高原多年冻土区公路路基稳定及预测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为研究青藏公路冻土病害处治对策,从青藏公路2002年~2004年冻土病害整治工程实际出发,在系统分析研究青藏公路病害及发生机理的基础上,运用室内模拟试验、数值分析方法,依托处治冻土病害路段实际使用的隔热板路基、碎石路基、无动力热棒路基等进行现场试验,分析边界温度周期波动条件下的路基温度场分布规律,同时进行一般路基不同边坡坡率的对比研究及有无护坡道的对比研究;运用数值分析方法,对气温升高趋势下隔热板、碎石、无动力热棒的隔热降温效果进行了研究;选择代表性路段观测资料,运用数值计算的方法,进行升温趋势下的路基变形预测,研究路基融沉变形对路面应力的影响。建立了气候升温背景下沥青路面冻土路基温度场计算模型,提出了路基合理高度与时间关系的数学表达式,提出了保温隔热层合理厚度及等效路基厚度的计算表达式,提出了碎石最佳粒径范围和合理层厚与铺设位置,模拟并验证了热棒的有效工作半径,探讨了以路面层底拉应力控制的路基融沉变形与路基填土高度的关系。研究认为,在全球气候变暖和工程活动的双重作用下,路基下冻土升温而导致的路基病害将是一个长期的过程,工程处治对策只能减缓病害的发展过程并有效控制规模,但难以根本上解决冻土路基的融沉变形问题;保持冻土上限稳定的路基合理高度是随时间变化的;放缓路堤边坡及设置保温护道无助于改善冻土路基的热稳定性;EPS板隔热层适用于低温冻土区;碎石路基是青藏高原合理经济的路基结构形式;无动力热棒路基能降低地温,是解决高温冻土区路基病害的有效措施;路面层底拉应力对路基变形响应敏感,高温冻土区应考虑控制路基最大高度。
In order to study on treatment measures of frozen soil distresses of Qinghai-Tibet highway, field experiments on road sections with thermal insulation slab subgrade, broken stone subgrade and non-power heat pipe subgrade in practical treatment of frozen soil distresses were made on the basis of systematical analysis of distresses of Qinghai-Tibet highway and their mechanism and relying on treatment engineering of frost soil distresses in Qinghai-Tibet highway from 2002 to 2004. Based on them, distribution laws of subgrade temperature field under fluctuant boundary temperature cycle conditions are analyzed, and different ratios of slope for general subgrade and different status when there are or not banquettes are compared by laboratory simulation and numerical analysis; thermal insulation and cooling effect of thermal insulation slab, broken stone and non-power heat pipes is respectively investigated under the trend of elevated temperature by numerical analysis, laws of subgrade deformation are predicted under the trend of elevated temperature and influences of subgrade thaw settlement on pavement stress are studies by numerical computation for observation data of representative road sections selected. A model of permafrost subgrade temperature field for asphalt pavement is established under climatic change conditions, mathematical expressions about the relation between reasonable height of subgrade and time are put forward. At the same time computation expressions of the thickness of heat insulation course and of equivalent subgrade height are proposed. The best range of particle size, the reasonable course thickness and installation position of broken stone are advised, effective operating radius is simulated and validated and the relation between subgrade thaw settlement and height of subgrade fill controlled by tension stress of the bottom of pavement layer is discussed. Researches indicate that: under double acting of climate and engineering, subgrade distresses resulting from permafrost warming under subgrade is a long-term developing process so taking engineering treatment measures can alleviate distresses development and effectively control the scale but thaw settlement of permafrost subgrade cannot be radically solved; reasonable subgrade height preserving permafrost table varies with time; reducing angle of subgrade slope and heat insulation berm can contribute little to the improvement; the insulating courses of EPS slabs are suitable for low-temperature regions; broken stone subgrade is economical and rational subgrade structure; non-power probe subgrade which can cool ground temperature is a kind of effective measure to subgrade distresses in high-temperature permafrost regions; tension stress of the bottom of pavement layer is sensitive to subgrade thaw settlement and the biggest subgrade height of subgrade should be considered to be controlled in high-temperature permafrost regions.
引文
[1] 吴中海,赵希涛,吴珍汉,等.西藏纳木错及邻区全新世气候与环境变化的地质记录[J].冰川冻土,2004,26(3):275-282.
    [2] 杨海学,姚檀栋. 近 2000a 来古里雅冰芯记录及 19—20 世纪的气候变暖[J].冰川冻土, 2004, 26(3):289-293.
