多维异向介质的实现及其在隐身衣与天线等电磁器件中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异向介质以其不同于传统材料的许多特殊电磁效应揭开了现代电磁学崭新的一页,成为近年来科学界的一个重要研究课题。本文以异向介质为研究背景,着重讨论了多维异向介质的设计,及其在隐身衣、天线等电磁器件中的应用。
     本文首先深入分析了传统二维异向介质构造方法的局限性并提出了相应的解决方案。我们指出,通过交叉嵌入的方法构成的二维异向介质,其两个垂直方向谐振单元之间的耦合干扰效应大大的减小,因此与传统的方法相比可以实现更宽的带宽及更低的损耗。本文不仅从理论上给出了详细的阐述,还通过实验对交叉嵌入结构和传统结构二维异向介质的性能进行了比较和论证。
     除了对多维异向介质结构设计的讨论之外,本文的另一个研究重点即为异向介质在各种电磁器件设计中的应用,其中最主要的是隐身衣和天线的设计。这些工作包括:
     提出了当隐身衣的背景介质为非均匀介质的情况下隐身衣的设计方法。着重讨论了当隐身衣的背景介质为分层或渐变介质的情况。这种通用的方法可以被推广来处理各种环境下隐身衣的设计问题。
     提出了基于分割法的任意形状隐身衣的设计方案。对于截面为任意不对称多边形的二维隐身衣,我们可以将其分割成多个三角形,然后对每个三角形进行独立的坐标变换来得到其参数。而通过无限逼近的方式,该方法可用来设计截面为任意形状的二维隐身衣,并且可以推广到任意形状三维隐身衣的设计。
     提出了利用二维异向介质实现完美参数隐身衣的方案。与目前世界上已经报导的所有隐身衣实验方案相比(这些实验都基于简化的参数),基于完美参数设计的隐身衣可以满足内外边界与空气的较好匹配,能够在厚度很小的条件下明显的抑制散射,达到很好的隐身效果。我们提出了轴向分量为常数的二维完美隐身衣参数,该参数可以用二维异向介质实现,由此可以降低完美隐身衣的设计难度。
     利用坐标变换法设计方向性可控的高指向性天线。只要将辐射源放置于平板异向介质天线的不同位置,就可以得到向不同方向辐射的高指向性波束,因此该方法还可以实现空分复用。通过选取合适的异向介质参数,并将几个辐射源置于天线中的不同特定位置,就可以使它们同时向不同的方向辐射而互不影响。由于该天线的参数随空间而变化,可以用分层异向介质来实现。
     除了以上的几个主要应用之外,本文还包含了一些特殊异向介质导波器件的设计,以及异向介质宽带/多通带反向耦合器的实验验证等。
Artificially structured metamaterials, which open up new conceptual frontiers in electromagnetics, have generated enormous interest for their ability to display electromagnetic responses unavailable in conventional materials. This dissertation addresses the design of multi-dimensional metamaterials, and their applications in electromagnetic devices, including invisibility cloak and antennae.
     In the first part of the dissertation, we investigated the limitation of the traditional method in two-dimensional (2D) metamaterial design, which is realized by repeating the resonant elements in two orthogonal directions. As a solution to this problem, we experimentally realize an isotropic left-handed material based on a cross-embedded S-ring resonator. Experimental results show that the 2D metamaterial with cross embedded arrangement exhibits much better performance than that with conventional arrangement. Theoretical interpretations are also proposed in the thesis, showing a reduced coupling between the rings that are located in the two orthogonal directions.
     Apart from the discussion on metamaterial design, this dissertation also gives a thorough study on the main applications of metamterials, among which the applications in invisibility cloak and antenna are the most important. The corresponding work includes:
     We consider the case where the background of the cloak is no longer a homogeneous medium and determine the relative constitutive parameters of the cloak according to the background. The parameters of cylindrical cloak structures working in multilayered and gradually changing media are proposed and the design scheme could also be applied in cases of arbitrary background.
     A segmentation design approach for the cloak of arbitrary shape is suggested. We propose that polygonal 2D cloaks with any number of sides, which do not require geometrical symmetry, can be achieved by dividing the polygon into many triangular regions and applying a spatial transformation on each triangle. This segmentation-transformation method is free to deal with cloaks of arbitrary shapes, including 3D cases.
     Ideal parameters, which can be realized with 2D metamaterials, are proposed to simplify the cloak design process. Compared with cloaks in all the reported experiments, which are all based on reduced parameters, the cloak with ideal parameters has several superiorities: The impedance of the cloak is well matched at the inner and outer boundaries, and good performance can be achieved even when the thickness of the cloak is very small. The parameters we proposed, the axial component of which is spatially invariant, provide the possibility of realizing 2D ideal cloak with 2D metamaterials, and therefore greatly reduce the difficulty of ideal cloak design.
     Coordinate transformation approach is introduced to manipulate the directivity of antennas. We show that by embedding a dipole at different locations inside this substrate, the emitted rays can be directed to different orientations as required. As a result, spatial multiplexing can be realized by carefully selecting proper parameters of this substrate. Since the substrate of the antenna has spatially variant parameters, it can be realized with layered metamaterials.
