户外纺织品用隔热降温涂料的研制及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物体在阳光的持续照射下会积聚大量热量,导致其表面和内侧温度升高,尤其是在炎热的夏天和高温地区,给人们的生产和生活带来诸多不便和危害。随着全球变暖趋势的加剧,世界各地频频报道出现历史最高气温;臭氧层破坏,导致全球皮肤病患者增多,尤其是南半球和我国广东地区。这些环境问题给人们的户外生产、生活带来诸多不便。与此同时,随着人们生活水平的提高,和回归大自然潮流的推行,人们越来越喜欢参加户外活动。因此市场上就要求出现相关的产品,来解决这个问题或减弱这种现象带来的危害。一是满足人们基本的生产、生活需要;另外还要适应现在的户外环境,使其具有防紫外线、防水、通气透湿,阻燃防污以及遮光反射等特殊功能。
     为解决此问题,人们设计出多种防护热辐射的方法,其中常用的一种是红外热反射涂层,所谓红外热反射涂层是指涂覆于物体表面、对辐射中的红外波段具有高反射比、从而抑制涂层表面温度上升并同时降低覆盖物内部温度的涂层。目前,国内对于隔热降温涂料的研制、生产主要针对建筑行业、工业设备及航空等领域,而研究帐篷等户外纺织品用隔热降温涂料的几乎没有,也很少有关用于纺织品行业的隔热涂料方面的文献报道。
     本课题旨在研制出一种遮阳伞、帐篷等户外纺织品用隔热降温涂料来降低伞下、帐篷内的温度,为使用者提供一个较为舒适的工作生活环境。对于隔热涂料的研制以往研究最多的是热反射涂料,其实根据隔热机理和隔热方式的不同,隔热涂料可分为三种类型:阻隔型、反射型和辐射型隔热涂料。在本课题中将尝试利用两种或这三种隔热机理,开发多机理、隔热降温效果更明显的隔热涂料。
     本课题经过以涂层隔热降温综合效果,隔热降温涂料的太阳热吸收比,涂层织物的表观效果、抗紫外效果、撕破强力、拉伸强力和耐静水压为此涂料的性能指标,对成膜组分、功能填料和助剂进行筛选,并确定各组分的组成和用量。最终,将本课题研制的涂料通过合适的涂层工艺整理面料,其隔热降温综合效果高达23℃,太阳热吸热比低至21.90%,抗紫外、拒水、拉伸强力和撕破强力各项性能指标均超过标准值。
     鉴于纺织品的隔热降温研究甚少,行业内没有相应的测试仪器和标准,本课题根据纺织品的特性自制隔热降温综合效果测试仪,并创造性地引出太阳热吸收比计算公式,定量地说明本课题研制的涂料的隔热降温效果的好坏。
Exposure to the sun continuously, Objects will accumulate a lot of heat, and lead to the surface and the inside's temperature raise. Especially in the hot summer and the high-temperature regions. Which makes many inconveniences and dangers to people's production and living. With the intensification of global warming, many regions frequently reported a record high temperature around the world; The ozone layer destruction leads to an increase in skin diseases worldwide, especially in the southern hemisphere and China's Guangdong Province. These environmental issues make many inconveniences to the people's outdoor production and living. At the same time, as living standards' improvement, and the trend of returning to nature's implementation, people increasingly prefer to participate in outdoor activities. Therefore, the market requires to appear the related products and to solve this problem or reduce the harm of this phenomenon. Firstly, these products should meet the basic needs of production and living; They also should adapt to the outdoor environment, so they should have anti-ultraviolet, waterproof, breathable ventilation, fire-retardant, stain-retardant, shading and other special features.
     To solve this problem, people designed many methods. One of these methods is infrared thermal reflective coating. This coating can highly reflective the infrared thermal, and it coat on the surface of the objects, thereby inhibiting coating surface's temperature rising, at the same time reducing the internal temperature of the objects. At present, our country studies mainly the heat insulation coating in the construction industry, industrial equipment and aviation fields, and there are few studies in the tents and other textile. And there are a few reports about the insulation coatings for textile industry.
     The subject aims to develop a kind of insulation-cooling coating which is used to outdoor textiles, for example umbrellas, tents and automotive clothing and so on. This coating can drop the temperature under the umbrella and inside the tent, provides users with a more comfortable working and living environment. The most previous studies of the Insulation Coatings are on the heat-reflective coating. In fact, according to the mechanism and the ways of thermal insulation, insulation-cooling coating can be divided into three types:barrier-type, reflective-type and radiation-type insulation-cooling coatings. In this issue, the author will try to use two or three thermal mechanisms to develop a multi-mechanism and more effective thermal insulation-cooling coating.