    [3] 汤懋苍,程国栋,林振耀.青藏高原近代气候变化及对环境的影响[M].广州:广东科技出版社,1998.
    [4] 姚檀栋,等.青藏高原中部冰冻圈动态特征[M].北京:地质出版社,2002.
    [5] 秦大河.中国西部环境演变评估综合报告[M].北京:科学出版社,2002.
    [6] 丁一汇.中国西部环境演变评估第二卷[M].北京:科学出版社,2002.
    [7] 金会军,李述训.气候变化对中国多年冻土和寒区环境的影响[J].地理学报,2000,55(2):161-170.
    [8] 长安大学,等.高原多年冻土地区路基路面典型结构研究总报告[R].西安:长安大学,2000.
    [9] 周幼吾,郭东信,邱国庆,等.中国冻土[M].北京:科学出版社,2000.
    [10] 周幼吾,郭东信.我国多年冻土的主要特征[J].冰川冻土,1982,4(1):1-19.
    [11] 苏联科学院西伯利亚分院冻土研究所.普通冻土学(郭东信,刘铁良等译)(M).北京:科学出版社,1988.
    [12] 徐学祖,王家澄,张立新.冻土物理学(M).北京:科学出版社,2001.
    [13] 喻文兵.青藏铁路多年冻土区特殊结构路基研究[D].[博士学位论文].兰州:中国科学院寒区旱区环境与工程研究所,2003.
    [14] 周幼吾,杜榕恒.青藏高原冻土初步考察[R]. 兰州:中国科学院地理研究所冰川冻土室,1963.
    [15] 中国科学院地理研究所冰川冻土室.青藏公路沿线冻土考察论文集[C].北京:科学出版社,1965.
    [16] 交通部第一公路勘察设计院.青藏公路整治工程科研设计文献汇编[C].西安:交通部第一公路勘察设计院,1996.
    [17] 交通部第一公路勘察设计院.高原多年冻土地区公路修筑技术研究[R].西安:交通部第一公路勘察设计院,1999.
    [18] Viyalov, S.S., 1962,The strength and creep of frozen soils, U.S. Army CRREL,Trans.74.
    [19] 崔托维奇.冻土力学(张长庆,朱文林译)(M).北京:科学出版社,1985.
    [20] Sayles, F.H.,1973,Triaxial and creep test on frozen Ottawa sand, In: Permafrost, the North Amer, Contr 2th Int. conf., Yakutsk:384-391.
    [21] Andersland, O.B., 1985, Finite elements models for structural creep problems in frozen ground, 4th Int. Symposium on Ground Freezing.
    [22] Zaretskiy, Yu.k. and Shehobolev, A.G., 1983,A mathematic model for the viscoplastic deformation of frozen soils, 4th Int. Conf. on Permafrost.
    [23] Zhu Yuanlin, Carbee, D.L., 1983, Creep behaviour of frozen soil under constant triaxial stress, 4th Int. Conf. on Permafrost.
    [24] Ladanyi, B., 1972, Am engineering theory of creep of frozen soils, GeotecJ.,Vol.9.
    [25] Holt, J., 1972,Creep in structures, IUTAM Symposium.
    [26] Fish, A.M., 1991, Strength of frozen soil under a combine stress, 6th Int. Symp. On Ground Freezing:135-145.
    [27] Sayles, F.H., 1988, State of art: Mechanical properties of frozen soil,5th Int. Symp. On Ground Freezing: 173-179.
    [28] Bragg, R.A. and Andersland, O.B., 1980,Strain rate temperature and sample size effects on compression and tensile properties of frozen sand,2th Int. Symp. On Ground Freezing: 34-47.
    [29] 朱元林,吴紫汪,马巍,等.中国冻土力学研究最新进展及今后研究方向[A].第五届全国冰川冻土学会议[C].兰州:甘肃文化出版社,1996,956-961.
    [30] Zhu Yuanlin, Zhang Jiayi, et al, 1991, Constitutive relations of frozen soil in triaxial compression, Proc. of 6th ISGF, China .
    [31] Zhu Yuanlin, He Ping, et al, 1994,Creep behaviour and prediction of long—term strength of frozen soil under dynamic loading, Proc.of 7th ISGF, France.
    [32] 蔡中民,朱元林,等.冻土的粘弹性本构模型及材料参数的确定.[J].冰川冻土,1990,12(1):31-40.
    [33] 吴紫汪,马巍.冻土强度与蠕变[M].兰州大学出版社,1994.