     Apart from the above applications, this dissertation also includes the experimental demonstration of a wideband/dual-band backward coupler, which can be realized by judiciously combining metamaterial slabs. Other interesting applications, such as guiding electromagnetic waves through a virtual tunnel in open space and bending beams without causing reflection are also discussed.
引文
[1]J.A.Kong,Electromagnetic wave theory,Published by EMW Publishing,2000.
    [2]V.G.Veselago,The electrodynamics of substances with simultaneously negative values of εand μ,Sov.Phys.Usp.10(4),509-514,1968.
    [3]J.C.Bose,On the rotation of plane of polarization of electric waves by as twisted structure,Proc.R.Soc.London 63,146-152,1898.
    [4]W.E.Kock,Metallic delay lenses,Bell Syst.Tech.J.27(1),58-82,1948
    [5]H.Lamb,On group-velocity,Proc.London Math.Soc.1,473-479,1904.
    [6]H.C.Pocklington,Growth of a wave-group when the group velocity is negative,Nature 71(1852),607-608,1905.
    [7]G..D.Malyuzhinets,A note on the radiation principle,Zh.Tekh.Fiz.21,940-942,1951.
    [8]L.I.Mandelshtam,Lectures on some problems of the theory of oscillations(1944),in Complete Collection of Works,Moscow:Academy of Sciences 5,428-467,1950
    [9]D.V.Sivukhin,The energy of electromagnetic waves in dispersive media,Opt.Spektrosk.3,308-312,1957.
    [10]Z.Jaksic,N.Dalarsson,M.Maksimovic,Negative Refractive Index Metamaterials:Principles and Applications,Microw.Rev.12(1),36-49,2006.
    [11]G.V.Eleftheriades,A.K.lyer,and P.C.Kremer,Planar negative refractive index media using periodically L-C loaded transmission lines,IEEE Trans.Microw.Theory Tech.510(12),2702-2712,2002.
    [12]I.V.Lindell,S.A.Tretyakov,K.I.Nikoskinen,and S.Ilvonen,BW media-Media with negative parameters,capable of supporting backward waves,Microw.Opt.Technol Lett.31(2),129-133,2001.
    [13]R.W.Ziolkowski and E.Heyman,Wave propagation in media having negative permittivity and permeability,Phys.Rev.E.64(5),056625,2001.
    [14]R.W.Ziolkowski,Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs,Opt.Express 11(7),662-681,2003.
    [15]A.Lakhtakia,Reversed circular dichroism of isotropic chiral mediums with negative permeability andpermittivity,Microw.Opt.Technol.Lett.33(2),96-97,2002.
    [16]I.V.Lindell,Image theory for VED above a half-space of Veselago medium,Microw Opt.Technol.Lett.44(2),185-190,2004.
    [17]J.B.Pendry,A.J.Holden,W.J.Stewart,and I.Yongs,Extremely Low Frequency Plasmons in Metallic Mesostructures Phys Rev Lett.76(25),4773-4776,1996.
    [18]J.B.Pendry,A.J.Holden,D.J.Robbins,and W.J.Stewart,Low frequency plasmcns in thin-wire structures,J.Phys:Condens Matter.10(22),4785-4809,1998.
    [19]J.B.Pendry,A.J.Holden,D.J.Robbins,and W.J.Stewart,Magnetism from Conductors and Enhanced Nonlinear Phenomena.IEEE Trans.Microw.Theory Tech.47(11),2075-2084,1999.
    [20]D.R.Smith,W.J.Padilla,D.C.Vier,S.C.Nemat-Nasser,and S.Schultz,Composite medium with simultaneously negative permeability and permittivity,Phys.Rev.Lett.84(18),4184-4187,2000.
    [21]R.A.Shelby,D.R.Smith,and S.Schultz,Experimental verification of a negative index of refraction,Science 292(6),77-79,2001.
    [22]J.B.Pendry,Negative refraction makes a perfect lens,Phys.Rev.Lett.85(18),3966-3969,2000.
    [23]S.Zhang,W.Fan,N.C.Panoiu,K.J.Malloy,R.M.Osgood,and S.R.J.Brueck,Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,Phys.Rev.Lett.95(13),137404,2005.
    [24]G.Dolling,M.Wegener,C.M.Soukoulis,and S.Linden,Negative-index metamaterial at 780 nm wavelength,Opt.Lett.32(1),53-55,2007.
    [25]J.A.Kong,B.I.Wu,and Y.Zhang,Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and negative permeability,Appl.Phys.Lett.80(12),2002.
    [26]X.Chen,C.El,Lateral shift of the transmitted light beam through a left-handed slab,Phys.Rev.E 69(6),066617,2004.
    [27]N.Shen,J.Chert,Q.Wu,Y.Lan,Y.Fan,and H.Wang,Large lateral shift near pseudo-Brewster angle on reflection from a weakly absorbing double negative medium,Opt.Express 14(2),10574-10579,2006.
    [28]D.R.Smith and N.Kroll,Negative refractive index in left-handed materials,Phys.Rev.Lett.85(14),2933-2936,2000.
