基于二维激光扫描的林木联合采育机作业环境测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众多环境和人为的因素影响了林木联合采育机的作业效率。为发挥多功能林木采育装备作业范围大,林间路径通过性强,采育作业效率高的设计特点,急需缩短作业的间隔时间。因此,为解决目前的森林联合采育装备发展所面临的问题,优化采育作业操作,提高森林资源利用率,提出在采育作业的观察、识别阶段,建立非接触激光扫描测量系统,进行立木识别与定位、树径测量和立木间株距计算等研究,为获取采育目标立木的精确模型提供关键数据,为采育工作装置作业提供精准目标数据,为林业装备的林间地面作业行走提供导航和障碍物探测,最终为提升多功能采育装备的自动识别水平奠定技术基础,丰富应用于复杂环境辅助作业的理论和方法。
     研究工作以及所取得的重要结论主要有以下几个方面:
     1.概述了国内外激光扫描测量系统研究应用的现状,分析探讨了国外典型的激光扫描测量系统开发应用现状。通过汲取国外先进的研究经验,结合我国激光测量应用技术的研究现状及人工林采育作业环境,提出了适合我国国情、林情的多功能林木联合采育机非接触激光扫描测量系统的研究方案和技术路线。
     2.依据现有WCF-1型多功能林木联合采育装备的现有情况,选取LMS291型激光扫描仪作为非接触测量系统的核心部件,编制了激光扫描仪和上位机之间的通讯与控制软件。并根据联合采育机的作业参数,合理的配置了非接触测量激光扫描仪的作业参数,并采集了多组现场数据。
     3.基于Matlab软件,根据激光扫描仪输出数据的形式,分别采用基于腐蚀扩张聚类计算原理和差分计算原理编制特征提取滤波算法,滤除原始激光扫描数据中的背景噪声和其他非目标噪声,提取扫描目标立木等的表面轮廓数据。
     4.根据特征提取、噪声滤除后的扫描目标表面轮廓数据,假设所有目标横截面为标准圆,采用三角公式拟合和最小二乘拟合两种算法分别计算采育目标立木的直径,并根据计算结果与人工测量结果的比较,选择结果精度较高的最小二乘拟合法作为立木直径计算方法。
     5.林木联合采育装备作业的林地环境复杂,除采育目标立木外,还有可能存在其他可能影响采育作业的大型障碍物,如岩石,房屋、墙体等。为了避免采育工作装置的误操作,根据最小二乘法拟合目标直径的结果,采用一种基于多元统计分析的系统聚类方法对拟合目标直径结果数据进行分类,进而实现采育目标立木和大型障碍物的有效区分。
     6.由于多功能林木联合采育装备还要进行大量的抚育伐作业,需在林间行走,而立木间株距大小对于整车能否顺利通过有较大影响。本文通过激光扫描测量系统,获取采育作业林地内立木间的株距数据,为多功能林木联合采育装备驾驶员提供辅助信息,为联合采育装备在林地内的行走、避障、通过性和路径规划等进一步研究提供数据支撑。
Many environmental and human factors greatly affected the operating efficiency. To express its features designed of large operation range, strong passing ability and high efficiency, it is urgent to curtail the time interval. Therefore, in order to solve the current problems, to optimize the cutting and cultivating operation, to improve the utilization of forest resources, forest recognition and observation, and to establish non-contact laser scanning system, we have to investigate the stumpage identification and position, diameter measurement and interval calculation so that to obtain critical data for the accurate model of target stumpage and to provide obstacle detection for operations during walking on forest land. Finally, it will lay the technical foundation for multi-function forest felling &cultivation equipment to enhance the level of automatic identification which can be profusely applied into theoretical research of auxiliary operations in complex environment.
     This paper mainly researched for non-contact laser scanning system theoretical research and applications in the forestry felling & cultivation machine. It mainly included severe aspects as follows:
     1. It summarized the current situation of laser scanning measuring system applications at home and abroad, analyzed and explored the typical foreign current situation of it.By bring in foreign advanced experience, combining with our research application situation and environment of cutting and cultivating operations, the research programs and technology route of multi-function forest felling & cultivation machine non-contact laser scanning system have been proposed, which were suited for China's national conditions and forestry situation.
