高压输电线路除冰机器人视觉控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电线路覆冰和积雪常会引起线路的跳闸、断线、倒杆、绝缘子闪络和通信中断等事故。世界各国都曾因输电线路覆冰引发安全事故,给各国带来了巨大的经济损失。而传统除冰方法效率低下而且安全性不高,因此研究新型的除冰方法替代人工除冰就变得十分迫切。
     除冰机器人是一种实现自动在线除冰的新装备,得到了研究人员和电力公司的广泛关注。但是它的运行环境非常复杂,需要解决许多关键技术难题,尤其在机器人的自主越障机构、传感器与控制等方面,是制约除冰机器人研究进展的主要因素。本文以除冰机器人的在线行走与越障为应用背景,研究利用视觉传感器为主要传感器的视觉控制方法。基于视觉的机器人控制是通过对视觉信息的分析与处理来感知环境,并利用视觉信息引导和控制机器人完成给定的任务。因此本文对除冰机器人的视觉控制研究主要包括两个方面:(1)除冰机器人通过对在线拍摄图像的分析处理,实现对工作环境的感知和识别;(2)利用相机反馈图像信息引导和控制机器人完成在线行走和越障动作。内容涉及机器人技术、图像处理技术、目标识别与空间定位技术、图像视觉伺服技术等。
     除冰机器人利用视觉信息可实现对环境的识别和运动的伺服控制,为了实现这一目标,本文在以下几个方面进行了研究:
     1、在借鉴国内外巡线机器人研究经验的基础上,提出了两臂式和三臂式除冰机器人本体设计方案。考虑到除冰机器人多手臂爬行机构的复杂性,利用旋量理论简化运动学分析,成功建立了机器人手臂的正、逆向运动学模型,为机器人在线行走与越障动作的控制提供了基础。
     2、除冰机器人工作环境复杂,其中安装在输电线路上的防震锤、悬垂线夹、耐张线夹等线路附件将是机器人在线行走时的障碍,而冰机器人要实现在线自主行走和越障,就必须能识别与定位前方线路上的各种障碍。在对大量实际图像观察后,提出利用障碍物图像局部特征进行障碍物目标识别与定位。首先,收集机器人在线行走时拍摄的各种障碍物样本图像,然后提取障碍物图像区域的SURF特征构造障碍物SURF (Speeded-Up Robust Features)特征模板库。在实际应用中,将在线拍摄实时图像的SURF特征与模板图像特征匹配,若达到匹配条件则认为匹配成功,即认为当前图像中存在与模板图像同类的障碍物。初步匹配成功后,选取4对以上的匹配点计算模板图像与实时图像平面间的单应性矩阵,再用单应性矩阵将模板图像中离相机最近的点(事先设置)映射到当前实时图像中,把该点坐标代入单目测距计算式得出机器人与障碍物之间的距离。机器人在了解前方障碍的类型和距离信息后就可实现在线行走的导航控制。
     3、基于障碍物外部形状特征的识别、定位方法。由于不同障碍物的外形和轮廓差别很大,可利用障碍物图像外形轮廓特征来识别它们。首先,对机器人实时采集图像进行预处理、最佳阈值分割、小波模提取轮廓边缘。然后利用具有旋转、平移、缩放不变性的小波矩算法计算障碍物轮廓图像的小波矩特征向量,把特征向量输入SVM神经网络实现对障碍物图像的识别判断。在定位阶段采用霍夫变换和结构约束条件对边缘图像中的直线、圆、椭圆等几何基元进行定位,然后把几何基元图像的形心坐标代入单目测距算式可估计出机器人与障碍物的距离。以上识别与定位信息为机器人在线行走与导航提供了条件。
     4、在分析除冰机器人环境特点和越障机理的基础上,提出了基于图像的越障视觉伺服控制方案。首先,选取具有全局性、通用性、抗干扰性能好的图像矩特征作为反馈图像的伺服特征,而小波神经网络具有较强的学习和泛化能力,将两者结合起来设计伺服控制器。经过训练后的神经网络将具备伺服控制能力,在除冰机器人执行越障动作时,神经网络将反馈图像特征与期望特征的误差直接映射为手臂关节控制量,实现机器人越障动作的伺服控制,避免了传统视觉伺服控制中的相机标定和图像雅可比逆矩阵的求解,大大减少了计算量,提高了图像视觉伺服的响应速度。
     5、在应用本文以上研究技术的基础上,研制了三臂式除冰机器人样机。分析了除冰机器人研制的难点与关键技术,并从工程应用角度,重点介绍了除冰机器人本体的机械结构和设计方法、电机与控制系统的设备构成。在整机装配完成后,分别对各分部进行了测试和整体调试,最后给出了除冰机器人上线行走和除冰的实验情况。
     文章结尾部分,总结了全文的主要工作和创新性研究成果,并对下一步研究工作进行了展望。
The transmission power line icing can cause various electrical accidents which will bring huge losses. These accidents include circuit breaker, line breaking, tower falling down, insulator flashover, communication interruption and so on. The traditional de-icing methods are not only inefficient but also unsafe. Hence, it becomes more urgent to develop new effective de-icing methods.
