非对称来流条件下超燃冲压发动机隔离段气动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隔离段是超燃冲压发动机的一个重要气动部件。超声、高超声速进气道/隔离段一体化设计必须考虑进气道出口流场的影响,隔离段的气动特性研究应该在真实的、或者模拟的进气道出口流场下进行。
    本文采用试验研究、数值模拟和理论分析相结合的方法对非对称超声速来流条件下隔离段流动进行了研究,设计了针对非对称超声来流矩形隔离段流场研究的直联式试验风洞,在模拟进气道出口流场的各种非对称进口条件下进行了吹风试验。以试验研究、基础性分析为主,辅以 CFD 数值模拟,利用获得的实验数据,对隔离段内流场进行了分析。对非对称进口条件下和对称进口条件下的隔离段流动状态进行了比较;研究了非对称进口条件下隔离段的设计方法;探索了非对称进口条件下提高隔离段耐受反压能力的措施以及在相同的反压和出口参数下,缩短隔离段长度的方法;最后还研究了在相同截面当量直径的前提下,不同截面形状对隔离段内激波串形状、长度的影响。
    研究结果表明:随隔离段进口流动非对称程度的增加,激波串长度增加、隔离段耐受反压的能力下降,出口截面总压分布、马赫数分布也随之发生变化。在考虑隔离段进口流动非对称影响的基础上,对 Waltrup 的公式进行了改进,提高了激波串长度预测的精确程度。在隔离段进口非对称来流条件下,采用弯曲隔板,在不降低承受反压能力的条件下,可以将隔离段长度缩短 1/3左右,隔板的上弯高度随隔离段进口底板附面层厚度的增加而增加。对于非轴对称发动机内流通道,八边形隔离段是一个较好的选择,它可以缓解矩形隔离段角流区所造成的低速区影响,既缩短了隔离段长度,又没有增加管内的总压损失。
In order to simulate the actual flowfield at the exit of supersonic/hypersonic inlet, the flow in scramjet isolator is investigated under asymmetric incoming flow.
    A wind tunnel is designed under asymmetric incoming flow and the compression fields in the isolator have been investigated using wall static and pitot pressure measurements, schlieren photography. Three incoming Mach numbers are considered, Mach 1.5, Mach 1.8 and Mach 2. To understand further the test data, the numerical simulations are performed with the Reynolds-averaged Navier-Stokes solver using the SST k ?ω turbulence model. The flow characteristics under asymmetric incoming flow are compared with that under symmetric incoming flow. The studies on the design method and length reduction of the isolator under asymmetric incoming flow are conducted. In the end, the geometric effects of cross-sectional shape on shock train in constant area isolators are analyzed.
    The results indicate that the asymmetric velocity distribution at isolator entrance induces significant asymmetric shock structure in isolator and non-uniform flowfield at the isolator exit. The increase of the asymmetry of the flow at isolator entrance will lead to the increase of the shock train length in isolator for a given pressure ratio. Based on an analysis of flow asymmetry effect at isolator entrance on shock train length, a modified correlation is proposed to calculate the length of shock train. The predicted results of the proposed correlation show good agreement with experimental results. By using the curve spacer in isolator, the overall length of the isolator could be reduced by 33 per cent without loss in static and total pressure recovery when the lower wall boundary layer thickness δ/Η is equal to 0.24 and the upper wall boundary layer thickness δ/Η is zero at the isolator entrance. For those non-axisymmetric engine flowpaths of airbreathing vehicles, the octangular isolator is a good choice, which reduces the isolator length without the increase of total pressure loss. The octagon cross section reduces successfully the low-momentum flow area in the corners found in the rectangular cross section.