    [29]S.Foteinopoulou,E.N.Economou,and C.M.Soukoulis,Refraction in media with a negative refractive index,Phys.Rev.Lett.90(10),107404,2004.
    [30]B.I.Wu,T.M.Grzegorczyk,Y.Zhang,and J.A.Kong,Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability,J.Appl.Phys.93(11),2003.
    [31]J.B.Pendry,L.Martin-Moreno,F.J.Garcia-Vidal,Mimicking Surface Plasmons with Structured Surfaces,Science 305(5685) 847-848,2004.
    [32]P.V.Parimi,W.T.Lu,E Vodo,J.Sokoloff,J.S.Derov,and S.Sridhar,Negative Refraction and Left-Handed Electromagnetism in Microwave Photonic Crystals,Phys.Rev.Lett.92(12),127401,2004.
    [33]C.Luo,S.G.Johnson,J.D.Joannopoulos,and J.B.Pendry,All-angle negative refraction without negative refractive index,Phys.Rev.B 65(20),201104(R),2002.
    [34]L.Hu and S.T.Chui,Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials,Phys.Rev.B 66(8),085108,2002.
    [35]T.M.Grzegorczyk,M.Nikku,X.Chen,B.I.Wu,and J.A.Kong,Refraction laws for anisotropic media and their application to left-handed metamaterials,IEEE Trans.Microw.Theory Tech.53(4),1443-1450,2005
    [36]J.Pacheco,Jr.,T.M.Grzegorczyk,B.I.Wu,Y.Zhang,and J.A.Kong,Power propagation in homogeneous isotropie frequency-dispersive left-handed media,Phys.Rev.Lett.89(25),257401,2002.
    [37]A.Grbic and G.V.Eleftheriadesa,Experimental verification of backward-wave radiation from a negative refractive index metamaterial,J.Appl.Phys.92(10),5930-5935,2002.
    [38]Jie Lu,Tomasz Grzegorczyk,Yan Zhang,Joe Pacheco Jr.,Bae-Ian Wu,Jin Kong,and Min Chen,Cerenkov radiation in materials with negative permittivity and permeability,Opt.Express 11(7),723-734,2003.
    [39]A.A.Zharov,I.V.Shadrivov,and Y.S.Kivshar,Nonlinear Properties of Left-Handed Metamaterials,Phys.Rev.Lett.91(3),037401,2003.
    [40]V.Kuzmiak and A.A.Maradudin,Scattering properties of a cylinder fabricated from a left-handed material,Phys.Rev.B 66(4),045116,2002.
    [41]Anthony Grbic and George V.Eleftheriades,Experimental verification of backward-wave radiation from a negative refractive index metamaterial,J.Appl.Phys.92(15),5930,2002.
    [42]A.Alu and N.Engheta,Multifrequency Optical Invisibility Cloak with Layered Plasmonic Shells,Phys.Rev.Lett.100(11),113901,2008.
    [43]C.Luo,S.G.Johnson,and J.D.Joannopoulos,J.B.Pendry,Subwavelength imaging in photonic crystals,Phys.Rev.B 68(4),045115,2003.
    [44]D.Melville and R.Blaikie,Super-resolution imaging through a planar silver layer,Opt.Express 13(6),2127-2134,2005.
    [45]Viktor A.Podolskiy and Evgenii E.Narimanov,Near-sighted superlens,Opt.Lett.30(1),75-77,2005.
    [46]S.W.Hell,Far-Field Optical Nanoscopy,Science 25(316),1153-1158,2007.
    [47]L.Ran,J.Huangfu,H.Chen,Y.Li,X.Zhang,K.Chen,and J.A.Kong.Microwave solid-state left-handed material with a broad bandwidth and an ultralow loss,Phys.Rev.B 70(7),073102,2004
    [48]L.Peng,L.Ran,H.Chen,H.Zhang,J.A.Kong,and T.M.Grzegorczyk,Experimental observation of left-handed behavior in an array of standard dielectric resonators,Phys,Rev.Lett.,98(15),157403,2007.
    [49]J.B.Pendry,Negative refraction makes a perfect lens,Phys.Rev.Lett.85(18),3966-3969,2000.
    [50]N.Garcia,and M.Nieto-Vesperinas,Left-handed materials do not make a perfect lens,Phys.Rev.Lett.88(20),207403,2002.
    [51]D.R.Smith,D.Schurig,M.Rosenbluth,and S.Schultz,Limitations on subdiffraction imaging with a negative refractive index slab,Appl.Phys.Lett.82(10),1506-1508,2003.
    [52]S.Anantha Ramakrishna,J.B.Pendry,D.Schurig,D.R.Smith,and S.Schultz,The asymmetric lossy near-perfect lens,J.Mod.Opt.49(10),1747-1762,2002.
    [53]L.Chen,S.He and L.Shen,Finite-size effects of a left-handed material slab on the image quality,Phys.Rev.Lett.92(10),107404,2004.
    [54]L.Shen,S.He,Studies of imaging characteristics for a slab of a lossy left-handed material.,Phys.Lett.A,309(3-4),298-305,2003.