    [34] 李昆,王长生,等.三轴试验中深部冻土固结问题[J].冰川冻土,1993,15(2):322-324.
    [35] Ma Wei et al, 1993, Strength and yield criteria of frozen soil, 6th Int. Conf. on Permafrost.
    [36] 余群,张招祥,等.冻土的瞬变形态和强度特性[J].冰川冻土,1993,15(2):258-265.
    [37] 苗天德,魏雪霞,等.冻土蠕变过程的微结构损伤理论[J].中国科学(B 辑),1995,25(3):309-317.
    [38] 王延栋,吴紫汪,等.冻土蠕变的光粘弹性模拟试验[M].兰州:兰州大学出版社,1995.
    [39] 何平,朱元林,等.饱和冻结粉土的动弹模与动强度[J].冰川冻土,1993,15(1):170-174.
    [40] 何平,朱元林,等.振动频率对冻土弹模之影响[A].第一届全国寒区环境与工程青年学术会议文集[C].兰州:兰州大学出版社,1994.
    [41] 何平,张家懿,等.振动频率对冻土破坏之影响[J].岩土工程学报,1995,17(3):78-81.
    [42] 沈忠言,张家懿.振动荷载作用下饱水冻结粉土的单轴抗压强度[J].冰川冻土,1996,18(2):138-143.
    [43] 赖远明.特殊路基应力场和温度场的非线性分析[D].[博士后论文].南京: 东南大学交通学院,2002.
    [44] Kontraluev, V.G., 1996,New methods of strengthing roadbed bases on very icy permafrost soils, Proc. of Int. Symp. on Cold Regions Engineering, China:7-10.
    [45] Liu Jiankun, Wu Ziwang, MaWei,1997 , Prediction of temperature region of roadbed on permafrost considering water fitration, Ground Freezing and Frost Action in Soil, Sweden:121-125.
    [46] Gandahl, R., 1978, Some aspects of the design of roads with boards of plastic foam, Proc. of 3th Int. Conf. on Permafrost, Canada:792-797.
    [47] Johnson, G.H., 1983, Performance of an insulated roadway on permafrost, Proc. of 4th Int. Conf. on Permafrost, Alaska:548-555.
    [48] 德德什科. 应用聚合材料消除土质路基冷生变形(童伯良译)[A].多年冻土区交通建设和环保的工程冻土译文[C].兰州:中国科学院寒区旱区环境与工程研究所,2001,7-14.
    [49] Zarling, John P., Bill Connor, P.E., Goering, D.J., 1983, Air duct systems for stabilization over permafrost area, Proc. of 4th Int. Conf. on Permafrost, Fairbanks: 1463-1468.
    [50] Odom, William B., 1983, Practical applieation of under slab ventilation system: Prudhoe Bay case study, Proc. of 4th Int. Conf. on Permafrot, Washington D.C.: 940-944.
    [51] Cheng K.T., Tung P.L., Lo H.B., 1978, Experimental research on an area with massive ground ice at the lower limit of alpine permafrost, Proc. of 3th Int. Conf. on Permafrost, Canada: 199-222 .
    [52] Nixon, J.F., 1978, Geothermal aspects of ventilation pad design, proc. of 3th Int. Conf. on Permafrost, Canadla:841-846.
    [53] Goering, D.J., 2003, Thermal respons of air convectin embankments to ambient temperature fluctuations, Proc. of 8th lnt. Conf. on permafrost, Switzerland: 291-296.
    [54] Goering, D.J., 1998,Experimental investigation of air convection embankment for permafrost-resistant roadway design, Proc. 7th Int. Conf. on Permafrost, Canada:319-326.
    [55] Goering, D.J., 2002, Convective cooling in open rock embankments, Proc. 11th Int. Conf. on Cold Regions Engineering, Alaska:629-644.
    [56] Jahns, W.O., Miller, T.W., Power, L.D., et al, 1973, Permafrost protection for pipeline. Proc. of 1th Int. Conf. on Permafrost, U.S.S.R.:673-684.
    [57] Wayne Tobiasson, 1973, Permafrost of the Thule hangar soil cooling systems. Proc. of 1th Int. Conf. on Permafrost, U.S.S.R.:752-758.
    [58] Grechishchev, S.E., Kazarnovsky, V.D., et al, 2003, Experimental road structures for permafrost regions, Proc. of 8th Int. Conf. on Permafrost, Switzerland:309-311.
    [59] 汪双杰,李祝龙,武憼民.多年冻土地区公路筑路技术研究现状与新课题[J].冰川冻土,2003,25(4):471-475.
