation and Hybrid Techniques to the Parallel Computation of Electromagnetic Fields in a Distributed Memory Environment, Applied Computational Electromagnetics Society Journal, 1998, 13: 87–98
    [128]林云,并行多层快速多级子算法中若干关键技术研究,电子科技大学[硕士论文] 2006.4
    [129]董健,边界积分方程及快速算法在分析复杂电磁问题中的研究与应用,国防科技大学[博士论文],2005.10
    [130]张玉,FDTD与矩量法的关键技术及并行电磁计算应用研究,西安电子科技大学[博士论文],2004.4
    [131] Hany Abd-El-Raouf, Raj Mittra, Ji-Fu Ma, Solving Very Large EM Problems Using theMPI-CBFDTD Method, IEEE Antennas and Propagation Society International Symposium Page(s): 18-21 Volume 2B, 3-8 July 2005
    [132]肖运辉,计算电磁学中的并行矩量法及其在集群环境中的应用,电子科技大学[硕士论文],2006.5
    [133] Lin Hong, Cai Wenfeng, Guo Huiping, Liu Xueguan, Analysis of Large-Scale EM Scattering Using the Parallel Characteristic Basis Function Method Antennas, Propagation & EM Theory, 2006, ISAPE, 7th International Symposium on Oct. 2006 Page(s): 1-4
    [134]盛新庆等,计算电磁学,科学出版社,2005年第二版,pp: 21-28
    [135]张玉,电磁场并行计算,西安电子科技大学出版社,2006年第一版
    [136]阙肖峰,聂在平,大型阵列结构电磁特性分析的特征基函数方法,系统工程与电子技术,2006,28(11):1613-1616
    [137] Tanaka K, Kojima M, Volume integral equations for analysis of dielectric branching waveguides, IEEE Transactions on Microwave Theory and Techniques, 1988, 36(8): 1239-1245
    [138] J H Richmond, Scattering by a dielectric cylinder of arbitrary cross section. IEEE Trans. Antennas Propagat., Mar. 1995, vol. AP-13: 334-344
    [139] Zhou R, Shafai L, Study of the convergence of volume integral equation method, IEEE, Antennas and Propagation Society International Symposium, July 1997, Vol.3, Page(s): 1830-1833
    [140] X Q Sheng, J M Jin, J M song, C C Lu and W C Chew, On the formulation of hybrid finite-element boundary-integral method for 3-D scattering, IEEE Trans. Antennas Propagat., Mar. 1998, vol. AP-46: 303-311
    [141] N N Bojarski, K-space formulation of the scattering problem in the time domain. J. Acousy. Soc. Am., 1982, vol. 72: 570-584
    [142] H Y Yao, X Q Sheng, K N Yung, Z P Nie, Analysis of scattering by finite periodic dieletric structure using TFQMR-FFT, Mircowave Opt. Tech. lett., Feb. 2001, vol. 10, no.1: 221-224
    [143] T K Sarkar, E Arvas, S M Rao, Application of FFT and the conjugate method for the solution of electromagnetic radiation from electrically large and small conducting bodies, IEEE Trans. Antennas Propagat., May 1986, vol.AP-34: 635-640
    [144] M F Catedra, J G Cuevas, L Nuno, A scheme to analyze conducting plates of resonant size using the conjugate method and fast fourier transform, IEEE Trans., Antennas Propagat., Dec. 1988, vol. 36: 1744-1752
    [145] T J Peters, J L Volakis, Application of a conjugate gradient FFT method to scattering fromthin planar plates, IEEE Trans., Antennas Propagat., Dec. 1988, vol. 36: 518-526
    [146] A P M Zwamborn and P M van den Berg, The weak form of the conjugate gradient method for the plate problems, IEEE Trans., Antennas Propagat., Feb. 1991, vol. 39: 224-228
    [147] Sertel K, Volakis J L, Multilevel fast multipole method solution of volume integral equations using parametric geometry modeling, IEEE Transactions on Antennas and Propagation, 2004, 52(7): 1686-1692
    [148] K Umashankar, A Taflove, S Rao, Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects, IEEE Trans. on Antennas and propagation, 1986, AP-34(6): 758-765
    [149] P L Huddleston, L N Medgyesi-Mitschang, J M Putnam, combined field integral equation formulation for scattering by dielectric coated conducting bodies, IEEE Trans. on Antennas and propagation, 1986, vol, 34: 510-520
    [150] S M Rao, T K Sarkar, P Midya, A R Djordevic, Electromagnetic radiation and scattering from finite conducting and dielectric structure: surface/surface formulation, IEEE Trans. on Antennas and propagation, 1991, 39(7): 1034-1037
    [151] S M Rao, D R Wilton, E-field, H-Field and combined field solution for conducting body of revolution, AEU, Apr. 1987, vol. 32:157-164
    [152] J J H wang, Generalized moment method in Electromagnetics: formulation and computer solution of integral equations, New York: John Wiley& Sons, 1991