引文
[1] 乐嘉陵,胡欲立,刘陵, 双模态超燃冲压发动机研究进展. 流体力学实验与测量,2000,14(1): 1~12
    [2] 叶中元, 对美国高超声速推进系统研制动态的分析. 飞航导弹, 1999,(4):33~36
    [3] Curran E.T., Leingang J.L., and Donaldson W.A. Review of high-speed airbreathing propulsion systems. Proceedings of the Eighth International Symposium on Airbreathing Engines, AIAA, Washington, D.C., June 1987
    [4] Dugger G.L. Comparison of hypersonic ramjet engines with subsonic and supersonic combustion. Fourth AGARD Colloquium, Milan, Italy; also Combustion and Propulsion-High Mch Number Air Breathing Engines, edited by Jaumotte, Rothrock, and Le Febvre, Pergamon Press, New York, 1960
    [5] Ferri A. Review of scramjet technology. J. of Aircraft, 1968,5(1):3~10
    [6] Ferri A. Review of problems in application of supersonic combustion. J. of the Royal Aeronautical Society, Sept.1964:575~597
    [7] William H.Heiser, David T. Pratt , Hypersonic Airbreathing Propulsion. AIAA Education Series, 1994
    [8] Jones R.A., Huber P.W. Toward scramjet aircraft. Astronautics & Aeronautics, 1978,16(2):38
    [9] Henry J.R., Anderson G.Y. Design considerations for the airframe-integrated scramjet. NASA TM-X-2895, 1973
    [10] Billig F.S., Corda S., Pandolfini P.P. Design techniques for dual mode ram-scramjet combustions. Hypersonic Combined Cycle Propulsion, AGARD CP479, 1990
    [11] David T. Pratt, William H. Heiser, Isolator-combustor interaction in a dual-mode scramjet engine, AIAA Paper, 1993-0358
    [12] 白菡尘,刘伟雄,贺伟等, 氢燃料双模态冲压模型发动机 M6 的试验研究. 流体力学实验与测量,2002,16(4): 1~6
    [13] Vonogradov V, Grachev V, Experimental investigation of 2d dual mode scramjet with hydrogen fuel at M4-6, AIAA Paper, 1990-5269
    [14] Walther R, Sabelnikov V, Korontsvit Y, et al., Progress in the joint German-Russian scramjet technology programme, ISABE, 1995
    [15] Roudakov A. S., SchnickhMn Y, Semenov V. L., et al., Flight testing an axisymmetric scramjet Russian recent advances, IAF93-S.4.485
    [16] Roudakov A. S., Semenov V. L., Hicks J. W., Recent flight test results of the joint CIAM-NASA Mch 6.5 scramjet flight program, AIAA Paper, 1998-1643
    [17] R.C. Rogers, D.P. Capriotti, R.W. Guy, Experimental Supersonic Combustion Research at NASA Langley, AIAA Paper, 1998-2506
    [18] Ajay KuMr, D.J.Singh and Carl A.Trexler, A Numerical Study of the Effect of Reverse Sweep on a Scramjet Inlet Performance, AIAA Paper, 1990-2218
    [19] Johson G.B., Mach 6 flowfield survey at engine inlet of a research airplane, J. Aircraft, 1977, 14(4)
    [20] Dillon J.J., Aerodynamic and inlet flow characteristics of several hypersonic airbreathing missile concepts, J. Aircraft, 1981
    [21] Lawing P.L., Inlet boundary layer shapes on 4 aircraft forebody at Mach 6, J. Aircraft, 1978, 15(1)
    [22] Andrews E.H. et al. Subscale scramjet engine tests. <>: 58~59
    [23] Billig F.S., Dugger G.L., Waltrup P.J. Inlet-combustor interface problems in scramjet engines. 1st International Symposium on Air Breathing Engines. Mrseille, France, June 1972
