花岗岩/硅烷偶联剂/水泥浆界面层形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宏观力学性能实验研究表明,经硅烷偶联剂(SCA)改性的花岗岩/水泥浆界面层粘结强度显著优于既有的界面层改性方法的粘结强度,故用SCA处理花岗岩骨料很可能是一种大幅度提高量大面广的普通混凝土强度和耐久性的有效方法。由于这是一种全新的改善混凝土中骨料和水泥浆体界面层性能的方法,有必要对其作用机理作深入的探讨。
     笔者首先通过试验研究,探讨改性反应温度和时间对花岗岩/SCA/水泥浆界面层劈拉强度的影响,又用分光光度计和接触角测定仪分析SCA与花岗岩表面的结合形式,然后又利用傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)证实了SCA与花岗岩表面即使在常温下也可以产生化学键结合。综合分析试验结果表明,SCA与花岗岩表面有物理吸附、化学吸附和化学键三种牢固程度不同的结合形式,且随着反应温度和时间的提高,骨料表面化学吸附和化学键结合的SCA量增多。然而,宏观试验结果却表明,常温下反应时间较短时的效果最好。由此,笔者从物理和化学方面对花岗岩/SCA/水泥浆界面层的形成进行了初步探讨,提出了界面层微细观结构的改善和新的硅氧硅键的形成及其对粘结强度的提高的机理。最后本文对今后的研究提出了设想与展望。
Several mechanical experimental researches have indicated that the bond strength of granite/silane coupling agent (SCA)/cement paste interfaces is much higher than that of the granite /cement interfaces obtained using existing granite surface modification methods. Hence SCA surface modification is likely to be a superior means to improve the strengths and durability of the billions of tons of concrete used worldwide. This is a new method to improve the bond strength between aggregates and cement paste. It is hence necessary to investigate the bond mechanisms.
    The influence of SCA/aggregates reaction time and temperature was investigated through an experimental study. Spectrophotometry and contact angle measurements were used to investigate the formation of the granite/SCA interfaces. Fourier transform infrared spectrometer (FTIR) and X-ray Photoelectron Spectroscopy (XPS) experiments had revealed that strong chemical bonds (even in room temperature) have formed on the modified surfaces of the granite. The results of all the experiments showed that physical adsorption, chemical adsorption and chemical bonds were formed between the SCA and the aggregates. The longer time and higher temperature at reaction, the more chemical adsorption and chemical bonds are formed. However, mechanical experiments indicated that higher aggregate/cements bond strengths were obtained at room temperation with short reaction time. The author investigated the formation of the granite/SCA/cement paste interfacial layers with respect to physical and chemical considerations. A mechanism describing the formation of the modified interfacial transition zone and its improvements to the aggregates/cement paste bond strength was proposed. Finally, propositions of future research were brought forward.
引文
1.洪乃丰.混凝土中钢筋腐蚀与防护技术.工业建筑,1998(8):66~68
    2.张誉.结构耐久性研究的展望,现代土木工程的新发展,东南大学出版社,1999:88—95
    3.刘西拉.我国工程结构耐久性问题面临的处境和难点,沿海地区混凝土结构耐久性及其设计方法科技论坛与全国第六届混凝土结构耐久性学术交流会会议论文集,人民交通出版社,2004:41—49
    4.陈肇元主编.土建结构工程的安全性与耐久性,中国建筑出版社,2003
    5.阎培渝,邢峰,遵循可持续发展原则的结构工程材料研究,建筑、环境与土木工程学科发展战略研讨会,国家自然科学基金委员会,2004年12月,178—179
    6.王铁宏,王有为,崔建友,李军.在可持续发展战略思维下对我国建设事业科技进步的几点意见与建议,建筑科学,2004,20(1):1—7
    7.赵霄龙,巴恒静,普通强度高耐久性混凝土的配制技术,建筑技术,2004,35(1):26—29
    8. P K Mehta, Concrete in the Marine Environment, Elsevier, Applied Science, 1991
