双模态冲压发动机燃烧室流场的大规模并行计算及试验验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在飞行马赫数M_∞=3-7的范围内,为充分发挥冲压发动机的性能优势,高超声速飞行器采用了既能在亚声速燃烧模态,又能在超声速燃烧模态下工作的固定几何形状的双模态冲压发动机。
     双模态冲压发动机的地面试验研究同飞行器的空气动力学地面试验研究有很大的不同。进行双模态冲压发动机地面试验研究时,必须要求试验设备能模拟实际飞行条件下来流气体的组分、总压、总温(或总焓)以及来流气体的流动速度;同时由于燃料在燃烧室内驻留的时间很短,一般为毫秒量级,从而使流场物理量的测定显得非常困难。因此,双模态冲压发动机的研究对地面设备的试验能力和测量技术提出了更高的要求,也大幅度地增加了试验的周期和费用。而飞行试验因其费用昂贵只能做为最后的验证手段。随着计算机技术的发展和数值计算方法的进步,计算流体力学(CFD)在发动机的燃烧化学非平衡流场的数值计算研究方面得到了广泛的应用,并逐渐成为发动机设计和流动分析的一种经济、有效的手段。数值计算可以在相对较短的时间内完成气动参数的分析研究,提供流场的详细特征,弥补风洞试验及测量的局限性,为不断改进发动机的构型设计提供依据。
     虽然双模态冲压发动机结构简单,主要由进气道、燃烧室和尾喷管三部分组成,但其工作过程却十分复杂,尤以超音速燃烧室的工作规律最为复杂,设计难度最大。它涉及到高超声速空气动力学、燃烧化学、扩散传质等多门学科;其内部的实际流动是复杂的三维流动过程,充满着激波、膨胀波、燃烧波、各种涡系、附面层及其相互之间的干扰,因此,燃烧室问题是整个发动机研究的关键所在。由于燃烧室内三维混合与燃烧流场的计算量很大,对程序要求较严,迄今为止,关于燃烧室流场的三维并行计算的研究工作,国内发表的文献非常少,网格节点在二十万左右,计算结果也无试验验证。国际上,直到最近,燃烧室流场的三维大规模并行计算才逐渐出现,网格节点数大约在20~250万。
     根据国家“863”高超声速技术研究要求,本文建立了一套高效、实用的考虑燃料化学反应的双模态冲压发动机燃烧室流场的三维并行计算软件。为缩短计算时间和节约计算资源,针对试验模型,首先采用单片区域计算法,在工作站群机的PVM并行环境下进行了混合与燃烧流场的多区,多机并行计算,取得了较高的并行效率和与试验一致的计算结果。在此基础上将程序移植到神州MPP机上,采用512个CPU和大约312万个网格节点,对试验模型进行了三维大规模并行计算,第一次给出了模型发动机燃烧室流场的精细结构和完整的性能分析,获得了一些前人所没有得到的流场结构特性。
     本论文共分为六章。第一章为引言,简要回顾了国内外双模态冲压发动机燃烧室研究的现状,并在结尾介绍了本文的主要工作。
     第二章介绍了计算采用的控制方程与物理、化学模型。
     第三章介绍了数值计算方法及其验证。本文运用时间相关法,采用格心有限体积离散,
    
    —-—通鲤登经军巡型遇逊生匕一一一一一
    独立建立和发展了-谁球解混合与燃烧流场的基于PVM环境的并行计算程序.通过简单
    的参数控制,该程序既可计算二维、轴又巾弥和三维量热完全气体,也可计算化判卜平衡流;
    既可计算无粘流,也可计算粘性流。该程序还可又州算区域进行分区计算,湍流模型也是
    可选的。通过计算程序应用于混合与燃烧算例的系列验证,检验了稠字编制的合理性和计
    算结果的可靠性.
     第四章为在简化计算区域(单片区域法)的条件下,以氢气为燃料,在工作站群机上,
    数值模拟了日本国家航空实验室(简称NAL)双除瞰黔胜港型在油气比。=1 .0条件下
    流场的洋细至剖沟,分析了燃烧室流场与隔离段流场相互作用的产生机理和过程,掌握了相
    互作用流场的典型特征,并通过一维加权分析,给出了燃烧室的性肩崔参数。
     第五章介绍了以氢气为燃料,同样应用单片区域法,对中国空气动力研究与发展中心
     (简称CARDC)的双模态燃烧室模型在四种不同油气比条件下的流场结构进行了数值计
    算,给出了双模态燃烧室在不同参数条件下的流场结构特性和性编挂分析.
