电流变液声传播机理及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电流变液是一种智能材料,也属于复杂流体的范畴。电流变液在外电场作用下可以形成沿电场的有序结构,从而导致流变行为巨变。其结构、形态等发生由无序向有序转变,从而使得其许多物理性能(如光学性能、微波性能、流变学性能和声学性能等)出现可调节行为,这些特征使其在技术上具有巨大的应用潜力。本文在介绍电流变液声学特性的基础上,提出以电流变液作为一种水下声学材料,围绕其若干关键技术问题,在理论建模、数值计算以及实验等方面进行了研究和探讨;结合工程实际提出了几种新型的声学结构,建立了声波在几种新型结构中的传播计算模型,并比较了声波在其中的传播特性。论文的主要工作如下:
     提出了以电流变液作为一种新型的声学材料,将它用于水下吸声。同时以Biot理论为基础,建立声波在电流变液中的传播模型,修正了相关Biot参数,计算了在不同电场下声波传播速度和衰减因子;通过数学模型比较了各Biot参数对声波传播特性的影响;对比理论计算结果和实验结果可知,利用Biot理论建立的声波传播模型与实验结果相吻合,理论模型正确。
     研究了声波在分层介质中的传播理论,设计了几种透声结构和隔声结构。以Biot理论为基础建立了透声结构声波反射系数的有限元计算模型和隔声结构隔声性能的Matlab计算模型:通过计算比较可知:对于透声结构,多层非均匀介质叠合时,非均匀层中电流变液域不同的布置方式对其结构的反射系数有一定的影响;对于电流变液隔声结构,与双层夹心板相比,三层夹心板在中高频段隔声性能有明显优势,但低频段隔声性能有一定程度上的下降。
     提出了利用电流变液作为梯度声学材料的理论依据,基于传递矩阵法建立了声波在阻抗连续变化的电流变液中的声学模型,推导了声波的传播计算公式;结合声波在电流变液中传播的Biot模型计算结果,数值模拟了电流变液在不同声阻抗分布时其表面的反射系数;对不同梯度分布的情况下电流变液的声波反射特性进行了分析,为工程应用提供了理论基础。
     针对电流变液的特点,在总结目前电流变液控制策略的基础上,结合电流变液声阻抗匹配的控制原则,提出了将模糊控制理论应用于本控制系统中,并对控制器输入输出变量选择、控制器控制规则的设计以及模糊控制逻辑推理等问题进行了研究。在此基础上设计出了一个控制系统,比较控制前后电流变液表面的声学特性;控制结构表明模糊控制理论在设计的控制系统中效果明显。
     在理论研究的基础上设计了一种电流变液声波反射特性的测试系统。实验表明,在对电流变液施加不同电场以及结构中电流变液不同体积比时,其表现出来的声学特性呈现出巨大差异。实验结果与理论计算结果基本吻合。
The electrorheological fluid, among the complex fluids, is a kind of smart or intelligent materials. At the presence of an external electric field, the dispersed particles in ER suspensions can form orderly microstructures to a certain extent, resulting in the drastic changes of many physical properties of the materials. So in the dissertation, the electrorheological fluid as the water acoustical material is proposed. Then put the emphasis on the study about the theoretical model, the numerical calculation and experiment. Combined with practice, several acoustical structure is designed, and the characteristic of acoustic wave in its is researched. The main works in the dissertation are list as following:
     The electrorheological fluid as the water acoustical material is proposed. Base on the Biot theory, the model of the acoustic wave's propagation is established. To get the result uniformed with experiment, some Biot parameters are modified. The speed of acoustic wave and the loss factor in different electric field are calculated based on the acoustic model. From the result, we can find the influence of different Biot parameters. The theoretical results and experimental results show that the acoustic model based on Biot theory is right.
     Research the propagation of acoustic wave in layered media and the layered media composing the electrorheological fluid is proposed. For calculating the reflect coefficient, the FEM model based on Biot theory is build. Acoustical insulation analysis and calculation is done through the Matlab. Several acoustic structures are designed. The calculation results show that the arrangement ways of electrorheological fluid is important factor of the acoustical structure. Comparing the double sandwich with the three layered sandwich, the characteristic of sound insulation of the three layered sandwich in middle and high frequency is better, but in the low frequency, the double sandwich is better.