    9. MASO J C. The Bond Between Aggregates and Hydrated Cement Pastes[A]. In: Proceedings of 7th International Congress on the Chemistry of Cement[C]. Vol 3, Paris: Septima, 1980. Ⅶ-1/3-Ⅶ-1/15
    10. Zimbelman R. Contribution of Cement-Aggregate Bond[J]. Cem. Concr. Res. 1985, 15(5): 801-808
    11. MASO J C, Bourdette B. Interracial Transition Zone in Concrete[J]. Adv Cem Based Mater, 1995, 2 (1): 30-38
    12. G. Prokopski, J. Halbiniak. Interracial Transition Zone in cementitious materials. Cem. Concr. Res. 2000, (30): 579-583
    13. Dannys B, Gerard B, Jacques G. Contribution to the formation mechanism of the transition zone between rock-cement pastes. C. C. R., 1993, 23: 335-346
    14.陈惠苏,孙伟,Stroeven Piet.水泥基复合材料集料与浆体界面研究综述(一):实验技术,(二):界面微观结构的形成、劣化机理及其影响因素,硅酸盐学报,2004,32(1):63-69,70-79
    15.姚燕.新型高性能混凝土的研究与应用,中国硅酸盐学会2003年学术年会水泥基材料论文集(下册),1
    16.冯乃谦,普通混凝土、高强混凝土与高性能混凝土,建筑技术,2004(1):20-23
    17. G. A. Rao, B. K. R. Prasad. Influence of the roughness of aggregate surface on the interface bond strength, Cement and Concrete Research, 2002 (32): 253-257
    18. Yan, K. R. Wu, D. Zhang, W. Yao. Influence of concrete composition on the characterization of fracture surface, Cement and Concrete Composites, 2003(25): 153-157
    19. M Boulfiza, K Sakai et al. Prediction of Chloride Ions Ingress in Uncracked and Cracked Concrete, ACI Materials Journal, 2003, 100 (1): 38-48
    20. G. J. Xiong, J. W. Liu, G. Y. Li, H. C. Xie. A Way for Improving Interracial Transition Zone between Repair Material and Concrete Substrate, Cement and Concrete Research, 2002 (12): 1877-1881
    21.熊光晶,姜浩,陈立强等.新老混凝土修补界面过渡区微细观结构改善方法的研究,硅酸盐学报,2002(2):2263-2266
    22.杨久俊,董延玲,海然,吴科如.骨料表面化学预处理对界面区组分梯度分布和混凝土力学性能的影响,Ⅰ:骨料化学预处理对其表面特性与界面过渡区结构的影响,Ⅱ骨料化学预处理对混凝土力学性能的改善.混凝土与水泥制品,2003(6):1-5,2004(1):15-17
    23. J. M. Gao, C. X. Qian, H. F. Liu, B. Wang, L. Li. ITZ microstructure of concrete containing GGBS. Cement and Concrete Research, 2005 (35): 1299-1304
    24.马一平.提高水泥石—集料界面粘结强度的研究,建筑材料学报,1999(1):29-32
    25.肖庆一,钱春香,解建光.偶联剂改善沥青混凝土性能及油石界面试验研究.东南大学学报(自然科学版),2004,34(4):485-489
    26.邬翔,熊光晶.硅烷偶联剂溶液浓度对新老混凝土粘结界面层拉拔强度的影响.混凝土与水泥制品.2003(3):18-19
    27.邬翔.一种新的新老混凝土粘结界面层微细观结构改性方法的研究.汕头大学硕士学位论文.2004
    28.李毅强,熊光晶.水泥浆/花岗岩的界面偶联机理初探.华中科技大学学报(自然科学版),2004,32(11):94—96
    29.李毅强,吴涛,熊光晶.硅烷偶联剂改性大粒径花岗岩骨料混凝土初探.建筑技术开发.2004,31(11):41—42
    30.胡福增,陈国荣,杜永娟.材料表界面.华东理工大学出版社,2001
    31. Plueddemann, E. P. Silane CouplingAgent[M]. 1st ed. New York: Plenum Press, 1982
    32.牛光良,王同,徐恒昌,沈德言.硅烷偶联剂γ-MPS在钡玻璃表面吸附机制的研究.中老年口腔医学杂志,2 003,1(1):5—8
    33.黄从运,龙世宗.偶联剂KH和聚合物PVA在硫铝酸盐—MDF水泥中的作用机理.材料研究学报,1994,8(2):158—162
    34.曾智强,萧小月,桂治轮,李龙土.Al2O3—SiO2—TiO2薄膜的表面改性-偶联剂反应.材料研究学报,1999,13(2):125—128
    35.黄从运,袁润章,龙世宗.钛酸脂偶联剂NDZ—3与3(CaO·Al2O3)·CaSO4界面的XPS研究.硅酸盐学报,2003,31(8):780—783
    36.刘铁军,欧进萍,李家和.硅粉的硅烷化对水泥砂浆阻尼性能的影响.硅酸盐学报,2003,31(11):1125—1129
    37.冯长根,蔡佩君,张林,唐永健.氧化铝表面有机改性及其在聚苯乙烯中分散性能的研究.北京理工大学学报,2003,23(5):645—648