     Nowadays, more and more researchers pay attentions to a new de-icing equipment called as De-icing robot, which can realize online clearing and de-icing operation. However, as complex operating environment, there are many key technical problems to be resolved for de-icing robot researching, such as obstacle-surmounting mechanism design, sensor and control system development, and so on. The processing and perception of the environment can be achieved by visual information analysis for Vision-based robot control. The visual information can be used further to guide and control robot accomplishing the assigned tasks. To solve the on-line running and obstacle-surmounting problems, a visual control method based on vision sensor is presented in this thesis. The main research is summarized as follow:(1) Online visual images processing and analysis.(2) Guide and control de-icing robot online running and obstacle-surmounting by using feedback image information. The contents involve robotology, image processing, target recognition and space positioning technology, visual servo technology, and so on.
     This dissertation focuses on the methods for solving visual image servo control of de-icing robot. Main results and contributions of this dissertation are as follows:
     1. Based on the research experiences of the inspection robots, we design two-arm and tree-arm deicing robot mechanisms. Considering the complexity of crawling mechanism, the screw theory is used to simplify the kinematics analysis. Consequently, the forward and inverse kinematics models of robot arms are established successfully. The realizations of de-icing robot controls are on the basis of the above results.
     2. As there are several obstacles on the power line, such as counterweight, strain clamp, suspension clamp, the work environment of de-icing robot is very complex. Therefore, robot needs to be able to identify and locate various obstacles in front of transmission lines. By observing large number of actual images taken by camera of de-icing robot, we use the local characteristics of images to distinguish and locate the obstacles target. First, collect the sample photographs of obstacles and extract its SURF (Speeded-Up Robust Features), meanwhile build the template library of obstacles images'SURF feature. In practical applications, through matching the SURF characteristics of real-time and the template images, robot can accurately determine the image recognition results based on matching condition. If the match is successful, we think the obstacle in the current real-time image is the same as the template obstacle. Following, select more than four match points between the template image and real-time image to calculate homography matrix. Furthermore, we can estimate the distance between robot and obstacle after putting closest point coordinates into formula of distance measuring by monocular vision. Finally, robot can realize autonomous online navigation control when it determines obstacles information above.
     3. A recognition and location method based on external shape feature of obstacles is developed. As the external shape and contour are great different for different obstacles, robot can identify the obstacles by using its contour features. After pretreatment, optimal threshold segmentation, wavelet modulus image contour extraction for real-time image that captured by camera, the wavelet moment feature vector can be constructed after calculated the obstacle contour image's wavelet moment. Then the SVM neural network can identify obstacles after putting image wavelet moment feature vectors input to the SVM neural network. In the process of target location, the straight line, circle, ellipse can be detected by Hough transform and the condition structure constraints in obstacle contour images. The distance between robot and obstacle also can be determined after putting the center point coordinates into formula of distance measuring. Then, the de-icing robot can realize autonomous navigation control meanwhile knowing the category and distance information.