    [55]M.W.Feise and Y.S.Kivshar,Sub-wavelength imaging with a left-handed material flat lens,Phys.Lett.A,334(4),326-330,2005.
    [56]V.A.Podolskiy and E.E.Narimanov,Near-sighted superlens,Opt.Lett.30(1),75-77,2005.
    [57]K.P.Chiu and D.P.Tsai,Influence of near-field electromagnetic interactions on optical properties of perfect lens consisting of left-handed material,IEEE Trans.Magn.41(2),1016-1018,2005.
    [58]Z.Ye,Optical transmission and reflection of perfect lenses by left-handed materials,Phys.Rev.B 67(19),193106,2003.
    [59]J.B.Pendry,S.A.Ramakrishna,Near-field lenses in two dimensions,J.Phys:Condensed Matter.14(36),8463-8479,2002.
    [60]I.I.Smolyaninov,Y.J.Hung,and C.C.Davis,Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm,Opt.Lett.33(12),1342-1344,2008.
    [61]N.Fang,H.S.Lee,C.Sun,and X.Zhang,Sub-Diffraction-Limitted Optical Imaging with a Silver Superlens,Science 308(5721),534-537,2005.
    [62]Z.Liu,S.Durant,H.Lee,Y.Pikus,N.Fang,Y.Xiong,C.Sun,and X.Zhang,Far-Field Optical Superlens,Nano Lett.7(2),403-408,2007.
    [63]Z.Jacob,L.V.Alekseyev,and E.Narimanov,Optical Hyperlens:Far-field imaging beyond the diffraction limit,Opt.Express 14(18),8247-8256,2006.
    [64]H.Lee,Z.Liu,Y.Xiong,C.Sun,and X.Zhang,Development of optical hyperlens for imaging below the diffraction limit,Opt.Express 15(24),15886-15891,2007
    [65]Z.Liu,H.Lee,Y.Xiong,C.Sun,and X.Zhang,Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,Science 315(5819),1686,2007.
    [66]I.I.Smolyaninov,Y.-J.Hung,and C.C.Davis,Magnifying Superlens in the Visible Frequency Range,Science 315(5819),1699-1701,2007.
    [67]R.Marques,E Medina,and R.Rafii-El-ldrissi,Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiements,IEEE Trans.Antennas Propagat.,51(10):2572-2581,2003.
    [68]S.Enoch,G.Tayeb,E Sabouroux,N.Guerin,and R.Vincent,A Metamaterialfor Directive Emission,Phys.Rev.Letts.89(21),213902,2002.
    [69]S.N.Burokur,M.Latrach,and S.Toutain,Theoretical investigation of a circular patch antenna in the presence of a left-handed medium,IEEE Antennas Wirel.Propag.Lett.4,183-186,2005
    [70]P.Baccarelli,P.Burghignoli,G.Lovat,and S.Paulotto,Surface-wave suppression in a double-negative metamaterial grounded slab,IEEE Antennas Wirel.Propag.Lett.2,269-272,2003.
    [71]A.Alu,F.Bilotti,N.Engheta,and L.Vegni,Theory and Simulations of a Conformal Omni-Directional Subwavelength Metamaterial Leaky-Wave Antenna,IEEE Trans,Antennas Propag.55(6),1698-1708,2007.
    [72]A.Alu,and N.Engheta,Enhanced Directivity From Subwavelength Infrared/Optical Nano-Antennas Loaded With Plasmonic Materials or Metamaterials,IEEE Trans.Antennas Propag.55(11),3027-3039,2007.
    [73]R.W.Ziolkowski and A.D.Kipple,Application of double negative materials to increase the power radiated by electrically small antennas,IEEE Trans.Antennas Propag.51(10),2626-2640,2003.
    [73]N.Engheta.An Idea for Thin Subwavelength Cavity Resonators Using Metamaterials With Negative Permittivity and Permeability,IEEE Antennas Wirel.Propag.Lett.1,10-13,2002.
    [74]R.Marques,J.Martel,F.Mesa,and F.Medina,Left-handed media simulation and transmission of EM waves in subwavelength split-ring resonator loaded metallic wave,guides,Phys.Rev.Lett.89(18),183901,2002.
    [75]I.Shadrivov,A.Sukhorukov,and Y.Kivshar,Beam shaping by a periodic structure with negative refraction,Appl.Phys.Lett.82(22) 3820-3822,2003.
    [76]K.W.Eccleston,Application of left-handed media in distributed amplifiers,Microw.Opt.Technol.Lett.44(6),527-530,2005.
    [77]Y.Li,L.Ran,H.Chert,J.Huangfu,X.Zhang,K.Chen,T..M.Grzegorczyk,and J.A Kong,Experimental Realization of a One Dimensional LHM-RHM Resonator,IEEE Trans.Microw.Theory Tech.53(4),1522-1526,2005.
    [78]L.Ran,J.Huangfu,H.Chen,X.Zhang,K.Chen,T.M.Grzegorczyk,J.A.Kong,,Beam shifting experiment for the characterization of lefi-handed properties,J.Appl.Phys.95(5),2238-2241,2004.