    38.毋伟,陈建峰,屈一新.硅烷偶联剂的种类与结构对二氧化硅表面聚合物接枝改性的影响.硅 酸盐学报,2004,32(5):570—575
    39. Schrader ME, Lerner I, D'Oria FJ. Radioisotope Study of coupling agents in reinforced plastics[J] Mod Plast 1967.45:195-282
    40.冯启明,张宝述,彭同江等.几种非金属矿粉体的硅烷偶联剂表面改性研究.非金属矿,1999,22:68—69
    41.余志伟.粉石英改性及效果研究.非金属矿,1999,22(4):14—16
    42.古凤才,赵竹萱,李英慧等.表面修饰二氧化锡纳米微晶的制备与表征.物理化学学报,2003,19(7):621—625
    43.袁鹏,吴大清,林种玉等.硅藻土表面羟基的漫反射(DRIFT)研究.光谱学与光谱分析,2001,21(6):783—786
    44.钱浩,祝亚非,许家瑞.用衰减全反射傅立叶变换红外光谱定量测定PEG/PE共混物的表面组成.光谱学与光潜分析,2003,23(4):708—713
    45.潘纯华,张卫红,陈芬等.ATR红外光谱法在高分子材料表面成分分析上的应用.广州化工,2000.28(3):34—36
    46. ZHANG Yunhong, HU Yong'an, DING Fei,& ZHAO Lijun. FTIR-ATR chamber for observation of efflorescence and deliquescence processes of NaClO_4 aerosol particles on ZnSe substrate. Chinese Sciense Bulletin, 50(19):2149-2152
    47.郑兆佳,胡缙昌,玻璃表面改性的XPS研究,表面技术,1999,28(5):7—9
    48. L.Black, A.Stumm, K.Garbev, P.Stemmermann, K.R.Hallam, G.C.Allen. X-ray photoelectron spectroscopy of aluminium-substituted tobermorite. Cem.Concr.Res.2005,35(1): 51-55
    49. L.Black, K.Garbev, P.Stemmermann, K.R.Hallam, G.C.Allen. Characterisation of crystalline C-S-H phase by X-ray photoelectron spectroscopy (XPS), Cem.Concr.Res.2003,33(6): 899-911
    50. L.Black, K.Garbev, P.Stemmermann, K.R.Hallam, G.C.Allen. X-ray photoelectron study of oxygen bonding in crystalline C-S-H phase, Phys.Chem.Minerals,2004,31:337-346
    51.丁浩,卢寿慈,张克仁等.矿物表面改性研究的现状与前景展望(Ⅱ)—药剂与改性过程机理.矿产保护与利用,1996,8:25—29
    52.田金星,潘丽娜,雷绍民.硅烷偶联剂及其对矿物的表面改性.国外建材科技,1995,16(2):54—58
    53.陈泉水.粉石英表面改性及其作用研究.非金属矿,2001,24(2):15—17
    54.沃丁柱,李顺林,王兴业等.复合材料大全.化学工业出版社,2000
    55. SUBRAMANIAN V, VN OOIJ WJ Ooij. Silane based metal pretreatment as alternatives to chromating [J]. Surface Engineering,1999,15(2):1-51
    56.李毅强.花岗岩/偶联剂/水泥砂浆界面层性能的若干影响因素及其改性机理.汕头大学硕士学位论文,2005
    57.颜肖慈,罗明道.界面化学.化学工业出版社,2005
    58.黄祖洽,丁鄂江.表面浸润和浸润相变.上海科学技术出版社,1994
    59.何金兰,杨克让,李小戈.仪器分析原理.科学出版社,2002
    60.王宗明,何欣翔,孙殿卿.实用红外光谱学.石油工业出版社,1977,
    61.闻格,梁婉雪,章正刚等.矿物红外光谱学.重庆大学出版社,1988
    62.王建祺,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)引论.国防工业出版社,1992
    63.刘世宏,王当憨,潘成璜.X射线光电子能谱分析.科学出版社,1988
    64. Munoz E, Maser W K, Benito A M, et al. Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation[J]. Carbon, 2000,38 (10):1445-1451
    65. W. A.Tasong, C.J.Lynsdale, J.C.Cripps. Aggregate-cement paste interface Part Ⅰ. Influence of aggregate geochemistry. C.C.R. 1999,29:1019-1025
    66. W. A.Tasong, J.C.Cripps,C.J.Lynsdale. Aggregate-cement chemical interactions. C.C.R. 1998,28(7): 1037-1048
    67.徐溢,王楠,张小凤等.直接用作金属表面新型防护涂层的硅烷偶联剂水解效果分析.腐蚀和防护,2000,21(4):157—159
    68.徐溢,滕毅,徐铭熙.硅烷偶联剂应用现状及金属表面处理新应用.表面技术 2001(3)::48~51
    69.徐溢,王楠,徐铭熙.钢铁表面防腐硅烷膜表面涂层.重庆大学学报(自然科学版),2001,24(2):135—136
    70.王雪明,李爱菊,李国丽等.金属表面KH-560硅烷膜的粘结性能研究.机械工程材料,2005,29(11):8—10
    71.F.H.Wittmann,战洪艳,赵铁军.混凝土表面防水处理与氯离子隔离层的建立.建筑材料学报 8(1):1—6
    72.黄月文,,刘伟区,罗广建.有机硅防水剂改性水泥砂浆的研究.化学建材,2003,(1):27—29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700