     4. A visual servo control scheme is developed on the basis of analyzing the work environment characteristic and surmounting theory of de-icing robot. Firstly, since the moment feature have many superiority in global, general, it is set as the servo characteristics. Secondly, the wavelet neural network has strong learning and generalization abilities, a high performance visual servo controller can be designed by combining the two respect's advantage. Then the trained ANN will have servo control capability. At the stage of obstacle striding movement, the visual servo controller direct mapping the error of feedback image characteristics and desired features for arm joint controller, and realize visual servo control for robot motion. This can avoid camera calibration and inverse Jocobian matrix of the traditional visual servo control. As a result, it can greatly reduce the amount of calculation and improve the response speed of the image visual servo.
     5. Based on above researches, a tree-arm de-icing prototype is developed. Meanwhile the difficulties and key techniques are summarized. Furthermore, the mechanical structure and design method of de-icing robot, motor device and control system are reported. Following, each division was tested respectively and the whole machine trial test. Finally, the online walking and de-icing experiments of de-icing robot are elaborated in the thesis.
     In this thesis ending part, the main innovations of the thesis are summarized, and prospected the next research work.
引文
[1]Brostrom E. Ice storm modelling in transmission system reliability calculations, http://www.diva-portal.org,2007-06-14.
    [2]RMS. The 1998 ice storm:10-year retrospective.http://www.rms.com/,2008-01-10.
    [3]陈继东,张予.华中电网覆冰监测系统典型实例分析.电瓷避雷器,2008(5):8-10.
    [4]黄新波,刘家兵,蔡伟等.电力架空线路覆冰雪的国内外研究现状.电网技术,2008,(4)32:23-28.
    [5]蒋兴良,易辉.输电线路覆冰及防护.北京:中国电力出版社,2002:24-25.
    [6]刘和云.架空导线覆冰防冰的理论与应用.北京:中国铁道出版社,2001:20-30.
    [7]许建安.35~110kV输电线路设计.北京:中国水利水电出版社,2003:2-16.
    [8]苑吉河,蒋兴良,易辉,等.输电线路导线覆冰的国内外研究现状.高压电技术,2003,30(1):6-9.
    [9]蒋兴良,张丽华.输电线路除冰防冰技术综述.高电压技术,1997,23(1):73-76.
    [10]朱兴龙,王洪光,房立金等.一种自主越障巡检机器人行走夹持机构.机械设计.2003,23(8):11-14.
    [11]张运楚,梁自泽,谭民.架空电力线路巡线机器人的研究综述.机器人,2004,26:467-473.
    [12]Greg Paula. Robots repair and examine live lines in sever condition. Electrical World,1989,5:71-72.
    [13]Montambault S, Pouliot N. The HQ LineROVer:contributing to innovation in transmission line maintenance. In:The 2003 IEEE 10th International Conference on Transmission and Distribution Construction, Operation and Live-line Maintenance. Chicago,2003,33-40.
    [14]Saweda J, Kusumoto K, Munakata T. A mobile robot for inspection of power transmission lines. IEEE Transactions on Power Delivery,1991,6(1):309-315.
    [15]Kobayashi H, Nakamura H, Shimada T. An inspection robot for feeder cables-basic structure and control. In:The 1991 International Conference on Industrial Electronics Control and Instrumentation. Chicago,1991,992-995.
    [16]Peungsungwal S, Pungsiri B, Chamnongthai K, et al. Autonomous robot for a Power transmission line inspection. In:Proc of the 2001 IEEE International Symposium on Circuits and Systems. Piscataway,2001,121-124.
    []7]吴功平,戴锦春,郭应龙等.具有自动越障功能的高压线巡线小车.水利电力机械,1999,(1):46-49.
    [18]周风余,李贻斌,吴爱国等.高压巡线机器人的设计与实现.机械与科学,2006,25(5):56-58.
    [19]左岐,谢植,梁自泽等.巡线机器人的发展与应用.机器人技术与应用,2007(3):37-42.