     第六章介绍了在神州大规模并才刮比理衫比,采用512个CPU和大约312万个网格节
    点,对CARDC的试验模型进行了三维大规模并行计算,第一次给出了更加乖靓细的三维流
    娜吉构,包括燃烧室钡幢对流场结构和性能的影响。
In the range of flight mach number Mo=3 ~ 7, in order to take the advantage of ramjet and scramjet, a fix-shaped dual-mode scramjet, in which both subsonic and supersonic combustion can be obtained, is used for hypersonic vehicle.
    There are great differences between ground test of a flight vehicle's aerodynamics and that of a dual-mode scramjet When ground test facilities are used to do experiments on a dual-mode scramjet engine, the components of incoming flow and its parameters, including total pressure, total temperature (or total enthalpy) and velocity must be simulated. At the same time, since the fuel's resident time within a combustor is very short, on the order of one millisecond, it is difficult to measure the flow-fields. So experimental study of dual-mode scramjet engines puts higher demands on simulating capability of ground test facilities and measurement technology, and greatly increases test cost and time. Flight test is more expensive and is taken only as a final means for verification. With the development of computer technology and the advancement of numerical calculation, Computational Fluid Dynamics (CFD) has been applied widely in simulating engine's chemical non-equilibrium flowfields and has emerged as an extrem
    ely valuable and cost-effective engineering tool in engine design and flowfield analysis. CFD can be used to do analytical research of aerodynamic parameters in relatively short time, to provide detailed flowfield characteristics, to remedy the limitation of wind tunnel test and measurements, and to offer the foundation for improving the configuration of engine.
    Although a dual-mode scramjet's configuration is simple and mainly consists of inlet, combustor and wake nozzle, its working process is complicated, especially in the combustor, involving a lot of subjects, including hypersonic aerodynamics, combustion chemistry, etc. The inner flow of a combustor is three-dimensional and complicated, including the interaction of shock wave, deflagration, vortex and boundary layer, and so on. So, combustor is the most important to dual-mode scramjet engine. The computation work of three-dimensional mixing and combustion simulation in combustor is very heavy, having strict requirements on the codes. Up to now, there are few domestic papers on 3-D parallel simulation of combustor flowfields. And abroad papers in this field are published gradually in recent years, with the number of grid about 200,000 to 2,500,000.
    According to the National Hypersonic Technology Plan, a highly efficient and practical three-dimensional parallel computing software for internal non-equilibrium flowfields of a dual-mode scramjet combustor has been established. In order to save calculating time, the parallel
    computation of simplified experimental dual-mode scramjet combustors has been implemented on
    
    
    
    a cluster of workstations based on PVM platform in a multidomain-multiprocessor manner. High parallel efficiency and fine results have been obtained. Using about 3,120,000 grid cells and 512 CPUs, the parallel program has been successfully transplanted to the SZ MPP machine for massive parallel computation, giving for the first time the detailed flow properties of a model engine's combustor, offering a thorough performance analysis, and unprecedentedly obtaining some flowfield characteristics.