    [60] 喻文学, 武憼民.青藏公路多年冻土区沥青路面路基高度问题[J],西安公路学院学报,1986(1):25-42.
    [61] 朱林楠,吴紫汪,臧恩穆.冻土退化与道路工程[J].第五届全国冰川冻土学大会论文集[C].兰州:甘肃文化出版社,1996,333-340.
    [62] 李东庆.青海省214国道(青康公路)多年冻土退化与路基稳定性分析研究[D].[博士学位论文].兰州:中科院寒区旱区环境与工程研究所,1999.
    [63] 令锋.冻土路基热状况动态特征的数值模拟与预报研究[D].[博士学位论文]. 兰州:中科院寒区旱区环境与工程研究所,1999.
    [64] 吴青柏,李新,李文君.全球气候变化下青藏公路沿线冻土变化响应模型的研究[J].冰川冻土,2001,23(1):001-005.
    [65] 王绍令,赵林,李述训,等.青藏公路多年冻土区沥青路面热量平衡及路基稳定性研究[J].冰川冻土,2001,23(2):111-117.
    [66] 丁靖康,赫贵生.年平均气温临界值—设计青藏高原多年冻土区路堤临界高度的一个重要因素[J].冰川冻土,2000,22(4):353-358.
    [67] 吴紫汪,朱林楠,郭兴民,等.青康公路多年冻土路堤的临界高度[J].冰川冻土,1998,20(1):36-41.
    [68] 原喜忠.大兴安岭北部多年冻土地区路基沉陷研究[J].冰川冻土,1999,21(2):158-162.
    [69] 马巍,程国栋,吴青柏.多年冻土地区主动冷却地基方法研究[J].冰川冻土,2002,24(5):579-586.
    [70] Lai, Y.M., et al, 1999, Nonlinear analysis for the coupled problem of temperature and seepage fields in Cold regions tunnels, Cold Regions Science and Technology, Vol. 29:89-96.
    [71] 陈飞雄.饱和正冻土温度场、水分场和变形场三场耦合理论构架[D].[博士学位论文].西安: 西安理工大学岩土工程研究所,2001.
    [72] 冯文杰,马巍,等.碎块石护坡在寒区道路工程中的应用[J].冰川冻土,2003,25(6):628-631.
    [73] 喻文兵,赖远明,等.块石层与碎石层降温效果室内试验研究[J].冰川冻土,2003,25(6):638-643.
    [74] 孙志忠,马巍,李东庆.多年冻土区块、碎石护坡冷却作用的对比研究[J].冰川冻土,2004,26(4):435-439.
    [75] 牛富俊,俞祁浩,赖远明.青藏铁路管道通风试验路基地温变化及热状况分析[J].冰川冻土,2003,25(6):621-627.
    [76] 潘卫东,赵肃昌,等.热棒技术加强高原冻土区路基热稳定性的应用研究[J].冰川冻土,2003,25(4):433-438.
    [77] 汪双杰,章金钊,等.青藏公路沿线多年冻土分布及影响因素分析[A].2004 年道路工程学术交流会论文集[C].北京:人民交通出版社,2004,133-139.
    [78] 汪双杰,霍明,等.青藏公路多年冻土路基病害[J].公路,2004(5):22-26.
    [79] 章金钊.青藏公路多年冻土区路基病害机理探讨[J].公路交通科技,2004,21(4):52-54.
    [80] 汪双杰,吴青柏,刘永智.沥青路面下冻土热稳定性和热融敏感性的变化[J].公路交通科技,2003,20(4):20-22.
    [81] 王绍令,赵林,等.青藏公路多年冻土段沥青路面热量平衡记录及稳定性研究[J].冰川冻土,2001,23(2):111-118.
    [82] 路勋,王绍令.青藏公路多年冻土区内路基下的地下水调查[A].第五届全国冰川冻土学大会论文集[C],兰州:甘肃文化出版社,1996,1179-1184.
    [83] Harris, S.A., Pedersen, D.E., 1998, Thermal regimes beneath coarse blocky materials. Permafrost and Periglacial Processes, 9:107-120.
    [84] Harlan, R.L., 1973, Analysis of coupled heat-fluid transport in partially frozen soil. Journal of Water Resource Res,9:1314-1323.
    [85] Taylor, G.S., Luthin, J.N., 1978, A model for coupled heat and misture transfer during soil freezing, Canadian Geotech 15:548-555.
    [86] 木下诚一.冻土物理学(王异,张志权译)[M],长春:吉林科学技术出版社,1985.