     The combined effect of insulation-cooling, the solar heat absorption ratio, the apparent effect of coated fabrics, UV resistance, tear strength, tensile strength and resistance to hydrostatic are as the of the insulation-cooling coating. Base cn the above performance indicators, the author choose the film-forming components, functional fillers and additives, and determine the composition and amount of each component. Ultimately, apply this coating to outdoor textiles by a suitable coat process. The finished fabric's performance as below:insulation-colling combined effect high to 23℃, the solar heat absorption ratio low to 21.90%, UV resistance, water repellent, tensile and tear strength all performance indicators are more than the standard value.
     In view of the few studies on the textiles'insulation-cooling, there are not the test equipment and standards in the textile industry. So this issue made a combined effect of insulation-cooling tester according to the textiles'features. And creatively elicit the solar heat absorption ratio formula, which can quantitatively describe the effect of the insulation-cooling coating.
引文
[1]王科林,徐娜.太阳热反射隔热涂层及其发展趋势[J].现代涂料与涂装,2009,12(2):18-22.
    [2]杨万国,李少香,王文芳,刘来运,刘光烨.帐篷用军绿色热反射涂料的研究[J].涂料工业,2008,38(9):22-24.
    [3]曹延鑫,冀志江,王静.隔热涂料研究进展与发展方向[J].特别关注,34-35.
    [4]李红玲,蔡怀智,庞金镕.新型隔热降温涂料的研制[J].矿产综合用,2006,4:24-26.
    [5]胡伟良,候国辉.节能保温隔热材料行业发展前景[J].中国新技术新品2010,6:147.
    [6]保温隔热涂料[J].涂料文摘.
    [7]陆洪彬,陈建华.隔热涂料的隔热机理及其研究进展[J].材料导报,2005,4,4:71-73.
    [8]江晴,李戬洪,卢显强,黄立.海灰色选择性热反射涂料的实验研究[J].太阳能学报,1999,20(4):455-458.
    [9]罗志勇.红外涂层发射率的理论研究[J].红外技术,2000,9,22(5):23-27,34.
    [10]许铁群,孙乔,刘宏伟.GF205高效反射隔热防腐涂料的研制[J].腐蚀科学与防护技术,2008,20(4):301-303.
    [11]王科林,陈克宁,牛家嵘,李永杰.二氧化钛的隔热机理及其在功能织物上的应用[J].现代纺织技术,2009,1:59-62.
    [12]王岐东,赵华.单级、两级相变材料复合体系的隔热降温特性[J].北京轻工业学院学报,1998,16(1):42-46.
    [13]郑其俊,张志远.反射隔热降温涂料的模拟实验研究[J]. China Academic Journal Electronic Publishing House,2010,56-59.
    [14]陈先,郭年华,李明,战为民,刘登良.功能涂料太阳热反射率测试方法研究[J].化工新型材料,1999(2):36-38.
    [15]江睛,李戬洪,卢显强.灰色热反射涂料的降温极限及展望[J].红外技术,1998,20(3):39-41.
    [16]孙元宝,邱贞慧,杜占合,费逸伟.绿色太阳热反射涂料降温性能研究[J].电镀与涂饰,2005,25(2):22-25.
    [17]赵继华.耐高温隔热涂料的研制[J].涂料工业,2002,11:21-23,50.
    [18]程明,吉静,常雨鑫.热反射颜填料对建筑节能涂料的影响[J].北京化工 大学学报(自然科学版),2009,36(1):51-54.
    [19]田心平,王澜,来金雅,贺颖.光干涉膜阻隔红外线的研究[J].中国塑料,2009,23(7):65-68.
    [20]杨景发,张玮,申文增,杨保柱,闫其庚.光谱选择性隔热功能涂料的研究[J].河北大学学报(自然科学版),2010,30(1):26-30.
    [21]江晴,李戬洪,卢显强.光谱选择性涂层的传热分析[J].太阳能学报,1998,10,19(4):400-402.
    [22]陆建康.涂层复合产品开发[J].产业用纺织品,2002,3(1):1-3.
    [23]王林江,朱枣年,杨芸,凌荣国.利用分光光度法测定建材涂料涂层表面反射率的研究[J].分析仪器,1994,2:58-61.