    [153] Y Chang, R F Harrington, A surface formulation for characteristic modes of material body, IEEE Trans. Antennas Propagation, 1977, vol. AP-25: 789-795
    [154] Kishk A A, Glisson A W, Goggans P M, Scattering from conductors coated with materials of arbitrary thickness, IEEE Transactions on Antennas and Propagation, 1992, 40(1):108 - 112
    [155] Jian Feng Zhang, Tie Jun Cui, Modified C-PMCHW formulations for scattering from PEC bodies coated by dielectric layers, IEEE Antennas and Propagation Society International Symposium 2006, 1907-1910
    [156] J van Tonder, U Jakobus, Fast multipole solution of metallic and dielectric scattering problems in FEKO, IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005, pages: 511-514
    [157] Xiaofeng Que, Zaiping Nie, Jun Hu. Analysis of scattering and radiation of mixed conducting/dielectric objects using MLFMA. The 7th International Symposium on Antennas, Propagation,and EM Theory, (ISAPE2006) 2006: 988-991
    [158] J van Tonder, U Jakobus, Fast multipole solution of metallic and dielectric scattering problems in FEKO, IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005, pages: 511-514
    [159] Hai Deng, Hao Ling, An efficient wavelet pre-conditioner for iterative solution of three-dimensiona1 electromagnetic integral equations, IEEE Trans. Antennas and Propogat. 2003, 51(3): 654-660
    [160] Xiao Chun Nie, Le Wei Li, Ning Yuan, et al, A Fast analysis of electromagnetic scattering arbitrarily shaped homogeneous dielectric objects, Microwave Opt Technol Lett, 38(2003), 30-35
    [161] Yla-Oijala P, Taskinen M, Formulation of surface integral equations for metallic, dielectric and composite objects, IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005: 329-332
    [162] Lambea M, Gonzalez M A, Encinar J A, Zapata J, Analysis of frequency selective surfaces with arbitrarily shaped apertures by finite element method and generalized scattering matrix, IEEE Society International Symposium on Antennas and Propagation, 1995, 3: 1644-1647
    [163] Wei Bing Lu, Tie Jun Cui, Efficiency Analysis of a Novel FMM-CG-FFT Algorithm for Full-Wave Simulation of Finite-Sized Periodic Structures, IEEE Antennas and Propagation Society International Symposium, 2006: 4027-4030
    [164] Min Zhang, Le-Wei Li, An-Ying Ma, Analysis of scattering by a large array of waveguide-fed wide-slot millimeter wave antennas using precorrected-FFT algorithm, IEEE Microwave and Guided Wave Letters, 2005, 15(11): 772-774
    [165] Lei Zhang, Ning Yuan, Min Zhang, et al, RCS computation for a large array of waveguide slots with finite wall thickness using the MoM accelerated by P-FFT algorithm, IEEE Transactions on Antennas and Propagation, 2005, 53(9): 3101-3105
    [166] Putnam J M, Medgyesi-Mitschang L N, Combined field integral equation formulation for inhomogeneous two and three-dimensional bodies: the junction problem, IEEE Transactions on Antennas and Propagation, 1991, 39(5): 667-672
    [167] Durham T E, Christodoulou C G, Integral equation analysis of dielectric and conducting bodies of revolution in the presence of arbitrary surfaces, IEEE Transactions onAntennas and Propagation, 1995, 43(7): 674-680
    [168] Umashankar K, Taflove A, Rao S, Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects, IEEE Transactions on Antennas and Propagation, 1986, 34(6): 758-766
    [169] Rao S M, Sarkar T K, Midya P, Djordevic A R, Electromagnetic radiation and scattering from finite conducting and dielectric structures: surface/surface formulation, IEEE Transactions on Antennas and Propagation, 1991, 39(7): 1034-1037
    [170] Sarkar T K, Rao S M , Djordjevic A R, Electromagnetic scattering and radiation from finite microstrip structures, IEEE Transactions on Microwave Theory and Techniques, 1990, 38(11): 1568-1575
    [171]孙世新,卢光辉,张艳,并行算法及其应用,机械工业出版社,2005。
    [172] Michael J quinn,(陆文光,武永卫等译),MPI与OpenMP并行程序设计(C语言版),清华大学出版社,2004
    [173]张林波,迟学兵,莫则尧,并行计算导论,清华大学出版社,2006
    [174]戴飞,特征基函数法的并行实现研究,南京航空航天大学[硕士论文],2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700