    [79]J.Li and J.B.Pendry,Hiding under the Carpet:A New Strategy for Cloaking,101(20),203901,2008.
    [80]T.J.Yen,W.J.Padilla,N.Fang,D.C.Vier,D.R.Smith,J.B.Pendry,D.N.Basov,and X.Zhang,Terahertz Magnetic Response from Artificial Materials,Science 303(5663),1494-1496,2004.
    [81]A.N.Grigorenko,A.K.Geim,H.F.G|eeson,Y.Zhang,A.A.Firsov,I.Y.Khrushchev,and J.Petrovic,Nanofabricated media with negative permeability at visible frequencies,Nature 438(7066),335-338,2005.
    [82]T.F.Gundogdu,I.Tsiapa,A.Kostopoulos,G.Konstantinidis,N.Katsarakis,S.R.Penciu,M.Kafesaki,E.N.Economou,Th,Koschny,and C.M.Soukoulis,Experimental demonstration of negative magnetic permeability in the far-infrared frequency regime,Appl.Phys.Lett.89(8),084103,2006.
    [83]V.M.Shalaev,W.Cai,U.K.Chettiar,H-K Yuan,A.K.Sarychev,V.P.Drachev,and A.V.Kildishev,Negative index of refraction in optical metamaterials,Opt.Lett.30(24),3356-3358,2005.
    [84]R.A.Shelby,D.R.Smith,S.C.Nemat-Nasser,and S.Schultz,Microwave transmission through a two-dimensional,isotropic,left-handed metamaterial,Appl.Phys.Lett.78(4),489-491,2001.
    [85]S.A.Ramakrishna,Physics of negative refractive index materials,Rep.Prog.Phys.68,449-521,2005.
    [86]C.Luo,M.Ibanescu,S.G.Johnson,and J.D.Joannopoulos,Cerenkov Radiation in Photonic Crystals,Science 299(5605),368-371,2003.
    [87]X.Zhang and Z.Liu,Superlenses to overcome the diffraction limit,Nat.Mater.7(6),435-441,2008
    [88]R.Fitzgerald,Novel Composite Medium Exhibits Reversed Electromagnetic Proper(?)ies,Phys.Today,17-18,2000.
    [89]J.Brown,Artificial dielectrics,Progress in Dielectrics 2,195-225,1960.
    [90]F.Falcone,T.Lopetegi,M.A.G.Laso,J.D.Baena,J.Bonache,M.Beruete,R.Marquee;,F.Martin,and M.Sorolla,Babinet Principle Applied to the Design of Metasurfaces and Metamaterials,Phys.Rev.Lett.93(19),197401,2004.
    [91]U.K.Chettiar,S.Xiao,A.V.Kildishev,W.Cai,H.-K.Yuan,V.P.Drachev,and V.M.Shalaev,Optical Metamagnetism and Negative-Index Metamaterials,MRS Bull.33(10),921-926,2008
    [92]T.Koschny,M.Kafesaki,E.N.Economou,and C.M.Soukoulis,Effective Medium Theory of Left-Handed Materials,Phys.Rev.Lett.93(10),107402,2004.
    [93]D.R.Smith,S.Schultz,P.Markos,and C.M.Soukoulis,Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,Phys.Rev.B 65(19),195104,2002.
    [94]X.Chen,T.M.Grzegorczyk,B.-I.Wu,J.Pacheco,and J.A.Kong,Robust method to retrieve the eonstitutive effective parameters of metamaterials,Phys.Rev.E.70(1),016608,2004.
    [95]H.Chen,J.Zhang,Y.Bai,Y.Luo,L.Ran,Q.Jiang,and J.A.Kong,Experimentally retrieve the effective parameters of metamaterial based on waveguide method,Opt.Express 14(26),12944-12949,2006.
    [96]X.Chen,B.-I.Wu,J.A.Kong,and T.M.Grzegorczyk,Retrieval of the effective constitutive parameters of bianisotropic metamaterials,Phys.Rev.E71(4),046610,2005.
    [97]X.Chen,T.M.Grzegorczyk,and J.A.Kong,Optimization approach to the retrieval of the constitutive parameters of slab of general bianisotropic medium,Prog.Electromagn.Res.60,1-18,2006.
    [98]M.M.I.Saadoum and N.Engheta,A reciprocal phase shifter using novel pseudochiral or ω medium,Microw.Opt.Technol.Lett.,5(4) 184-488,2007.
    [99]J.Huangfu,L.Ran,H.Chen,X.Zhang,K.Chen,T.M.Grzegorczyk,and J.A.Kong,Experimental confirmation of negative refractive index of metamaterial composed of Ω-like metallic paterns,Appl.Phys.Lett.84(9)1357-1359,2004.
    [100]H.Chen,L.Ran,J.Huangfu,X.Zhang,K.Chert,T.M.Grzegorczyk,and J.A.Kong,Left-handed materials composed of only S-shaped resonators.Physical Review E 70,057605-1-4,2004.
    [101]H Chen,L.Ran,J.Huangfu,X.Zhang,K.Chen,T.M.Grzegorczyk,J.A.Kong,Metamaterial exhibiting left-handed properties over multiple frequency bands,Journal of Applied Physics,vol.96,no.9,page(s) 5338-5340,2004.