    [87] 吴紫汪,刘永智.青藏公路沥青路面冻土路基变形预测[A].第三届全国冻土学术会议文集[C].北京:科学出版社,1989.
    [88] 黄小铭.青藏高原多年冻土区铁路路堤临界高度的确定[A].第二届全国冻土学术会议文集[C].北京:科学出版社,1983,391-397.
    [89] 吴紫汪,程国栋,朱林楠,等.冻土路基工程[M].兰州:兰州大学出版社,1988.
    [90] 李述训,吴紫汪.青藏高原多年冻土区沥青路面下融化盘形成变化特征[J].冰川冻土,1997,19(2):133-140.
    [91] 刘永峰,丁靖康,赫贵生,等.聚苯乙稀隔热层在多年冻土区路基工程中的应用[J].冰川冻土,2000,22(Suppl):26-32.
    [92] 温智,盛煜,马魏.保温材料在青藏铁路路基工程中应用的数值分析[J].冰川冻土,2004,26(增刊):83-89.
    [93] 陈建兵,章金钊.国际冻土研究动态-第八届国际冻土大会综述[J].公路,2004(1):94-98.
    [94] 刘为民,何平,张钊.土体导热系数的评价与计算[J].冰川冻土,2002,24(6):83-89.
    [95] Charrier-Mojtabi, M.C., Mojtabi,A.,Caltagirone,J.P.,1979,Numerical solution of a flow due to natural convection in horizontal cylindrical annulus. Journal of Heat Transfer,101(1):171-173.
    [96] Caltagirone, J.P., Bories, S.,1985,Solutions and stability criteria of natural convective flow in an inclined porous layer. Journal of Fluid Mechanics, 155:267-287.
    [97] Caltagirone, J.P., 1980,Natural convection appearance in a horizontal porous layer with timewise periodic boundary conditions. Progress in Refrigeration Science and Technology, Proceedings of the 15th International Congress of Refrigeration,663-669.
    [98] Caltagirone, J.P.,1975, Thermoconvective instabilities in a horizontal porous later. Journal of Fluid Mechanics, 72(2):269-287.
    [99] Bradean, R., Ingham, D.B., Heggs, P.J., et al, 1996, Buoyancy-induced flow adjacent to a periodically heated and cooled horizontal surface in porous media. InternationalJournal of Heat and Mass Transfer,39(3):615-630.
    [100] Afify, R.I., Berbish,N.S,1999,Experimental investigation of forced convection heat transfer over a horizontal flat plate in a porous medium. Journal of Engineering and Applied Science,46(4):693-710.
    [101] Shankar, V., Hagentoft,C.E.,2000,Numerical investigation of natural convection in horizontal porous media heated from below-comparisons with experiments. Journal of Thermal Envelope and Building Science,23(4):318-338.
    [102] Poulikakos, D., Bejan,A.,1984,Penetrative convection in porous medium bounded by a horizontal wall with hot and cold spots. International Journal of Heat and Mass Transfer,27(10):1749-1757.
    [103] Poulikakos, D., Bejan,A.,1984,Natural convection in a porous layer heated and cooled along one vertical side. International Journal of Heat and Mass Transfer,27(10):1879-1891.
    [104] Riley, D.S., 1988,Steady two-dimensional convection in a vertical porous slot with spatially periodic Boundary imperfections. International Journal of Heat and Mass Yiansfer,31(11):2365—2380.
    [105] Antos, M., Caltagirone, J.P., Fabrie, P.,1989,Natural convection in a porous medium at high Rayleigh numbers. Proceedings of Heat Transfer Measurements,Analysis,and Flow Trsualization, ASME, Philadelphia, PA,USA, 112:109-114.
    [106] Nield, D.A.,1991, Estimating of the stagnant thermal conductivity of saturated porous media. International Journal of Heat and Mass Transfer, 34(6):1575-1576.
    [107] Bauer, T.H., 1993,A general analytical approach toward the thermal conductivity of porous media.International journal of Heat and Mass Transfer, 36(7):4184-4191.
    [108] Royer, J.J., Flores,L.,1994,Two-dimentional natural convection in an anisotropic and heterogeneous porous medium with internal heat generation.International Journal of Heat and Mass Transfer,37(9):1387-1399.
    [109] Yoo, J.S.,2003,Thermal convection in a vertical porous slot with spatially periodic boundary temperatures:low Ra.flow. International Journal of Heat and Mass Transfer,46:381-384.
    [110] 庄竣、张红.热管技术及其工程应用[M].北京:化学工业出版社,2000.