    [24] Waltrup P.J., Billig F.S. Structure of shock waves in cylindrical ducts, AIAA J, 1973, 11(10): 1404~1408
    [25] Bement D.A., Stevens J.R., Thompson M.W. Measured operating characteristics of a rectangular combustor/inlet isolator. AIAA Paper, 1990-2221
    [26] Nill L.D., Mttick A.T.,An experimental study of shock structure in a normal shock train. AIAA Paper, 1996-0799
    [27] M.D.Gustafson, M.R.Gruber, Isolator pressure rise correlations compared with new experimental data,ISABE, 1999-7135
    [28] 王成鹏,张堃元,金志光等,非均匀超声来流矩形隔离段内流场实验,推进技术,2004,25(4):349~353
    [29] Lin P., Rao GVR, O’connor GM. Numerical analysis of normal shock train in a constant area isolator. AIAA Paper, 1991-2162
    [30] Lin P. Geometric effects on precombustion shock wave in constant area isolators. AIAA Paper, 1993-1838
    [31] Sullins G., McLafferty G.H. Experimental results of shock train in rectangular ducts. AIAA Paper, 1992-5103
    [32] Kazuyasu Mtsuo, Yoshiaki Miyazato, Heuy-Dong Kim, Shock train and pseudo-shock phenomena in internal gas flows, Progress in Aerospace Sciences, 1999,35:33~100
    [33] Shapiro A.H. The dynamics and thermodynamics of compressible fluid flow. Vols.1 and 2, New York: Ronald Press, 1953: 135~139, 1153~1156
    [34] Ikui T., Mtsuo K., Sasaguichi K. Modified diffusion model of pseudo-shock waves considering upstream boundary layers. Bull JSME, 1981, 24(197): 1920~1927
    [35] Carroll B.F., Dutton J.C. Characteristics of multiple shock-wave/turbulent boundary-layer interactions in rectangular ducts. J. Propuls. & Power, 1990, 6(2): 186~193
    [36] Lin P., Rao GVR, O’connor GM. Numerical investigation on shock-wave/boundary-layer interactions in a constant area diffuser at Mach 3. AIAA Paper, 1991-1766
    [37] Saied EMmi, Carl A.Trexler, et al. Experimental investigation of inlet-combustion isolators for a dual-mode scramjet at a Mach number of 4. NASA, 1995,TP-3502
    [38] Waltrup P.J., Billig F.S. Prediction of precombustion wall pressure distributions in scramjet engines. J. Spacecraft Rockets, 1973,10(9): 620~622
    [39] 张堃元,王成鹏,杨进军等, 带高超进气道的隔离段流动特性, 推进技术,2002,23(4):311~314
    [40] Chakravarthy S.R., SzeM K.Y., Goldberg U.C., et al. Application of a new class of high accuracy TVD schemes to the Navier-Stokes equations. AIAA Paper, 1985-0165
    [41] Carroll B.F., Dutton J.C. Computations and experiments for a multiple normal-shock/boundary-layer interaction,J. Propulsion and Power, 1993,9(3):405~411
    [42] T.O. Mohieldin, S.N. Tiwari, and MJ. Olynciw,Asymmetric flow-Structures in dual mode scramjet combustor with significant upstream interaction,AIAA Paper, 2001-3296
    [43] T. M. Abdel-Salam, S. N. Tiwari, T. O. Mohieldin, Effects of ramp side angle in supersonic mixing, AIAA J, 2003, 41(6): 1199~1201
    [44] S. K. Cox-Stouffer, M. A. HagenMier, The effect of aspect ratio on isolator performance, AIAA Paper 2001-0519
    [45] R. A. Baurle, D. R. Eklund, Analysis of dual-mode hydrocarbon scramjet operation at Mach 4-6.5, Journal of Propulsion and Power, 2002, 18(5): 990~1002