    This dissertation is divided into six chapters. In the introduction the review of the research on a dual-mode scramjet combustor both abroad and domestic is presented and the main work of this paper is also presented briefly. Chapter 2 describes the governing equations and the adopted physical and chemical method. Chapter 3 is about the numerical method. A parallel computing software is established independently. This software is a cell-centered finite-volume, structured grid, multi-block code which solves the equations governing inviscid and viscous flow of a calorically perfect gas or of an arbitrary mixture of thermally perfect gas undergoing non-equilibrium chemical reactions. It allows the flow domain to be d
引文
[1] Mercier R A, Ronald M F. Hypersonic Technology (HyTech) Program Overview. AIAA 98-1566,1998
    [2] Rothmund C, Scherrer D. Propulsion System for Airbreathing Launcher in the French PREPHA Program. AIAA 96-4498,1996
    [3] Bouchez M. Scramjet Combustor Design in French PREPHA Program-Status in 1996. AIAA 964582,1996
    [4] Bouchez M, Montazel X Hydrocarbon-Fueled Airbreathing Propulsion for High Speed Missiles. AIAA 98-3729,1998
    [5] Koschel W W. Basic Hypersonic Propulsion Research in German University. AIAA 98-1634,1998
    [6] Kallenberg M, Von Lavante E. The Dynamics of Unsteady Supersonic Combustion. AIAA 98-3319,1998
    [7] Maita M, Kubota H., Moriguchi Y Japanese Spaceplane / RLV Programme. IAF 97-V.4. 05, 1997
    [8] Srikrishan A R, Kurian J, Sriramulu V. A Comparative Experimental Study of Supersonic Combustion. ISABE 99-7055,1999
    [9] Nasuti F, Onofri M. Numerical Analysis of the Slipstream Effect in External Expansion Nozzle. ISABE 99-7122,1999
    [10] 刘陵,刘敬华,张榛,唐明.超声速燃烧与超声速燃烧冲压发动机西北工业 大学出版社,1993
    [11] Vinogradov V, Grachey V, Petrov M, Sheechinan J. Experimental Investigation of 2-D Dual Mode Scramjet With Hydrogen Fuel at Mach 4-6. AIAA 90-5269,1990
    [12] Waltrup P J. Liquid Fueled Supersonic Combustion Ramjets: A Research Perspective of The Past, Present and Future. AIAA 86-0158,1986
    [13] Jensen J, Braendlein B. Review of the Marquardt Dual Mode Mach & Scramjet Development AIAA 96-3037,1996
    [14] Iart D T, Heiser W H. Isolator-Combustor interaction in Dual Mode Scramjet Engine. AIAA 93-0358,1993
    [15] Andrews E H, Trexler C A, Emami S. Tests of a Fixed Geometry Inlet Combustor Configuration for a Hydrocarbon Fueled Dual-Mode Scramjet AIAA 94-2817,1994
    [16] Wiles K J, Ketchum A C, Emanwel M A, Mathur A B, Ortwerth R J. Preliminary Tests of a Dual Fuel-Dual Mode integrated Scramjet Engine. ISABE 97-7052,1997
    
    
    [17] Billig F S. SCRAM-A Supersonic Combustion Ramjet Missile. AIAA 93-2329,1993
    [18] Sullins G A, Carpenter D A, Thompson M W, Kwok F T, Mattes L A. A Demonstration of Mode Transition In a Scramjet Combustor. AIAA 91-2395,1991
    [19] Stull F. Scramjet Propulsion. AIAA 89-5012,1989
    [20] Roudakov A S, Semenov V L, Hicks J W. Recent Flight Test Results of the Joint CIAM NASA Mach 6. 5 Scramjet Flight Program. AIAA 98-1643,1998
    [21] O'Byrne S, Doolan M, Olsen S R, Houwing A F P. Analysis of Transient Thermal Choking Processes in a Model Scramjet Engine. AIAA 98-0965,1998
    [22] Bauer C, Petters D, Whitcomb C D. Comparison of Mach 3 to 6 Conventional and Dual-Mode Ramjet Performance. AIAA 98-3426,1998
    [23] [苏]朱也夫,马卡伦.冲压和火箭冲压发动机原理国防工业出版社,1975
    [24] 刘陵,张榛.超声速燃烧冲压发动机设计参数.推进技术,1988年第1期
    [25] Kumar A, Drummond J P, McClinton C R, Hunt J L. Research in Hypersonic Airbreathing Propulsion at The NASA Langley Research Center. ISABE 2001-1007,2001
    [26] Ferri A. Review of Scramjet Propulsion Technology. AIAA 66-826,1966