     The electrorheological fluid is proposed as a gradient acoustic media. On the electric field, the impedance of electrorheological fluid is changeable, the ER fluid have the potential to be active acoustic impedance matching materials, which could especially useful for the matching acoustic impedance between a solid transducer and fluids. In the dissertation, the model of acoustic wave propagation in an inhomogeneous layer is established which based on wave equations. Further we got the transmission matrix of this inhomogeneous layer and derive the energy reflection coefficients for it. Based on this mathematic model, we calculate the reflection coefficients for inhomogeneous layer with different impedance profile, and then the better impedance profile is got.
     According to the characteristic of electrorheological fluid, fuzzy control method is proposed. Combined with the impedance match method, a new control strategy is applied to the control system. Then puts emphasis on the study about the input/output variable, the control rules and the logical reasoning of controller. At last, the experiment is carried out. The results denoted that the active sound absorption method is feasible.
     Based on the theory research, a test system is designed which can test the reflection coefficient of electrorheological fluid. From the experiment result, we can know that under the different field, the reflection coefficient and impedance present drastic changes, and the result of the theoretical analysis are proved at the same time.
引文
[1]Beranek L L, Ver L, Noise and Vibration Control Engineering, New York:John Wiley and Sons,1992,.
    [2]Delany M E, Bazley E N, Acoustic Properties of Fibrous Absorbent Material, Appl Acoust,1970,25:105-16.
    [3]Qunli W, Empirical Relations Between Acoustic Properties and Flow Resistivity of Porous Plastic Open-Cell Foam, Applied acoustics.,1988,25:141-8.
    [4]Davern W A, Perforated Facings Backed with Porous Material as Sound Absorbers-an Experiment Study, Appl Acoust,1977,10:85-112.
    [5]石勇,朱锡,李永清等,分层吸声结构的声学设计与性能分析,应用声学,2007, (05)
    [6]何柞铺,王曼,水下非均匀材料复合层吸声特性研究,应用声学,1995,15(5) : 1-5
    [7]何又雄,姚姚,非均匀介质分形模拟的模型研究,江汉石油科技,2006,(01)
    [8]郑奎松,葛德彪,周期性分层介质高反射区范围的分析与估计,物理学报,2006,
    [9]周洪,高分子微粒声学材料的制备、性能及声学机理研究,四川大学,2007.
    [10]潘永东,仲政,Audoin B,柱形空腔内功能梯度涂层的表面波频散特性,2008年全国声学学术会议,上海,2008.
    [11]卢晓亭,李玉阳,唐应吾,具有松散沙(泥)质海底时负声速梯度浅海中的平均声强,2004全国物理声学会议,镇江,2004.
    [12]李佳讯,张韧,王彦磊et al., Kraken;海洋声学模型及其声传播与衰减的数值试验,海洋科学进展,2009,27(1).
    [13]蒋春晖,声学回声抵消算法及其实现,东南大学,2005.
    [14]陈文涛,高存法,杨权权,含圆孔功能梯度板在对称载荷作用下的应力分析,第三届全国压电和声波理论及器件技术研讨会,南京,2008.
    [15]杨雪,朱金华,水溶性高分子梯度溶液吸声机理的研究,声学学报,2006,31 (1)
    [16]Rogers, An Introduction to Intelligent Materials and Structures, Taipei Taiwan, 1990,3-41.
    [17]Degennes P G, Rev. Mod. Phys,1992,64 (645).
    [18]Duff A W, Phys.Rev,1986,23 (1896).
    [19]Andradd E N, Dodd C, Nature,1939,143:3610.
    [20]Onsager L, Fuoss R M, J. Phys. Chem,1932,36.
    [21]Krosny-Ergen W, Kolloid-Z, J. Phvs. Chem,1936,:172.
    [22]Block H, Kelly J P,
    [23]武莉萍,焦联联,潘生林et al., Pmma/Pba/Batio3复合电流变液的制备及其性能研究,第六届中国功能材料及其应用学术会议,武汉,2007.