     2. In accordance with the existing situation of WCF-1 multi-functional forest felling &cultivation equipment, we selected the LMS291 laser scanner as a core component of non-contact measurement system, and have compiled the software of communication and control between the host computer and laser scanner. Meanwhile, according to operating parameters of the machine, the non-contact measurement was reasonably configured and many groups of field data were collected.
     3. According to the form of the laser scanner output data, based on Matlab and the filtering algorithm compiled by corrosion expansion and cluster calculation principle background noise and other non-target noise were filtered out in the original laser scan data so that we can obtain profile data of target stumpage, etc.
     4. According to the profile data after being filtered, we assumed that all the objectives as the standard circle, and utilized the two algorithms of triangle formula and least-squares fitting to separately calculate the target stumpage diameter. In accordance with the results and its comparison with manual measurement, we chose the least squares fitting with high accuracy as the method for stumpage diameter calculation.
     5. For the complex environment of forest land, besides the target stumpage, there probably exist other large obstacles such as rocks, houses, walls, which may affcct the operation. According to the least squares method, we sorted the results data of target stumpage by Hierarchical cluster method based on multivariate statistics analysis in case of false operation of the device, and then we can effectively distinguish between the target stumpage and large obstacles.
     6 To operate a lot of tending felling, the multi-functional forest felling & cultivation equipment needs to walk in the forest. However, the row spacing of stumpage does a great influence on whether it can pass through successfully. In this paper, with the laser scanning system, we obtained the data of the stumpage row spacing in order to provide supplementary information for the operators, and to provide data support for the equipment walking, obstacle avoidance, passing ability, path planning and other further studies.
引文
1.鲍际平,刘晋浩,魏占国,等.世界采运机械的采伐方式及发展进程[J].湖北农业科学,2009,(8):2004-2006.
    2.蔡润彬.地面激光扫描数据后处理若干关键技术研究[D]:同济大学,2008.
    3.蔡云飞,唐振民,张浩峰.基于Cross.EKF定位的多机器人协作围捕策略研究[J].控制与决策,2010,(9):1313-1317.
    4.蔡自兴,肖正,于金霞.基于激光雷达的动态障碍物实时检测[J].控制工程,2008,(2):200-203.
    5.曾齐红.机载激光雷达点云数据处理与建筑物三维重建[D]:上海大学,2009.
    6.陈东.三维激光和单目视觉间的联合标定与数据融合[D]:大连理工大学,2009.
    7.陈佳娟,纪寿文,李娟,等.采用计算机视觉进行棉花虫害程度的自动测定[J].农业工程学报,2001,(2):157-160.
    8.陈伟海,宋蔚阳,荣利霞,等.仿人眼功能的三维激光扫描算法[J].北京航空航天大学学报,2009,(5):563-566.
    9.戴静兰.海量点云预处理算法研究[D]:浙江大学,2006.
    10.戴永前.基于二维激光雷达的移动机器人三维环境的识别[D]:南京理工大学,2007.
    11.董斌,杨晓明,冯仲科,等.基于电子角规多重同心圆技术测定森林蓄积[J].农业工程学报,2009:156-160.
    12.窦志强,毛志怀,魏青.基于激光扫描的田间目标跟踪系统[J].农业机械学报,2006,(12):220-222.
    13.国家林业局森林资源管理司.第七次全国森林资源清查及森林资源状况[J].林业资源管理,2010,(1):1-8.
    14.黄明登,肖晓明,蔡自兴,等.环境特征提取在移动机器人导航中的应用[J].控制工程,2007,(3):332-335.
    15.霍玉晶,陈千颂,潘志文.脉冲激光雷达的时间间隔测量综述[J].激光与红外,2001,(3):136-139.
    16.霍云科.我国林业机械新技术探讨[J].THE GUIDE OF SCIENCE\&EDUCATlON,2009.
    17.阚江明.基于计算机视觉的活立木三维重建方法[D]:北京林业人学,2008.
    18.李赣华.基于摄像机和二维激光测距仪的三维建模关键技术研究[D]:国防科学技术大学,2006a.