    [24]张学义,王岐东,康惠宝,王正刚.两单元相交材料复合体系隔热降温效能的研究[J].化学世界,91.
    [25]Ana M. Borreguero, Manuel Carmona, M. Luz Sanchez, Jose Luis Valverde, Juan F. Rodriguez.Improvement of the thermal behaviour of gypsum blocks by the incorporation of microcapsules containing PCMS obtained by suspension polymerization with an optimal core/coating mass ratio[J]. Applied Thermal Engineering 30 (2010) 1164-1169.
    [26]柳艳,朱振华.纺织品耐水压性能测试[J].印染,2004,4:37-38.
    [27]祝小娟,林安,甘复兴.太阳热反射隔热涂料的研制[J].第六届全国表面工程学术会议,2006-8:208-213.
    [28]洪晓.太空反射绝热涂料研制[J].河南化工,2004,11:14-15.
    [29]马保国,戴璐,张风臣,高立,陈全滨.一种热反射隔热涂料的制备方法:中国CN 101665648A[P].2010-03-10.
    [30]康革荣,孟庆英,乔亚莉,宋威,杨治安.太旧能反封涂层屏蔽热辐射的研究[J].染料工业,1996,12-14.
    [31]潜伟平.一种用于纺织品的隔热涂料:中国CN 101435158A[P].2009-5-20.郭年华,陈先,陈绍平,朱万章.太阳热反射涂料[J].涂料工业,1999,4:37-39.
    [32]殷燕子,林安,刘秀生,程学群.太阳热反射涂料的反射率检测方法研究及其数学模型[J].材料保护,2004,27(5):8-10.
    [33]毕爱红,朱金华,文庆珍.降温涂料的究现状及发展趋势[J].上海涂料,2006,44(9):16-20.
    [34]王科林,牛家嵘,陈克宁,周蜜.TiO2/ZnO热反射涂层织物的研究[J].印染,2008,19::1-4.
    [35]陆洪彬,陈建华.隔热涂料的隔热机理及其研究进展[J].材料导报,2005,19 (4):71-73.
    [36]康草荣,宋威,孟庆英,乔亚莉,杨治安.反射太阳热涂层屏蔽辐射热的自动检测系统[J].染料工业,1996,38-40.
    [37]A. Synnefa, M. Santamouris, I. Livada. A study of the thermal performance of reflective coatings for the urban environment[J]. Solar Energy 80 (2006) 968-981
    [38]Paula Sanchez, M. Victoria Sanchez-Fernandez, Amaya Romero, Juan F. Rodriguez, Luz Sanchez-Silva. Development of thermo-regulating textiles using paraffin wax microcapsules[J].Thermochimica Acta,498 (2010) 16-21.
    [39]杨富民.红外热反射涂料的研究[M].北京工业大学,2005.
    [40]郭年华.聚氨酯改性氯丙树脂太阳热反射涂料的研制[J].现代涂料与涂装,2003,01:6-9.
    [41]张济邦.纺织印染用消泡剂(一)[J].印染,1997,10,23(10):32-34.
    [42]Paula Sanchez, M. Victoria Sanchez-Fernandez, Amaya Romero, Juan F. Rodriguez, Luz Sanchez-Silva. Development of thermo-regulating textiles using paraffin wax microcapsules [J]. Thermochimica Acta 498 (2010) 16-21.
    [43]邓洪,单晴川,彭志忠.涂料印花增稠剂CP的合成及应用性能[J].印染,2009,6:43-45.
    [44]R.J. Goldstein, W.E. Ibele, S.V. Patankar, T.W. Simon, T.H. Kuehn, P.J. Strykowski, K.K. Tamma, J.V.R. Heberlein, J.H. Davidson, J. Bischof, F.A. Kulacki,U. Kortshagen, S. Garrick, V. Srinivasan. Heat transfer—A review of 2003 literature [J]. International Journal of Heat and Mass Transfer 49 (2006) 451-534.
    [45]S. Mondal. Phase change materials for smart textiles-An overview[J]. Applied Thermal Engineering 28 (2008) 1536-1550.
    [46]Kang Koo, Jongdeok Choe,Youngmi Park. The application of PCMMcs and SiC by commercially direct dual-complexcoating on textile polymer[J]. Applied Surface Science 255 (2009) 8313-8318.
    [47]传热学基础[M]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700