    [102]H.Chen,L.Ran,J.Huangfu,X.Zhang,K.Chen,T.M.Grzegorczyk,J.A.Kong,Negative refraction of a combined double S-shaped metamaterial,Applied Physics Letters 86,151909,2005.
    [103]D.R.Smith,J.B.Pendry,and M.C.K.Wiltshire,Metamaterials and Negative Refractive Index,Science 305(5685),788-792,2004
    [104]P.Gay-Balmaz and O.J.F.Martin,Efficient isotropic magnetic resonators,Appl.Phys.Lett.81(5),939-941 2002.
    [105]J.Zhang,H.Chert,L.Ran,Y.Luo,B.-I.Wu,and J.A.Kong,Experimental characterization and cell interaction of a two-dimensional isotropic left-handed metamaterial,Appl.Phys.Lett.92(8),084108,2008.
    [106]H.Chen,L.Ran,J.Huangfu,T.M.Grzegorczyk,and J.A.Kong,Equivalent circuit model for left-handed metamaterials,Journal of Applied Physics 100,024915-1-6,2006.
    [107]T.Koschny,P.Mark6,E.N.Economou,D.R.Smith,D.C.Vier,and C.M.Soukoulis,Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,Phys.Rev.B 71(24),245105,2005.
    [108]R.Marques and D.R.Smith,Comment on "Electrodynamics of Metallic Pnotonic Crystals and the Problem of Left-Handed Materials ",Phys.Rev.Lett.92(5),059401,2004.
    [109]P.Gay-Balmaz and O.J.F.Martin,Electromagnetic resonances in individual and coupled split-ring resonators,J.Appl.Phys.,92(5),2929-2936,2002.
    [110]J.D.Baena,L.Jelinek,R.Marques,and J.Zehentner,Electrically small isotropic three-dimensional magnetic resonators for metamaterial design,Appl.Phys.Lett.88(13),134108,2006.
    [111]Th.Koschny,L.Zhang,and C.M.Soukoulis,Isotropic three-dimensional left-handed metamaterials,Phys.Rev.B 71(12),121103(R),2005.
    [112]B.-J.Seo,T.Ueda,T.Itoh,and H.Fetterman,Isotropic left handed material at optical frequency with dielectric spheres embedded in negative permittivity medium,Appl.Phys.Lett.88(16),161122,2006.
    [113]I.Vendik,O.Vendik,and M.Odit,Isotropic artificial media with simultaneously negative permittivity and permeability,Microw.Opt.Technol.Lett.48(12),2553-2556,2006.
    [114]J.Valentine,S.Zhang,T.Zentgraf,E.Ulin-Avila,D.A.Genov,G.Barta,and X.Zhang,Three-dimensional optical metamaterial with a negative refractive index,Nature 455(7211),376-379,2008.
    [115]M.S.Rill,C.Plet,M.Thiel,I.Staude,G.V.Freymann,S.Linden,and M.Wegener,Photonic metamaterials by direct laser writing and silver chemical vapour deposition,Nat.Mater.7(7),543-546,2008.
    [116]N.Liu,H.Guo,L.Fu,S.Kaiser,H.Schweizer,and H.Giessen,Three-dimensional photonic metamaterials at optical frequencies,Nat.Mater.7(1),31-37,2008.
    [117]J.B.Pendry,D.Schurig,D.R.Smith,Controlling electromagnetic fields,Science 312(5781) 1780-1782,2006.
    [118]Ulf Leonhardt,Optical Conformal Mapping,Science 312(5781),1777-1780,2006.
    [119]D.Schurig,J.J.Mock,B.J.Justice,S.A.Cummer,J.B.Pendry,A.F.Start,and 1).R.Smith,Metamaterial electromagnetic cloak at microwave frequencies,Science 314(5801)977-980,2006.
    [120]E.H.Mansfield,Neutral holes in plane sheet-reinforced holes which are elastic.ally equivalent to the uncut sheet,Q.J.Mech.Appl.Math.6(3),370-378,1953.
    [121]M.Kerker,Invisible bodies,J.Opt.Soc.Am.65(4),376-385,1975.
    [122]A.G.Ramm,Minimization of the total radiation from an obstacle by a control function on a part of its boundary,J.Inverse ill-Posed Probl.4(6),531-535,1996.
    [123]V.A.Fedotov,P.L.Mladyonov,S.L.Prosvirnin and N.I.Zheludev,Planar electromagnetic metamaterial with a fish scale structure,Phys.Rev.E 72(5),056613,20135.
    [124]N.A.Nicorovici,R.C.Mcphedran,and G.W.Milton,Optical and dielectric properties of partially resonant composites,Phys.Rev.B 49(12),8479-8482,1994.
    [125]G.W.Milton,N.-A.P.Nicorovici,R.C.McPhedran,and V.A.Podolskiy,A proof of superlensing in the quasistatic regime,and limitations of superlenses in this regime due to anomalous localized resonance,Proc.R.Soc.A-Math.Phys.Eng.Sci.461(2064),3999-4034,2005.