    [111] 程国栋,何平.多年冻土地区线性工程建设[J].冰川冻土,2001,23(3):213-217.
    [112] 杨世铭、陶文铨.传热管(第三版)[M].北京:高等教育出版社,2001.
    [113] 闫小克,唐志伟,愈昌铭.热管传热性能的评价方法及其测试装置[J].计量学报, 2003, 24(2), 113-115.
    [114] 藏恩穆,吴紫汪.多年冻土退化与道路工程[M].兰州:兰州大学出版社,1999.
    [115] 孙斌祥,徐学祖,赖远明,李东庆. 块石的热扩散系数和导热系数确定方法[J]. 冰川冻土,2002,24(6):790-795.
    [116] 孙斌祥,徐学祖,赖远明,等.块石路堤、护坡导热系数的实验研究[J].中国公路学报,2003,16(6):6-10.
    [117] Sun Binxiang, Xu Xuezu, Lai Yuanming, et al, 2004, Experimental researches of thermal diffusivity and conductivity in embankment ballast under periodically fluctuating temperature[J]. Cold Regions Science and Technology, 38:219-227.
    [118] 孙斌祥,徐学祖,赖远明,等.温度周期波动时自然对流对块石导热系数测定的影响[J].土木工程学报,2004,37(1):219-227.
    [119] 孙斌祥,徐学祖,赖远明,等.基于自然对流效应的寒区碎石路堤临界高度[J].中国公路学报,2005,18(1).
    [120] 汪双杰,孙斌祥,徐学祖,等.路堤块石自然对流机理的室内模拟试验研究[J].中国公路学报,2004,17(2):18-23.
    [121]徐学祖,孙斌祥,李东庆,等.边界温度周期波动下块石的温度变化规律[J].岩土工程学报2003,25(1):91-95.
    [122] 徐学祖,孙斌祥,赖远明,等.青藏铁路片石路基长期使用效果分析[J].冰川冻土,2004,26(1):101-105.
    [123] Nield,D.A.,Bejan,A.,1999,Convection in Porous Media.New York:Springer-Verlag.
    [124] 铁道部第三勘察设计院.冻土工程[M].北京:中国铁道出版社,2002.
    [125] B.A.库德里亚夫主编.工程地质研究中的冻土预报原理(郭东信,马世敏,丁德文等译)[M].兰州:兰州大学出版社,1992.
    [126] 洪毓康.土质学与土力学[M].北京:人民交通出版社,1999.
    [127] 鄂俊太,韩志强,林慕义.压路机选型及压实技术[M].北京:人民交通出版社,1999.
    [128] Goering, D.J., Instanes, A., Knudsen, S., 1996, Winter-time convection in open-graded embankments. Cold Regions Sceince and Technology, 24:57-74
    [129] 朱立平,哈勒,王家澄.干冷条件下小块石的模拟试验[J].地理学报,1997,7(4):74-86.
    [130] 赵秀峰.岩石和土的冷生风化研究[J].青藏高原观测研究站年报,1995,3:48-55.
    [131] Feldman, K.T., 1967, The heat pipe. Mechanical Engineering, 89:30-31.
    [132] Heuer,C.E.,1979,The application of heat pipes on the trans Alaska pipeline, CRREL Report.
    [133] 苑希民,李鸿雁,刘树坤,等.神经网络和遗传算法在水科学领域的应用[M]. 北京:中国水利水电出版社, 2002.
    [134] 吕金虎,陆君安,陈士华.混沌时间序列分析及应用[M]. 武汉:武汉大学出版社,2002.
    [135] Takens, F., 1981, Determing strang attractors in turbulence, Lecture notes in Math. 898:361-381.
    [136] 陈继光. 基于 Lyapunov 指数的观测数据短期预测[J]. 水利学报. 2001(9): 65-67.
    [137] 吴耿锋,周佩玲,储阅春,等.基于相空间重构的预测方法及其在天气预报中的应用[J].自然杂志,1999,21(2):108-110.
    [138] Wolf , A., Swift , J. B., Swinney, H. L., et al,1985, Geometry from a times series. Physical, 16(2):285-371.
    [139] Huang, Y.H., Finite element analysis of nonlinear soil media. Proceedings of the Symposium on Application of FEM in Civil Engineering.1969, 663-685.
    [140] 刘萌成,黄晓明,葛折圣. 三背回填沉降和稳定性设计指标与控制标准[R]. 南京:东南大学交通学院,2004.
    [141] 钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700