    [27] Billig F S, Dugger G L. The Interaction of Shock Waves and Heat Addition in the Design of Supersonic Combustors. Proceedings of the 12th Symposium on Combustion, Combustion Institute, Pittsburgh, PA, 1969, pp1125-1134
    [28] Billig F S, Dugger G L, Waltrup P J. Inlet-Combustor Interlace Problems in Scramjet Engines. Proceedings of the 1st International Symposium on Airbrealhing Engines, Marseilles, France, June 1972
    [29] Waltrup P J, Billig F S. Prediction of Precombustion Wall Pressure Distribution in Scramjet Engines. Journal of Spacecraft and Rockets, Vol. 10, No. 9,1973, pp.620-622
    [30] Waltrup P J, Billig F S. Structure of Shock Waves in Cylindrical Ducts. AIAA Journal, Vol. 11,No.9,1973,pp.1404-1408
    [31] Waltrup P J. Supersonic Combustion Ramjet(Scramjet) Development in the United States. The 3rd International Symposium on Air-breathing Engines, Munich, Germany, March, 1976
    [32] Drummond J P. Numerical Investigation of the Perpendicular Injector Flow Field in a Hydrogen Fueled Scramjet NASA 79-1482,1979
    [33] Drummond J P, Rogers R C, Evans J S. Combustor Modeling for Scramjet Engines. ADA 086707,1980
    [34] Drummond J P, Weidner E H. A Numerical Study of Candidate Transvers Fuel Injector Configurations in the Langley Scramjet Engine. 17th JANNAF Combustion Meeting, 1980
    
    
    [35] Drummond J P, Weidner E H. Numerical Study of a Scramjet Engine Flow Field AIAA 81-0186,1981
    [36] Weidner E H, Drummond J P. Numerical Study of Staged Fuel Injection for Supersonic Combustion. AIAA 81-1468R, 1981
    [37] Drummond J P, Weidner E H. Numerical Study of a Scramjet Engine Flow-field. AIAA Journal Vol.20, No.9,1981
    [38] Sullins G A, Anderson J D. Numerical Investigation of Supersonic Base Flow with Parallel Injection. AIAA 82-1001,1982
    [39] Kumar A, Drummond J P. Numerical Study of Scramjet and Ramjet Flow Fields. Computational Methods for Ramjets, 1983
    [40] Rogers R C, Chinitz W. Using a Global Hydrogen-Air Combustion Model in Turbulent Reacting Flow Calculations. AIAA Journal Vol.21, No.4,1983
    [41] Chilsomboon T, Tiwari S N. Numerical Study of Hydrogen-Air Supersonic Combustion by Using Elliptic and Parabolized Equations. NASA-CR-179800,1986
    [42] White M E, Drummond J P, Kumar. Evolution and Status of CFD Techniques for Scramjet Applications. AIAA 86-0160,1986
    [43] Chilsomboon T, Kumar A, Drummond J P, Tiwari S N. Numerical Study of Supersonic Combustion Using a Finite-rate Chemistry Model. AIAA 86-0309,1986
    [44] Drummond J P. A Two-Dimensional Numerical Simulation of a Supersonic Chemically Reacting Mixing Layer. NASA TM-4055,1988
    [45] Riggins D W. A Numerical Study of Mixing Enhancement in a Supersonic Combustor. AIAA 90-0203,1990
    [46] Donohue J M. Vorticity Generation Mechanisms in Parallel Injection Schemes for Supersonic Mixing. AIAA 92-3286,1992
    [47] Nobuhiko Yamasaki. Utilization of Streamwise Vortices to Enhance Mixing Supersonic 3D Flows. ISABE 93-7116,1993
    [48] Lee J. An Application of a Two-Equation Model of Turbulence to Three Dimensional Chemically Reaction Flows. AIAA 95-0734,1995
    [49] Madabhushi R K, Choi D, Barber T J, Orszag S. Computational Modeling of Mixing Process For Scramjet Combustor Applications. AIAA 97-2638,1997
    [50] Mizobuchi Y, Matsuo Y, Ogawa S. Numerical Estimation of Turbulence Temperature Fluctuation Effect on Hydrogen-Oxygen Reaction Process. AIAA 97-0910,1997
    [51] Matsuo Y, Mizobuchi Y, Ogawa S. Parallel Numerical Simulation of Compressible Free Shear Layers in a Scramjet Engine.AIAA 98-0963,1998
    
    
    [52] Riggins D W. The Numerical Investigation of a Dual-Mode Scramjet Combustor. 1998 JANNAF Joint Mettings, December 10, 1998