    [46] J. C. Dudek, D. O. Davis and J. W. Slater, Validation and verification of the wind code for supersonic diffuser flow, AIAA Paper 2001-0224
    [47] AIAA, Guide for the verification and validation of computational fluid dynamics simulations, AIAA-G-077-1998
    [48] Spalat, P.R., and Allmaras, S.R., A one-equation turbulence model for aerodynamic flows, AIAA Paper 1992-0439
    [49] Baldwin, B.S., and Barth, T.J., A one-equation turbulence transport model for high Reynolds number wall-bounded flows, NASA TM192847, 1990
    [50] Menter, F. R., Zonal two-equation k-Ω turbulence models for aerodynamic flows, AIAA Paper 1993-2906
    [51] 高智,CFD 研究与 CFD 软件应用和平台开发,中国科学院力学研究所
    [52] Mrshall T.A., Dolling D.S. Computation of turbulent separated unswept compression ramp interactions. AIAA J. 30(8), 1992:2056~2065
    [53] 李桦,范晓樯,丁猛. 超声速扩压器中激波串结构的数值模拟. 国防科技大学学报,2002,24(1)
    [54] Ikuit T, Mtsuo K, Nagai M, et.al. , Oscillation phenomena of pseudo-shock waves, BULL JSME, 1974, 17(112): 1278~1285
    [55] Yamane, R, Kondo E, Tomita Y, et.al. , Vibration of pseudo-shock in straight duct, 1st and 2nd Report, BULL JSME, 1984, 27(229): 1385~1392, 1393~1398
    [56] Sugiyama, H, Takeda H, Zhang J, et.al. , Locations and oscillation phenomena of pseudo-shock waves in a straight rectangular duct, JSME Int. J Ser 2 1988, 31(1): 9~15
    [57] Matsuo K, Mochizuki H, Miyazato Y, et.al. , Oscillatory characteristics of a pseudo-shock wave in a rectangular straight duct, JSME Int. J Ser B 1993, 36(2): 222~229
    [58] 范晓樯, 李桦,丁猛. 等截面矩形隔离段内流场的三维数值模拟. 推进技术, 2002,23(2)
    [59] M. Ding, L. Hua, F. Xiao. Qiang,Two-dimensional viscous simulation of a inlet-isolator flows at Mach number 4, AIAA Paper 2001-3883
    [60] 范晓樯, 李桦,丁猛. 三维超声速隔离段湍流内流场旋涡结构的数值模拟. 国防科技大学学报,2001,23(6)
    [61] 梁德旺,李博,某典型二元高超声速进气道三维流动分析,南京航空航天大学国防科技报告,2003
    [62] 梁德旺,李博,典型高超声速进气道反压特性分析,南京航空航天大学国防科技报告,2004
    [63] Zhang Kun-Yuan, Xiao Xu-Dong, Xu-Hui, The parametric analysis and experimental investigation of a sidewall compression inlet at Mach 5.3 in non-uniform incoming flow, AIAA Paper 1995-2889
    [64] Cheng-Peng Wang, Kun-Yuan Zhang, Jian-Jun Yang,Analysis of Flows in Scramjet Isolator Combined with Hypersonic Inlet, AIAA Paper 2005-0024
    [65] 王成鹏,张堃元,杨建军, 带进气道的隔离段流场实验研究与数值模拟,推进技术,2004,25(1):27~31
    [66] 张堃元,金志光,王成鹏等, 四种高超侧压式进气道的对比研究 2003 年国家高技术 863-702 主题高超声速技术发展研讨会 ,北京 2003.12
    [67] Masatoshi ,Scramjet inlet flow computations by hybrid grid method. AIAA Paper, 1998-0962
    [68] T.Kanda, Y.Wakamasu,N.Sakuranaka, et.al. , Mach 8 Testing of a scramjet engine with ramp compression, AIAA Paper 2000-0616
    [69] William H.Heiser, David T. Pratt Hypersonic Airbreathing Propulsion. AIAA Education Series, 1994
    [70] Mhoney JJ, Inlets for supersonic missiles, American Institute of Aeronautics and Astronautics, 1990: 55~66
    [71] G. A. Sullins, Demonstration of Mode Transition in a scramjet Combustor, J. Propulsion and Power, 1993, 9(4): 515~520.