    [24]唐宏,罗春荣,赵晓鹏et al.,电流变液复合层的声波透射行为,复合材料学报,2006,23(2).
    [25]李全禄,李媛,黄朝晖et al.,压电陶瓷与电流变液结合的声学与振动控制系统,光学精密工程,2008,16(12).
    [26]纪宏,孟永钢,田煜,电流变液及电流变液联轴器的实验研究,润滑与密封,2002,(2).
    [27]Block H, Kelly J P,.
    [28]Sebaa N, Fellah Z E A, Fellah Met al., Ultrasonic Characterization of Human Cancellous Bone Using the Biot Theory:Inverse Problem, The Journal of the Acoustical Society of America,2006,120 (4):1816-24.
    [29]Ogushwitz P R, Applicability of the Biot Theory. Ii. Suspensions, The Journal of the Acoustical Society of America,1985,77 (2):441-52.
    [30]Maguer A, Bovio E, Fox W L Jet al., In Situ Estimation of Sediment Sound Speed and Critical Angle, The Journal of the Acoustical Society of America, 2000,108 (3):987-96.
    [31]Johnson D L, Theory of Frequency Dependent Acoustics in Patchy-Saturated Porous Media, The Journal of the Acoustical Society of America,2001,110 (2): 682-94.
    [32]Hovem J M, Viscous Attenuation of Sound in Suspensions and High-Porosity Marine Sediments, The Journal of the Acoustical Society of America,1980,67 (5):1559-63.
    [33]Haiat G, Padilla F, Peyrin Fet al., Fast Wave Ultrasonic Propagation in Trabecular Bone:Numerical Study of the Influence of Porosity and Structural Anisotropy, The Journal of the Acoustical Society of America,2008,123 (3): 1694-705.
    [34]唐宏,罗春荣,赵晓鹏et al.,电流变液复合层的声波透射行为,复合材料学报,2006,23(2).
    [35]D G, K W, C E, Electrorheological Fluids as an Electrically Controllable Acoustic Medium:Ⅰ. Experimental Arrangement and Application to an Absorber of Underwater Sound, Acta Acustica United With Acustica,2002,88 (6) 886-95.
    [36]D G, K W, C E, Electrorheological Fluids as an Electrically Controllable Acoustic Medium:Ii. Medium Properties and Description by the Biot Theory, Acta Acustica United With Acustica,2002,88 (6):869-903.
    [37]X D, W W, T Zet al., Evidence of Nematic Phases in Electrorheological Fluid by Acoustic Impedance Measurement, Phys D:Appl Phys,2000,33:57-9.
    [38]A B M, Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range, J Acoust Soc Am,1956,28:168-78.
    [39]A B M, Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. Ii Higher Frequency Rang, J Acoust Soc Am,1956,28:179-91.
    [40]Stoll R D, Bryan G M, Wave Attenuation in Saturated Sediments, J.Acust.Soc.Am,1970,47:1440-7.
    [41]刘银斌,李幼铭,Biot介质中波传播研究述评,地球物理学进展,1992,7(3) : 32-40
    [42]张丽琴,於文辉,王家映,对Biot理论的重新思考和认识(ii),中国地球物理学会第18届年会,广西北海,2002.
    [43]薛新华,张我华,Xin-Hua Xet al.,多孔介质岩土材料的Biot固结损伤有限元分析,水利学报,2009,40(2).
    [44]刘杰惠,刘晓宙,龚秀芬,多孔介质中声传播的数值模拟,中国声学学会2007年青年学术会议,武汉,2007.
    [45]彭临慧,郁高坤,声波在水-多孔介质海底界面上的反射与透射,第十届船舶水下噪声学术讨论会,北京,2005.
    [46]胡恒山,王克协,应用Biot理论研究含气储层的声学特征,中国地球物理学会第14届年会,杭州,1998.
    [47]Williams K L, An Effective Density Fluid Model for Acoustic Propagation in Sediments Derived From Biot Theory, The Journal of the Acoustical Society of America,2001,110 (5):2276-81.
    [48]Wang Z, Nur A, Dispersion Analysis of Acoustic Velocities in Rocks, The Journal of the Acoustical Society of America,1990,87 (6):2384-95.