    [53] Rodriguez C G, White J A, Riggins D W. Three-Dimensional Effects in Modeling of Dual-Mode Scramjets. AIAA 2000-3704, 2000
    [54] Eklund D R, Baurle R A, Gruber M R. Numerical Study of a Scramjet Combustor Fueled by an Aerodynamic Ramp Injector in Dual-Mode Combustion. AIAA 2001-0379, 2001
    [55] White J A, Morrison J H. A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized NS Equations. AIAA 99-3360, 1999
    [56] Abdel-Salam T M, Tiwari S N, Chaturvedi S K, Mohieldin T O. Mixing and Combustion in Scramjet Combustor With Raised and Relieved Ramp. AIAA 2000-3709, 2000
    [57] Tiwari S N, Abdel-Salam T M, Chaturvedi S K, Mohieldin T O. Study of Dual-Mode Flowfield in Scramjet Combustor. AIAA 2001-0380, 2001
    [58] Taha A A, Tiwari S N, Mohieldin T O. Combustion of Ethylene and Propane in Scramjet Engines; Numerical Study. AIAA 2001-0383, 2001
    [59] Abdel-Salam T M, Tiwari S N, Mohieldin T O. Dual-Mode Flowfield in Scramjet Combustor. AIAA 2001-2966, 2001
    [60] Abdel-Salam T M, Tiwari S N, Mohieldin T O. Analysis of a Dual-Mode Scramjet Combustor. AIAA 2001-3194, 2001
    [61] Mohieldin T O, Tiwari S N, Olynciw M J. Asymmetric Flow-Structures in Dual Mode Scramjet Combustor With Significant Upstream Interaction. AIAA 2001-3296, 2001
    [62] Abdel-Salam T M, Tiwari S N, Mohieldin T O. Three-Dimensional Numerical Study of a Scramjet Combustor. AIAA 2002-0805, 2002
    [63] Tiwari S N, Taha A A, Mohieldin T O. Effect of Pilot Injection and Combustor Configuration on the Flame Holding and Stability of Ethylene in Scramjet Engines. AIAA 2002-0806, 2002
    [64] 杨爱国,刘陵,唐明,刘敬华.模型超声速燃烧室流场和性能的数值模拟.推进技术,17(6):1-5,1996
    [65] 胡欲立,刘敬华,凌文辉,刘陵,液体射流在强化超声速燃烧中的应用.航空动力学报,12(1):56-60,1997
    [66] 刘敬华,凌文辉,刘兴洲,刘陵,张榛.超声速燃烧室性能非定常准一维数值模拟.推进技术,19(1):1-6,1998
    [67] 陈坚强,超声速燃烧流动及旋涡运动的数值模拟,中国空气动力研究与发展中心博士学位论文,1995
    [68] 王晓栋.超声速燃烧冲压发动机内部流场的数值模拟.中国空气动力研究与发展中
    
    心博士学位论文,2001
    [69] 王正华,王承尧.二维横向喷流的NS方程数值解.推进技术,12(1):12-16,1991
    [70] 梁剑寒.超燃发动机氢/空气混合增强与燃烧流场的并行数值模拟.国防科学技术大学博士学位论文,1998
    [71] Gordon S, McBride B J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations. NASA SP-273, 1971
    [72] Bird R B, Stewart W E, Lightfoot E N. Transport Phenomena. John Wiley and Sons, New York, 1960
    [73] Wilke C R. A Viscosity Equation for Gas Mixtures. Journal of Computational Physics, Vol. 18, 1950
    [74] Prabhu DK, Tannehill JC. ANew PNS Code for Chemical Non-equilibrium Flows. AIAA 87-0284, 1987
    [75] Berman H A, Anderson J D. Supersonic Flow Over a Rearward Facing Step with Transverse Nonreacting Hydrogen Injection. AIAA 82-1002, 1982
    [76] Chapman S, Cowling T G. The Mathematical Theory of Non Uniform Gases. 2nd ed., Cambridge University Press, New York, 1958
    [77] Menter F R. Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows. NASA TM-103975, 1992
    [78] Menter F R. Zonal Two-Equation k-ω Turbulence Models for Aerodynamic Flows. AIAA 93-2906, 1993
    [79] Jones W P, Launder B E. The Calculation of Low-Reynolds-Number-Phenomena with a Two-Equation k-ωo Model of Turbulence. Int. J. Heat Mass Transf, Vol. 16:1119-1130, 1973
    [80] Sondak D L, Pletcher R H. Application of Wall Functions to Generalized Nonorthogonal Curvilinear Coordinate Sytems. AIAA 93-3107, 1993
    [81] Wilcox D C. Reassessment of the Scale-Determining Equation for Advanced Turbulence Models. AIAA Journal Vol.26:1299-1310, 1988
    [82] Inglese F P, Acharya S. An Improved k-ω Model for Compressible Flows. AIAA 96-0428, 1996
    [83] Shyy W, Krishnamurty V S. Compressibility Effects in Modeling Complex Turbulent Flows. Progr. Aerospace Sci. Vol.33:587-645, 1997.