    19.李赣华.基于摄像机和二维激光测距仪的三维建模关键技术研究[D]:国防科学技术大学,2006b.
    20.刘洞波,刘国荣,胡慧,等.基于激光测距的温室移动机器人全局定位方法[J].农业机械学报,2010,(5):158-163.
    21.刘洞波,刘国荣,喻妙华.一种基于激光测距的机器人地图创建方法[J].光电子.激光, 2010,(2):261-264.
    22.刘洞波,刘国荣,喻妙华.融合异质传感信息的机器人粒子滤波定位方法[J].电子测量与仪器学报,2011,(1):38-43.
    23.刘洞波,刘国荣,喻妙华,等.一种基于图像检索的机器人自定位方法[J].传感技术学报,2010,(4):548-552.
    24.刘晋浩,王丹.谈国内外人工林抚育机械的现状及发展趋势[J].森林工程,2006,(3):12-14.
    25.刘沛,陈军.基于激光扫描的果树树形重构系统研究[J].农机化研究,2011,(5):199-201.
    26.刘沛,陈军,张明颖.基于激光导航的果园拖拉机自动控制系统[J].农业工程学报,2011,(3):196-199.
    27.罗旭.基于三维激光扫描测绘系统的森林计测学研究[D]:北京林业大学,2006.
    28.吕光辉,王乃康,魏占国,等.林木联合采伐机底盘的研究现状与发展趋势[J].林业机械与木工设备,2010a,(10):11-14.
    29.吕光辉,王乃康,魏占国,等.基于CosmosWorks集材机车架的设计分析[J].微计算机信息,2010b,(22):8-9.
    30.马立广.地面三维激光扫描测量技术研究[D]:武汉大学,2005.
    31.孟娜.基于激光扫描点云的数据处理技术研究[D]:山东大学,2009.
    32.潘海兵.多功能联合采伐机平顺性研究及动力学仿真[D]:东北林业大学,2009.
    33.彭骏驰.深度图象和光学图象的数据融合[D]:中南大学,2007.
    34.邱仁辉,周新年,杨玉盛.森林采伐作业环境保护技术[J].林业科学,2002,38(2).
    35.沈嵘枫.林木联合采育机执行机构与液压系统研究[D]:北京林业大学,2010.
    36.沈嵘枫,刘晋浩,傅忠良.履带式采伐机的通过性[J].福建农林大学学报(自然科学版),2010,(1):98-101.
    37.沈嵘枫,刘晋浩,王典,等.联合采伐机工作臂运动轨迹及液压缸行程研究[J].北京林业大学学报,2010,(2):157-160.
    38.王丹.采伐联合机伐木头的设计与研究[D]:东北林业大学,2006.
    39.王典,刘晋浩,王建利.基于系统聚类的林地内采育目标识别与分类[J].农业工程学报,2011,(12):173-177.
    40.王猛猛.轮式联合采伐机CFJ30稳定性的模拟研究[D]:北京林业大学,2010.
    41.王猛猛,鲍际平.虚拟样机技术在联合采伐机设计中的应用研究[J].林业机械与木工设备,2009,(7):26-28.
    42.王猛猛,鲍际平,刘晋浩.基于虚拟样机技术的联合采伐机静态稳定性分析[J].湖北农业科学,2009,(6):1485-1487.
    43.王伟.基于信息融合的机器人障碍物检测与道路分割[D]:浙江大学,2010.
    44.王永平.机载LIDAR数据处理及林业三维信息提取研究[D]:中国测绘科学研究院,2006.
    45.魏波,张爱武,李佑钢,等.车载三维数据获取与处理系统设计与实现[J].中国体视学与图像 分析,2008,(1):30-33.
    46.魏春阳,张云鹤,宋瑜冰,等.基于颜色分形的不同产地烟叶聚类分析[J].农业机械学报,2010,(8):178-183.
    47.魏占国.林木联合采育机底盘设计理论研究与应用[D]:北京林业大学,2011.
    48.魏占国.联合伐木机工作装置的虚拟设计与运动仿真研究[D]:东北林业大学,2008.