    [72] Billig, F.S., Corda, S., Pandolfini, P.P., Design techniques for dual mode ram-scramjet combustors, AGARD 75th Symposium on Hypersonic Combined Cycle Propulsion, AGARD-CP-479, Paper 23, Mdrid, Spain, My 28-June 1,1990
    [73] 钱华俊,附面层抽吸孔板气动特性实验及附面层抽吸数值模拟,南京航空航天大学硕士学位论文,2000,4~5
    [74] Bohning, R., Investigation of porous plate flow, internal report, 1996
    [75] Jean, M. Delery, Shock wave/turbulent boundary layer interaction and its control, Prog. Aerospace Sci., 1985, vol.22: 252~256
    [76] CF-920FFT 分析仪用户手册,株氏会社小野测器
    [77] D. C. Wilcox,Turbulence Modeling for CFD. DCW Industries, Inc., La Canada, California, 1998.
    [78] Carroll B.F., Dutton J.C. A LDV investigation of a multiple normal shock wave/turbulent boundary layer interaction,AIAA Paper 1989-0355
    [79] C. G. Rodriguez, Asymmetry effects in numerical simulation of supersonic flows with upstream separated regions, AIAA Paper 2001-0084
    [80] F. R. Menter, Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,AIAA Journal, 1994,32(8): 1598-1605.
    [81] Davis, D.O., and Dudek, J.C., “Supersonic Diffuser Flow Validation Experiment,” ASME Fluids Engineering Division Summer Meeting, New Orleans, LA, May, 29-June 1,2001
    [82] 李丽,叶中元,刘兴洲, 壁龛稳焰超声速燃烧室流场的数值模拟,2003,24(6):521~523
    [83] O'Neil M.K.L., Lewis M.J., Design tradeoffs on scramjet engine integrated hypersonic waverider vehicles, Journal of Aircraft, 1993, 30(6): 943-952
    [84] O'Neil M.K.L., Lewis M.J. Optimized scramjet integration on a waverider, Journal of Aircraft, 1992, 29(6): 1114-1121
    [85] 刘嘉,姚文秀,雷麦芳,王发民,高超声速飞行器前体压缩性能研究,应用数学和力学,2004,25(1):85~92
    [86] 赵学端,廖其奠 主编,机械工业出版社:《粘性流体力学》,1992,第二版:370~371
    [87] 余少志,彭成一,尹军飞,跨音扩压器中激波附面层相互作用,南京航空学院学报,1985,53(2):56~69
    [88] 李勇,刘志友,安亦然,介绍流体力学通用软件——Fluent,水动力学研究与进展,2001,16(2):254~258
    [89] Lee. , Blind source separation of more sources than mixtures using over complete representations, IEEE Signal Processing letters, 1999, 6(4): 87-90
    [90] Hyvarinen, Fast and robust fixed-pointed algorithms for independent component analysis, IEEE Trans. Neural Networks, 1999, 10(3): 626-634
    [91] George McLafferty, Theoretical pressure recovery through a normal shock in a duct with initial boundary layer, Journal of the aeronautical sciences, March, 1953: 169-174.
    [92] E. P. Neumann, F. Lustwerk, High-efficiency supersonic diffusers, J. Aeronautical Sci., Vol.18, June 1951: 369-374
    [93] Siegfried H. Hasinger , David K.Miller , Two-dimensional supersonic diffuser experiments, AIAA J, 1975, 13(4): 536-538.
    [95] Michael K. Smart, Carl A. Trexler, Mach 4 performance of a fixed-geometry hypersonic inlet with rectangular-to-elliptical shape transition, AIAA Paper 2003-0012
    [96] A. H. Shapiro, The dynamics and thermodynamics of compressible fluid flow (VOL.1 and 2), The Ronald Press Company, 1954
    [97] Donaldson, C. DP. , and Lange, R. H. Study of the pressure rise across shock waves required to separate laminar and turbulent boundary layers, NACA Tech. Note ,No. 2770 (1952)
    [98] A. Nedungadi, D.M. Van Wie, Understanding isolator performance operating in the
    separation shock mode, AIAA Paper 2004-3832

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700