    [84] Evans J S, Schexnayder C J. Influence of Chemical Kinetics and Unmixedness on Burning in Supersonic Hydrogen Flames. AIAA J.Vol.18:188-193, 1980
    [85] Moretti G. A New Technique for the Numerical Analysis of Nonequilibrium Flows. AIAA
    
    Journal 3(2):223-229, 1965
    [86] 朱自强等编著.应用计算流体力学.北京航空航天大学出版社,1998
    [87] Vinokur M. An Analysis of Finite-Difference and Finite-Volume Formulations of Conservation Laws. Journal of Computational Physics,Vol.81,1989
    [88] Obayashi S, Kuwahara K. LU Factorization of an Implicit Scheme for the Compressible NS Equations. AIAA 84-1670, 1984
    [89] Yoon S, Jameson A. An LU-SSOR Scheme for the Euler and Navier-Stokes Equations, NASA CR-179556, 1986
    [90] Jameson A, Yoon S. LU Implicit Scheme with Multiple Grid for the Euler Equations. AIAA 86-0105, 1986
    [91] 李庆扬.常微分方程数值解法(刚性问题边值问题).高等教育出版社
    [92] 黎作武.含激波、旋涡和化学非平衡反应的高超声速复杂流场的数值模拟.中国空气动力研究与发展中心博士学位论文,1994
    [93] Eberhardt S, Imlay S. A Diagonal Implicit Scheme for Computing Flows with Finite-Rate Chemistry. AIAA90-1577, 1990
    [94] 董维中.热化学非平衡效应对高超声速流动影响的数值计算与分析.北京航空航天大学博士学位论文,1996
    [95] 倪鸿礼.运动激波与物体的干扰研究.中国空气动力研究与发展中心博士学位论文,1998
    [96] Li C P. Implicit Methods for Computing Chemically Reacting Flows. NASA TM-58274, 1986
    [97] Li C P, Wey T C. Numerical Simulation of Hypersonic Flows Over an Aeroassist Flight Experiment Vehicle. AIAA 88-2675, 1988
    [98] Tam L T, Li C P. Three-Dimensional Thermo-chemical Non-equilibrium Flow Modeling for Hypersonic Flows. AIAA 89-1860, 1989
    [99] Palmer G. An Improved Flux-Split Algorithm Applied to Hypersonic Flows in Chemical Equilibrium. AIAA 88-2693, 1988
    [100] Palmer G. The Development of an Explicit Thermal-Chemical Non-equilibrium Algorithm and Its Application to Compute Three Dimensional AFE Flow-fields. AIAA 89-2701, 1989
    [101] Palmer G. Enhanced Thermo-Chemical Non-equilibrium Computations of Flow Around the Aeroassisted Flight Experiment Vehicle. AIAA 90-1702, 1990
    [102] Bussing T R, Murman E M. Finite Volume Method for the Calculation of Compressible Chemically Reacting Flows. AIAA 85-0331, 1985
    [103] Shuen J S. Upwind Differencing and LU Factorization for Chemical Non-equilibrium NS
    
    Equations. Journal of Computational Physics, Vol.99:235-250,1992
    [104] Jameson A. Numerical Simulation of the Euler Expiation by Finite Volume Methods Using Runge-Kutta Time Splitting. AIAA 81-1259,1981
    [105] Harten A. High Resolution Schemes for Hyperbolic Conservation Laws. Journal of Computational Physics, Vol. 49:357-393,1983
    [106] Osher S , Chakravarthy S R. High Resolution Schemes and Entropy Conditions. SIAM J. on Numerical Analysis, Vol.21(5) :955-984,1984
    [107] Roe P L. Generalized Formation of TVD Lax-Wendroff Schemes. ICASE 84-53,1984
    [108] Chakravarthy S R, Osher S. A New Class of High Accuracy TVD Schemes for Hyperbolic Conservation Laws. AIAA 85-0363,1985
    [109] Yee H C. Generalized Formation of a Class of Explicit and Implicit TVD Schemes. NASA TM-86775,1985
    [110] Yee H C, Klopfer G H, Montagne J L. High Resolution Shock Capturing Schemes for Inviscid and Viscous Hypersonic Flows. NASA TM-100097,1988