    [126]G.W.Milton and N.A.P.Nicorovici,On the cloaking effects associated with anomalous localized resonance,Proc.R.Soc.A-Math.Phys.Eng.Sci.462(2074),3027-3059,2006.
    [127]N.A.P.Nicorovici,G.W.Milton,R.C.McPhedran,and L.C.Botten,Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,Opt.Express 15(10),6314,2007.
    [128]A.Alu and N.Engheta,Achieving transparency with plasmonic and metamaterial coatings,Phys.Rev.E 72(1),0166623,2005.
    [129]D.Schurig,J.B.Pendry,and D.R.Smith,Calculation of material properties and ray tracing in transformation media,Opt.Express 14(21),9794-9804,2006.
    [130]J.Zhang,J.Huangfu,Y.Luo,H.Chen,J.A.Kong and B.-I.Wu,Cloak for multilayered and gradually changing media,Phys.Rev.B 77(3),035116,2008.
    [131]H.Chen,B-I.Wu,B.Zhang,and J.A.Kong,Electromagnetic Wave Interactions with a Metamaterial Cloak,Phys.Rev.Letts.99(6),063903(2007).
    [132]S.A.Cummer,B.-I.Popa,D.Schurig,D.R.Smith,and J.B.Pendry,Full-wave simulations of electromagnetic cloaking structures,Phys.Rev.E 74(3),036621(2006).
    [133]Y.Luo,J.Zhang,L.Ran,H.Chen,and J.A.Kong,Design and analytical full-wave validation of the invisibility cloaks,concentrators,and field rotators created with a general class of transformations,Phys.Rev.B 77(12),125127(2008).
    [134]Y.Luo,J.Zhang,H.Chen,S.Xi,and B.-I.Wu,Cylindrical cloak with axial permittivity /permeability spatially invariant,Appl.Phys.Letts.93(3),033504,2008.
    [135]Y Luo,J Zhang,B-I Wu,and H.Chen,Interaction of an electromagnetic wave with a cone-shaped invisibility cloak and polarization rotator,Phys.Rev.B 78(12),125108,2008.
    [136]Y Luo,J.Zhang,H.Chen,and B-I Wu,Full-wave Analysis of Prolate Spheroidal and Hyperboloidal Cloaks,J.Phys.D:Appl.Phys.41(23) 235101,2008.
    [137]H.Ma,S.Qu,Z.Xu,J.Zhang,B.Chen,and J.Wang,Material parameter equation for elliptical cylindrical cloaks,Phys.Rev.A 77(1),013825,2008.
    [138]D.-H.Kwon and D.H.Wemer,Two-dimensional electromagnetic cloak having a uniform thickness for elliptic cylindrical regions,Appl.Phys.Letts,92(11),113502,2008.
    [139]D.-H.Kwon and D.H.Werner,Two-dimensional eccentric elliptic electromagnetic cloaks,Appl.Phys.Letts,92(1),013505,2008.
    [140]M.Rahm,D.Schurig,D.A.Roberts,S.A.Cummer,D.R.Smith,and J.B.Pendry,Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations,Photonics Nanostruct.Fundam.Appl.6(1),87,2008.
    [141]L.Zhou,H.Li,Y.Qin,Z.Wei,and C.T.Chan,Directive emissions from subwavelength metamaterial-based cavities,Appl.Phys.Lett.86(10),101101,2005.
    [142]P.Baccarelli,P.Burghignoli,F.Frezza,A.Galli,P.Lampariello,G.Lovat,and S.Paulotto,Effects of leaky-wave propagation in metamaterial grounded slabs excited by a dipole source,IEEE Trans.Microw.Theory Tech.53(1),32-44,2005.
    [143]A.Alu,F.Bilotti,N.Engheta,and L.Vegni,Subwavelength Planar Leaky-Wave Components With Metamaterial Bilayers,IEEE Trans.Antennas Propag.55(3),882-891,2007.
    [144]R.W.Ziolkowski,Propagation in and scattering from a matched metamaterial having a zero index of refraction,Phys.Rev.E 70(4),046608,2004.
    [145]B.-I.Wu,W.Wang,J.Pacheco,X,Chen,T,Grzegorczyk,and J.A.Kong,A Study of using metamaterials as antenna substrate to enhance gain,Prog.Electromagn.Res.51,295-328,2006.
    [146]B.-I.Wu,W.Wang,J.Pacheco,X,Chen,J.Lu,T,Grzegorczyk,and J.A.Kong,P.Kao,P.A.Theophelakes,and M.J.Hogan,Anisotropic metamaterials as antenna substrate to enhance directivity,Microw.Opt.Technol.Lett.48(4),680-683,2006.
    [147]R.W.Ziolkowski and A.Erentok,Metamaterial-based efficient electrically small antennas,IEEE Trans.Antennas Propag.54(7),2113-2130,2006.
    [148]A.Erentok and R.W.Ziolkowski,A hybrid optimization method to analyze metamaterial-based electrically small antennas,IEEE Trans.Antennas Propag.55(3),731-741,2007.