    [49]Ohkawa K, Confirmation of the Biot Theory for Water-Saturated Sands at High Frequencies and Effects of Scattering On the Attenuation of Sound Waves, The Journal of the Acoustical Society of America,2006,119 (2):709-11.
    [50]Ogushwitz P R, Applicability of the Biot Theory. I. Low-Porosity Materials, The Journal of the Acoustical Society of America,1985,77 (2):429-40.
    [51]Johnson D L, Kostek S, A Limitation of the Biot-Gardner Theory of Extensional Waves in Fluid-Saturated Porous Cylinders, The Journal of the Acoustical Society of America,1995,97 (2):741-4.
    [52]Hickey C J, Sabatier J M, Choosing Biot Parameters for Modeling Water-Saturated Sand, The Journal of the Acoustical Society of America,1997, 102 (3):1480-4.
    [53]Gist G A, Fluid Effects On Velocity and Attenuation in Sandstones, The Journal of the Acoustical Society of America,1994,96 (2):1158-73.
    [54]黄其柏,朱从云,基于压电材料的主动吸声降噪方法研究,噪声与振动控制,2004, (6)
    [55]Congyun Z, Qibai H, Research On Hybrid Absorption Based On Acoustic Impedance, Journal of low frequency noise, vibration and active control,2004, 23 (2).
    [56]Cobo P, Alejandro, Low-Frequency Absorption Using a Two-Layer System with Active Control of Input Impedance, J Acoust Soc Am,2003,114 (6).
    [57]C P, Pedersen, Tretiak O, Impedance-Matching Properties of an Inhomogeneous Matching Layer with Continuously Changing Acoustic Impedance, J Acoust Soc Am,1982,72(2).
    [58]朱从云,黄其柏,基于特性阻抗的半主动吸声研究,噪声与振动控制,2004,(2)
    [59]Lueg, Process of Silencing Sound Oscillations,.
    [60]Lueg, Process of Silencing Sound Oscillations,.
    [61]Olson H, Electronic Sound Absorber, J Acoust Soc Am,1953,25:1130-6.
    [62]Guicking D, Karcher K, Active Impedance Control for One-Dimensional Sound, Journal Vibration Acoustic Stress Reliability,1984,106:393-6.
    [63]Guicking D, Lorenz E, An Active Sound Absorber with Porous Plate, JournalVibration Acoustic Stress Reliability,1984,106:389-92.
    [64]Zhang J, Another Article by the Same Author, Journal of Something,1995,224 (1):17-20.
    [65]Fuller C R, Bronzel M J, Control of Sound Radiation/Reflection with Adaptive Foams, Florida,1,429-36.
    [66]Thenail, Lacour D, The Active Control of Wall Impedance, Acoustic,1983,26: 1039-44.
    [67]Thenail D, Sunyach M G M, Active Enhancement of the Absorbent Properties of a Porous Material, Smart Material and Structure,1994,18 (3):2-5.
    [68]Furstoss M, A D T M, Surface Impedance Control for Sound Absorption: Direct and Hybrid Passive/Active Strategies, Journal of sound and vibration,1997,203:219-36.
    [69]Orduna F, Nelson B P A, An Adaptive Controller for the Active Absorption of Sound, J Acoust Soc Am,1992,91:2740-7.
    [70]Hansen, Active Control of Noise and Vibration (Department of Mechanical Engineering), South Australia:University of Adelaide,.
    [71]Zhu H, A R R K, Active Control of Acoustic Reflection, Absorption and Transmission Using Thin Panel Speakers, J Acoust Soc Am,2003,113 (2): 852-70.
    [72]Kim J, Lee J K, Broadband Transmission Noise Reduction of Smart Panels Featuring Piezoelectric Shunt Circuits and Sound-Absorbing Material, J Acoust Soc Am,2002,112 (3):990-8.
    [73]Klingenberg D J, van Swol F, Zukoski C F, Dynamic Simulation of Electrorheological Suspensions, J.Chem.Phys,1989,91:7888-95.
    [74]C H J, van H S T, Response Times of Electrorheological Fluids, J.Appl.Phys, 1991,70:1207.