    [111] Harten A. Uniformly High Order Accurate Essentially Non-Oscillatory Schemes. Journal of Computational Physics, Vol.71(2) 231-303,1987
    [112] Harten A. ENO Schemes with Subcell Resolution. Journal of Computational Physics, Vol.83(3) :148-184,1989
    [113] Chi-Wang Shu, Osher S. Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes. Journal of Computational Physics, 1988
    [114] Chi-Wang Shu, Osher S. Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes II. Journal of Computational Physics, Vol.83(1) :32-78,1989
    [115] Yang J Y. Third-Order Non-Oscillatory Schemes for the Euler Equations. AIAA Journal, Vol.29(10) :1611-1618,1991
    [116] Yang J Y, Hsu C A. High Resolution Non-Oscillatory Schemes for Unsteady Compressible Flows. AIAA Journal, Vol.30(6) : 1570-1575,1992
    [117] Godfrey A G, Mitchell C R. Practical Aspects of Spatially High-Order Accurate Methods. AIAA Journal, Vol.31(9) , 1993
    [118] Fu Dexun, Ma Yanwen. Direct Numerical Simulation of Coherent Structure on the Compressible Mixing Layer. Proceeding of 1st Asian CFD Conference, HongKong, 1995
    [119] Van Leer B. Towards the Ultimate Conservative Difference Scheme V: A Second Order Sequel to Godunov's Method. Journal of Computational Physics, Vol.32:101-136,1979
    [120] Steger J L, Wanning R F. Flux Vector Splitting of the inviscid Gas-dynamic Equations with Application to Finite Difference Methods. Journal of Computational Physics,
    
    Vol.40:263-293, 1981
    [121] Anderson W K, Thomas J L, Van Leer B. A Comparison of Finite Volume Flux Vector Splitting for the Euler Equations. AIAA 85-0122,1985
    [122] 王承尧,王正华,杨晓辉编著.计算流体力学及其并行算法.国防科技大学出版社,2000
    [123] 都志辉编著.高性能计算并行编程技术.清华大学出版社,2001
    [124] Rogers R C. A Study of the Mixing of Hydrogen Injected Normal to a Supersonic Airstream. NASA TND-6114
    [125] Lehr H F. Experiments on Shock-Induced Combustion. Aeronautica Acta, Vol. 17(5):589-597, 1972
    [126] Wilson G J, MacCormack R W. Modeling Supersonic Combustion Using a Full-Implicit Numerical Method. AIAA 90-2307, 1990
    [127] Soetrisno M, Imlay S T. Simulation of The Flow Field of a Ram Accelerator. AIAA 91-1915, 1991
    [128] Choi J Y, Jeung I S, Lee S. Numerical Study of the Effect of Flow Conditions on Shock-Induced Combustion. AIAA 96-0345, 1996
    [129] Clutter J K, Krishnamurty V S, Shyy W. Combustion and Turbulence Effect in Hypersonic Projectile Flows. AIAA 97-0897, 1997
    [130] Clutter J K, Mikolaitis D W, Shyy W. Effect of Reaction Mechanism in Shock-induced Combustion Simulations. AIAA 98-0274, 1998
    [131] Komuro T, Kudo K, Masuya G, Chinzei N, Murakami A, Tani K. Experiment on a Rectangular Cross Section Scramjet Combustor. National Aerospace Laboratory, NAL TR-1068, 1990
    [132] Murakami A, Komuro T, Kudo K. Experiment on a Rectangular Cross Section Scramjet Combustor(Ⅱ)-Effects of Fuel Injector Geometry. National Aerospace Laboratory, NAL TR-1220, 1993
    [133] Chinzei N, Komuro T, Kudo K, Murakami A, Tani K, Masuya G. Effects of Injector Geometry on Scramjet Combustor Performance. AIAA Journal of Propulsion and Power, Vol.9(1): 146-152, 1993
    [134] 刑建文.超声速燃烧室流场的数值模拟及与试验结果的比较.国防科技大学硕士学位论文,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700