    [149]A.Alu,F.Bilotti,N.Engheta,and L.Vegni,Subwavelength,Compact,Resonant Patch Antennas Loaded With Metamaterials,IEEE Trans.Antennas Propag.55(1),13-25,2007.
    [150]F.Bilotti,A.Alu,and L.Vegni,Design of Miniaturized Metamaterial Patch Antennas With μ-Negative Loading,IEEE Trans.Antennas Propag.56(6),1640-1647,2008.
    [151]C.Caloz,A.Sanada,and T.Itoh,A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth,IEEE Trans.Microwave Theory Tech.52(3),980-992,2004.
    [152]C.Caloz and Y.Itoh,A Novel Mixed Conventional Microstrip and Composite Right-/Left -Handed Backward-Wave Directional Coupler With Broadband and Tight Coupling Characteristics,IEEE Microw.Wirel.Compon.Lett.14(1),31-33,2004.
    [153]R.Islam and G.V.Eleftheriades,Phase-agile branch-line couplers using metamaterial lines,IEEE Microw.Wirel.Compon.Lett.14(7),340-342,2004.
    [154]R.Islam,F.Elek,and G.V.Eleftheriades,Coupled-line metamaterial coupler having co-directional phase but contra-directional power flow,Electron.Lett.40(5),315-317,2004.
    [155]J.-G.Lee and J.-H.Lee,Backward-Wave directional coupler with complete coupling and broadband using conventional microstrip and 1D mushroom structure,Microw.Opt.Technol.Lett.48(7),1293-1296,2006.
    [156]Y.Yuan,L.Ran,H.Chen,J.Huangfu,Backward coupling waveguide coupler using left-handed material,Applied Physics Letters 88,211903,2006.
    [157]A.Nicolet,A.B.Movchan,C.Geuzaine,F.Zolla,and S.Guenneau,High order asymptotic analysis of twisted electrostatic problems,Physica B 394(2),335-338,2007
    [158]S.Guenneau,B.Gralak,and J.B.Pendry,Perfect corner reflector,Opt.Lett.30(10),1204-1206,2005.
    [159]A.V.Kildishev and E.E.Narimanov,Impedance-matched hyperlens,Opt.Lett.32(23),3432-3434,2007.
    [160]M.Rahm,D.A.Roberts,J.B.Pendry,and D.R.Smith,Transformation-optical design of adaptive beam bends and beam expanders,Opt.Express 16(I5),11555-11567,2008.
    [161]D.H.Kwon and D.H.Werner,Polarization splitter and polarization rotator designs based on transformation optics,Opt.Express 16(23),18731-18738,2008.
    [162]J.Zhang,Y.Luo,H.Chen,and B.-I.Wu,Manipulating the directivity of antennas with metamaterial,Opt.Express 16(15),10962-10967,2008.
    [163]J.Zhang,Y.Luo,S.Xi,H.Chen,L.Ran,B.-I.Wu,and J.A.Kong,Directive Emission Obtained by Coordinate Transformation,Prog.Electromagn.Res.81,437-446,2008.
    [164]Y.Luo,J.Zhang,H.Chen,B-I.Wu,and J.A.Kong,A new strategy to conceal an object from electromagnetic wave,arXiv:0808.0215,2008.
    [165]T.Yang,H.Chen,X.Luo,and H.Ma,Superscatterer:Enhancement of scattering with complementary media,arXiv:0807.5038,2008.
    [166]J.Huangfu,S.Xi,F.Kong,J.Zhang,H.Chen,D.Wang,B.-I.Wu,L.Ran,and J.A.Kong,Application of coordinate transformation in bent waveguides,J.Appl.Phys.104(1),014502,2008.
    [167]B.Vasic,G.Isic,R.Gajic,and K.Hinger,Coordinate transformation based design of confined metamaterial structures,Phys.Rev.B 79(8),085103,2009.
    [168]H.Chen and C.T.Chan,Acoustic cloaking in three dimensions using acoustic metamaterials,Appl.Phys.Lett.91(18),183518,2007.
    [169]W.Jiang,T.Cui,X.Zhou,X.Yang,and Q.Cheng,Arbitrary Bending of Electromagnetic Waves Using Realizable Inhomogeneous and Anisotropie Materials,Phys.Rev.E 78,066607,2008.
    [170]W.Jiang,T.Cui,Q.Cheng,J.Y.Chin,X.Yang,R.Liu,and D.R.Smith,Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,Appl.Phys.Lett.92,264101,2008.
    [171]W.Jiang,T.Cui,X.Yang,Q.Cheng,R.Liu,and D.R.Smith,Invisibility cloak without singularity,Appl.Phys.Lett.93,194102,2008.
    [172]W.Jiang,T.Cui,H.Ma,X.Yang,and Q.Cheng,Layered high-gain lens antennas via discrete optical transformation,Appl.Phys.Lett.93,221906,2008.
    [173]P.Yao,Z.Liang,and X.Jiang,Limitation of the electromagnetic cloak with dispersive material,Appl.Phys.Lett.92,031111,2008.
    [174]Z.Liang,P.Yao,X.Sun,and X.Jiang,The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,Appl.Phys.Lett.92,131118,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700