    49.魏占国,阚江明,刘晋浩.基于三维虚拟样机技术大型林业装备设计与研究[J].微计算机信息,2010,(28):8-9.
    50.魏占国,刘晋浩.轮式林木联合采伐机底盘的设计与研究[J].广西大学学报(自然科学版),2010a,(2):263-268.
    51.魏占国,刘晋浩.基于SolidWorks与有限元理论联合采伐机机械臂的设计方法[J].东北林业大学学报,2010b,(8):111-114.
    52.吴富桢.测树学[M]:中国林业出版社,1992.
    53.项志宇.基于激光雷达的移动机器人障碍检测和自定位[D]:浙江大学,2002.
    54.胥芳,张立彬,计时鸣,等.农业机器人视觉传感系统的实现与应用研究进展[J].农业工程学报,2002,(4):180-184.
    55.薛耀红.点云数据配准及曲面细分技术研究[D]:吉林大学,2010.
    56.杨丽,张铁中,张凯良.组培苗移植机器人移苗作业轨迹规划[J].农业机械学报,2008,(9):112-117.
    57.于金霞,蔡自兴,邹小兵,等.移动机器人导航中激光雷达测距性能研究[J].传感技术学报,2006,(2):356-360.
    58.恽竹恬,黄凰.基于聚类分析的农机购置补贴区域分类[J].农业工程学报,2010:253-258.
    59.张超.树木影像特征提取与立体匹配技术研究[D]:中国林业科学研究院,2003.
    60.张凯良,杨丽,张铁中.草莓采摘位置机器视觉与激光辅助定位方法[J].农业机械学报,2010a,(4):151-156.
    61.张凯良,杨丽,张铁中.基于机器视觉的关节机器人的研究[J].农机化研究,2010b,(1):89-91.
    62.张小红,刘经南,机载激光扫描测高数据滤波[J].测绘科学,2004,(6):50-53.
    63.赵峰.机载激光雷达数据和数码相机影像林木参数提取研究[D]:中国林业科学研究院,2007.
    64.赵文锐,刘晋浩.伐木联合机的现状及发展[J].林业机械与木工设备,2008,(011):10-12.
    65.周科亮.林木精准监测技术方法与软件实现[D]:北京林业大学,2003.
    66.周梦维,柳钦火,刘强,等.机载激光雷达的作物叶面积指数定量反演[J].农业工程学报,2011,(4):207-213.
    67.周梦维,柳钦火,刘强,等.基于机载小光斑全波形LIDAR的作物高度反演[J].农业工程学报,2010,(8):183-188.
    68.庄恒扬,沈新平,陆建飞,等.模糊聚类计算方法的理论分析[J].江苏农学院学报,1998,(3):38-42.
    69.郭克君,杜鹏东,刘明刚,等.联合伐木工作头:2008-2-20[P].[2008-2-20].http://guest.cnki.net/grid2008/brief/detailj.aspx7rilename-CN201023265&dbname= SCPD0009.
    70.郭克君,刘明刚,杜鹏东,等.林木伐打造联合作业机:2008-2-20,200720116139[P].[2008-2-20].http://guest.cnki.net/grid2008/brief/detailj.aspx7filenamc-CN201022289&dbname=SCPD0009.
    71.刘晋浩,葛安华,鲍际平,等.多功能林木采伐机:2009-8-5[P].[2009-8-5].http://guest.cnki.net/grid2008/brief/detailj.aspx?filename=CN201282679&dbname=SCPD0009.
    72. Altuntas C, Yildiz F. Registration of Terrestrial Laser Scanner Point Clouds By One lmage[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 37.
    73. Bailey T. Mobile robot localisation and mapping in extensive outdoor environments[J],2002.
    74. Barawid O C, Others. Development of an autonomous navigation system using a two-dimensional laser scanner in an orchard application[J]. Biosystems engineering,2007,96(2):139-149.
    75. Bloch I. Information fusion in signal and image processing:major probabilistic and non-probabilistic numerical approaches[M]:Wiley-ISTE,2008.
    76. Bradley N A, Dunlop M D. Investigating context-aware clues to assist navigation for visually impaired people[C],2002.