    [75]Biot M A, Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid Ii:High Frequency Range, J.Acust.Soc.Am,1956,28:179-91.
    [76]Biot M A, Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid I:Low Frequency Range, J.Acust.Soc.Am,1956,28:168-78.
    [77]Biot M A, Generalized Theory of Acoustic Propagation in Porous Dissipative Media, J.Acust.Soc.Am,1962,34:1254-64.
    [78]Stoll R D, Acoustic Waves in Ocean Sediments, Geophysics,1977,42:715-25.
    [79]Stoll R D, Marine Sediment Acoustics, J.Acust.Soc.Am,1985,77:1789-99.
    [80][80]Stoll R D, Theoretical Aspects of Sound Transmission in Sediments, J.Acust.Soc.Am,1980,68:1341-50.
    [81]Plona T J, Observation of a Second Bulk Compressional Wave in a Porous Medium at Ultrasonic Frequencies, Appl.Phys.Lett,1980,36:259-61.
    [82]Ogushwitz P R, Applicability of the Biot Theory:I. Low-Porosity Materials, J.Acust.Soc.Am,1985,77:429-40.
    [83]Christensen R E, Frank J A, Geddes W H, Low-Frequency Propagation Via Shallow Refracted Paths through Deep Ocean Unconsolidated Sediments, J.Acust.Soc.Am,1975,57:1424-6.
    [84]Hovem J M, Viscous Attenuation of Sound in Suspensions and High-Porosity Marine Sediments, J.Acust.Soc.Am,1980,67:1559-63.
    [85]Hovem J M, Ingram G D, Viscous Attenuation of Sound in Saturated Sand, J.Acust.Soc.Am,1979,66:1807-12.
    [86]黄其柏,工程噪声控制学,武汉:华中理工大学出版社,1999
    [87]杜功焕,朱哲民等,声学基础,南京:南京大学出版社,2001
    [88]何祚镛,赵玉芳,声学理论基础,北京:国防工业出版社,1981
    [89]傅海威,傅君眉,陈珺,分层介质的反射特性,西安石油学院学报(自然科学版),2002,
    [90]白净,祁文康,分层介质声阻抗图的重建算法,电子学报,1992,
    [91]P D I, Wa D, Calculation of Acoustic Impedance of Multi-Layer Absorbers, Appl Acoust,1986,19:321-34.
    [92]C L F, H C W, Acoustic Transmission Analysis of Multi-Layer Absorbers, Journal of Sound and Vibration,2001,248 (4):621-34.
    [93]Walter L, Inhomogeneous Plane Waves in lAyered Materials Including Fluid,Solid and Porous Layers, Wave Motion,1991,13:329-36.
    [94]Zhu C Y H Q B, A Method for Calculating the Absorption Coefficient of a Multi-Layer Absorbent Using the Electro-Acoustic Analogy, Appl Acoust, 2005,66 (7):879-87.
    [95]Easwaran V M M L, Analysis of Reflection Chratacteristics of a Normal Incidence Dlane Wave On Resonant Sound Absorbers:a Finite Element Approach, Journal Of Acostics Of society Of American,1993, (3):1308-18.
    [96]Atalla N P R, Acoustic Absorption of Macro-Perforated Porous Materials, Journal of sound and Vibration,2001,243 (4):659-78.
    [97]Sgard F. C O X, ON the Use of Perforations to Improve the Sound Absorption of Porous Materials, Applied Acoustics,66:625-51.
    [98]A G P,3D Symmetric Sinite Element Formulation of the Biot Equations with Application to Acoustic Wave Propagation through an Elastic Porous Medium, International Journal for Numerical Methods in Engineering,1998,41:167-92.
    [99]S B J, Kang S N M, Sound Transmission Though Multi-Panel Structures Lined with Elastic Porous Materials, J Sound Vib,1996,191 (3):317-47.
    [100]Attenborough, Acoustical Characteristics of Porous Materials 1982, Phys. Rep., 1982,82 (3):179-227.
    [101]L B, Noise and Vibration Control, New York:McGraw-Hill,1971,128-32.
    [102]X P, Elliott S T J, Active Control of Sound Transmission through a Double-Leaf Partition by Volume Velocity Cancellation, J.Acoust.Soc.Am.,1998,104 (5): 2828-35.
    [103]P C J, R F C, An Analytical and Experimental Investigation of Active Structural Acoustic Control of Noise Transmission through Double Panel Systems, J Sound Vib,2004,272 (2):749-71.
    [104]范军,朱蓓丽,勾厚渝,敷设消声瓦后潜艇的目标强度研究,第八届全国船舶水下噪声学术讨论会,温州,2001.
    [105]赵洪,徐海亭,Hong Zet al.,消声瓦声参数匹配与水下目标的回波消声效果,声学技术,2000,19(4).
    [106]安俊英,陈建平,徐海亭,钢板-空气背衬上含空腔粘弹性材料层的声反射特性,应用声学,2004,23(2):31-7
    [107]杨少红,王安稳,彭彪et al.,带有消声瓦的潜艇耐压壳在流场中的阻尼振动和层间应力,船舶力学,2008,12(5).
    [108]程道周,刘文武,楼京俊et al.,消声瓦的吸声机理研究,船海工程,2007,36(3).
    [109]王仁乾,马黎黎,消声瓦的吸声材料和结构对吸声性能影响的评估,中国声学学会水声分会2004年学术会议,安徽黄山,2004.
    [110]徐志云,黄其柏等,阻抗复合吸声结构的理论与声学特性研究,华中理工大学学报,1999, (1)
    [111]王仁乾,马黎黎,吸声材料物理参数优化的研究,声学技术,2004,23(2):73-8
    [112]R L, Absorption Mechanisms for Waterborne Sound in Alberich Anechoic Layers, Ultrasonics,1981,19 (28-30).
    [113]G G, Comments On Absorption Mechanisms for Waterborne Sound in Alberich Anechoic Layers, Ultrasonics,1985,23:90-1.
    [114]Jacek, Review of the Mechanisms of Sound Attenuation in Materials, Polymeric Materials Science and Engineering, Proceedings of the ACS Division of Polymeric Materials Science and Engineering,1989,60:483.
    [115]Sutherland, J H, Dispersion of Acoustical Waves by Fiber-Reinforced Viscoelastic Materials, J Acoust Soc Am,1975,57 (4):870-5.
    [116]周洪,李波,黄光速,高分子微粒吸声材料的声学特性,高分子材料科学与工程,2004,20(3):190-3
    [117]P G, Acoustic Finite Element Formulation of a Flexible Porous Material-a Correction for Inertial Effects, Journal of Soured and Vibration,1995,185 (2): 559-80.
    [118]马大猷,微穿孔板吸声体的准确理论和设计,声学学报,1997,22(5):385-93
    [119]王源升,余红伟,梯度聚氨酯吸声性能的优化,武汉理工大学学报,2006,28(10)
    [120]王源升,梯度高分子溶液的声衰减,高分子材料科学与工程,2005,21(5)
    [121]A. S. Cheny R P J, Fuzzy Logic Control of an Automotive Suspension System, IEE,1995,142 (2):149-60.
    [122]Yoshimura, Toshio, Active Suspension of Vehicle Systems Using Fuzzy Logic, Int.J.of Systems Science,1996,27 (2):215-9.
    [123]Wong C, Chiang D, Feng H, Multituning Fuzzy Control Systems Design, Cybernet Syst,2000,31 (6):713-29.
    [124]Ruan D, Implementation of Adaptive Fuzzy Control for a Real-Time Control Demo-Model, Real-Time Syst,2001,21 (3):219-39.
    [125]Hsueh Y, Su S, Compensate Controller Design for Solving the Parameter Drift Problem of Learning Fuzzy Control Systems,2008 IEEE International Conference on Fuzzy Systems, FUZZ 2008, June 1,2008-June 6,2008, Hong Kong, China:Institute of Electrical and Electronics Engineers Inc.,2008, 1112-7.
    [126]Ross T J,模糊逻辑及其工程应用,北京:电子工业出版社,2001
    [127]杨向忠,模糊控制理论与应用,西安:西北工业大学山版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700