    77. Carballo A, Ohya A, Yuta S. Laser reflection intensity and multi-layered Laser Range Finders for people detection[C].
    78. Carballo A, Ohya A, Yuta S. People detection using range and intensity data from multi-layered Laser Range Finders[C].
    79. Carballo A, Ohya A, Yuta S. Reliable People Detection Using Range and Intensity Data from Multiple Layers of Laser Range Finders on a Mobile Robot[J]. International Journal of Social Robotics:1-20.
    80. Chen Y. Development of an Intelligent Sprayer to Optimize Pesticide Applications in Nurseries and Orchards[D]:The Ohio State University,2010.
    81. Cheng X U E L. SVM-based image edge detection method with mixture kernels[J]. Application of Electronic Technique,2007.
    82. Cole D M, Newman P M. Using laser range data for 3D SLAM in outdoor environments[C],2006.
    83. Cole T D. NEAR Laser Rangefinder:A Tool for the Mapping and Topologic Study of Asteroid 433 Eros[J]. Johns Hopkins APL Technical Digest,1998,19(2):143.
    84. Dian W, Jinhao L, Bo Z. The application of digital filter in the analysis of fault signal of forest harvester[C]. Chengdu, China,2010.
    85. Dian W, Jinhao L, Bo Z. Research on fault diagnosis and forecast system of forest harvester based on CAN-bus information[C]. Chengdu, China,2010.
    86. Femandes L, Dias M, Os O Rio F, et al. A driving assistance system for navigation in urban environments[J]. Advances in Artificial Intelligence-IBERAMIA 2010,2010:542-551.
    87. Flammini A, Marioli D, Sisinni E, et al. A real-time wireless sensor network for temperature monitoring[C],2007.
    88. Ge S S, Lai X C, Al Mamun A. Sensor-based path planning for nonhoionomic mobile robots subject to dynamic constraints[J]. Robotics and Autonomous Systems,2007,55(7):513-526.
    89. Ge S S, Lai X, Mamun A A. Boundary following and globally convergent path planning using instant goals[J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,2005, 35(2):240-254.
    90. Gou W Z, Hao L J, Di W J. Application and development of artificial intelligence technology for the data management and analysis in forestry[C]. Shanghai, China,2009.
    91. Habermann D, Garcia C. Obstacle Detection and Tracking using Laser 2D[C],2010.
    92. Huang G S, Ciou J C, Lin H C. Applications of highly accurate localization and navigation to mobile robot[C]. San Antonio, TX, United states,2009.
    93. Johnson N M K. Simultaneous localization, mapping and object tracking in an urban environment using multiple 2D laser scanners[D]:UNIVERSITY OF FLORIDA,2010.
    94. Jupp D L B, Lovell J L, Marine C, et al. Airborne and ground-based lidar systems for forest measurement:background and principles[M]:CSIRO Marine and Atmospheric Research,2007.
    95. Jutila J, Kannas K, Visala A. Tree measurement in forest by 2D laser scanning. Proceedings of the 2007 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 2007, Jacksonville, FL, United states,2007.
    96. Kim J H, Oh J S, Kim J H. Urban driving system for UGV using laser scanner and vision[C]. Fukuoka, Japan,2009.
    97. King K. Obstacle Avoidance Subsystem for an Autonomous RobotfJ],2011.
    98. Lai X C, Ge S S, Al Mamun A. Hierarchical incremental path planning and situation-dependent optimized dynamic motion planning considering accelerations[J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,2007,37(6):1541-1554.
    99. Lai X C, Ge S S, Al Mamun A. Kinematic Modeling and Geometric-based Constrained Path Planning for Car-like Robots[J],
    100.Lai X C, Kong C Y, Ge S S, et al. Online map building for autonomous mobile robots by fusing laser and sonar data[C],2005.
    101.Lee J C, Lee D M. Development of autonomous vehicles for urban driving[C]. Fukuoka, Japan, 2009.
    102.Lohmann P, Koch A, Schaeffer M. Approaches to the filtering of laser scanner data[J]. International Archives of Photogrammetry and Remote Sensing,2000a,33(B3/1; PART 3): 540-547.
    103.Lohmann P, Koch A, Schaeffer M. Approaches to the filtering of" laser scanner data[J]. International Archives of Photogrammetry and Remote Sensing,2000b,33(B3/1; PART 3): 540-547.
    104.Lv G, Liu J, Wang D, et al. A research of apparatus and optimal-control theory on precision seeding in forestry[C]. Xiangtan, China,2010.
    105.Miettinen M, Ohman M, Visala A, et al. Simultaneous localization and mapping for forest harvesters[C],2007.
    106.Miettinen M, Ohman M, Visala A. Online tree stem characterization with 3D scanning laser range finders in forest harvesters[C]. Beijing, China,2009.
    107.Murali V N, Birchfield S T. Autonomous navigation and mapping using monocular low-resolution grayscale vision (PDF)[J],2008.
    108.Ohno K, Tadokoro S. Dense 3D map building based on LRF data and color image fusion[C],2005.
    109.Olson E. A passive solution to the sensor synchronization problem[C],2010.
    110.Park S, Park M, Park S K. Object-spatial layout-route based hybrid map and global localization for mobile robots[J]. International Journal of Control, Automation and Systems,2009,7(4):598-614.
    111.Pfeifer N, Gorte B, Winterhalder D. Automatic reconstruction of single trees from terrestrial laser scanner data, ISPRS--International Archieves of Photogrammetry, Remote Sensing and Spatial information Science[J]. Vol. XXXV, Part B,2004:114-119.
    112.Pyysalo U, Hyyppa H. Reconstructing tree crowns from laser scanner data for feature extractionfJ]. INTERNATIONAL ARCHIVES OF PHOTOGRAMMETRY REMOTE SENSING AND SPATIAL INFORMATION SCIENCES,2002,34(3/B):218-221.
    113.Rieger P, Ullrich A, Reichert R. Laser scanners with echo digitization for full waveform analysis[C],2006.
    114.Ripel T, Hrb A V C Ek J, Krejsa J. Ackerman Steering Chassis with Independently Driven Back Wheels[J].
    115.Shi L, Du Z, Yao Z, et al. Fast triangulation and local optimization for scan data of laser radar[J]. Journal of Shanghai Jiaotong University (Science),2010,(1).
    116.Solanki S C. Development of Sensor Component for Terrain Evaluation and Obstacle Detection for an Unmanned Autonomous Vehicle[D]:Citeseer,2007.
    117.Sun G, Chen J, Guo W, et al. Signal processing techniques in network-aided positioning:a survey of state-of-the-art positioning designs[J]. Signal Processing Magazine, IEEE,2005,22(4):12-23.
    1I8.Trevor A J B, Rogers J G, Nieto C, et al. Applying domain knowledge to SLAM using virtual measurements[C],2010.
    119.Vestlund K. Aspects of automation of selective cleaning(J). Acta Universitatis Agriculturae Sueciae. Doctoral Thesis,2005:74.
    120.Vestlund K, Hellstr O M T. Requirements and system design for a robot performing selective cleaning in young forest stands[J]. Journal of terramechanics,2006,43(4):505-525.
    121.Vosselman G, Gorte B G H, Sithole G, et al. Recognising structure in laser scanner point clouds[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2004,46(8):33-38.
    122.Wang C. Monocular Vision-Based Obstacle Detection for Unmanned Systems[J].
    123. Wei Z, Liu J, Yu Y, et al. Modeling and parameter optimization for an articulating electro hydraulic forest machinery[C]. Sanya, China,2010.
    124.Wender S, Dietmayer K.3d vehicle detection using a laser scanner and a video camera[J]. Intelligent Transport Systems, IET,2008,2(2):105-112.
    125.Wu)fO, Wagner B. Fast 3D scanning methods for laser measurement systems[C],2003.
    126.Xin Z, Jinhao L, Dian W. Design and simulation of fuzzy self-adjusting PID controller[C]. Wuhan, China,2010.
    127.Xuecheng L. MOTION PLANNING FOR CONSTRAINED MOBILE ROBOTS IN UNKNOWN ENVIRONMENTS[J].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700