    [20]杨旸,高虹亮,孟遂民等.架空输电线路除冰机器人的结构设计.电力建设,2006,30(3):93-96.
    [21]伍洲,方彦军.高压巡线机器人电磁导航系统设计与实现.华东电力,2008,36(3):22-25.
    [22]Montambault S,Cote J,St.Louis,M.Preliminary results on the development of a teleoperated compact trolley for live-line working.In Proceedings of 2000 IEEE ESMO,2000 IEEE 9th International Conference on Transmission and Distribution Construction. Operation and Live-Line Maintenance.Montreal, Que.Canada:2000.2 1-27.
    [23]Snell J,Renowden J. Improving results of thermographic inspections of electrical transmission and distribution lines. In Proceedings of 2000 IEEE ESMO-2000 IEEE 9th International Conference on Transmission and Distribution Construction,Operation and Live-Line Maintenance.Montreal,Que.Canada: 2000.135-144.
    [24]Komoda M, Kawashima T,Minemura M,et al.Electromagnetic induction method for detecting and locating flaws on overhead transmission lines.IEEE Transactions on Power Delivery,1990,5(3):1484-1490.
    [25]原魁,路鹏,邹伟.自主移动机器人视觉信息处理技术研究发展.高技术通讯2008,18(1):104-110.
    [26]吕恬生,刘文焕.机器人趣谈,成都:四川科技出版社,1999.
    [27]Seth Hutchinson,Gregory D Hager,Peter I Corke. A tutorial on visual servo control. Robotics and Automation, IEEE Transactions on,1996,12(5):651-670.
    [28]Hashimoto K, Kimoto T, Ebine T and Kimura H. Manipulator control with image-based visual servo[C]. Proc. IEEE Int. Conf. on Robotics and Automation, Sacramento, California,1991,2267-2272.
    [29]Hager G D, Chang W C, Morse A S. Robot hand-eye coordination based on stereo vision. IEEE Control System Magazine,1995,15(1):30-39.
    [30]Hollinghust N, Cipolla R. Uncalibrated stereo hand-eye coordination. Image and vision eompntmg,1994,12(3):187-192.
    [31]Joshi R, Sanderson A C. Application of feature-based multi-view servoing for lamp filament alignmemt, IEEE Robotics and Automation,1998,5(4):25-32.
    [32]Bachiller M, Adam A, Feliu V, el al. Well Structured Robot Positioning Control Strategy for Position Based Visual Servoing. Proceedings of IEEE International Conference on Robotics and Automation,2001,3:2541-2546.
    [33]Lei M, Ghosh BK. Visually Guided Robotic Tracking and Grasping of a Moving Object. Proceedings of the 32rd Conference On Decision and Control,1993,851-856.
    [34]Hashimoto K, Kimoto T, Ebine T, el al. Manipulator Control with Image-Based Visual Servo. IEEE International Conference On Robotics and Automation, Sacramento, Claifornia,1991,2267-2272.
    [35]蒋平,胡凤轩,陈辉堂.机器人手眼协调的图像直接反馈方法.控制理论与应用,1997,14(5):648-653.
    [36]N.P.Papanikolopoulos etal.Grasping Real Objects Using Virtual Images. IEEE International Conference on Decision and Control,1998.
    [37]Hashimoto K,Kubota T,Sato M,Hurashima F. Visual control of robotic manipulator based on neural networks.IEEE Trans.Industrial Electronics,1992,9(6):490-496.
    [38]Hashimoto K and Noritsgu T.Observer-based control for visual servoing[C].13 th IF AC World Congress.San Francisco,USA,1996,453-458.
    [39]Weiss L, Sanderson AC, Neuman CP. Dynamic visual servo control of robots:An adaptive image-based approach. IEEE International Conference on Robotics and Automation 1985:662-668.
    [40]Feddema J T, Lee C S. Adaptive image feature prediction and control for visual tracking with a hand-eye coordinated camera. IEEE Transactions on System, Man, and cybernetics,1991,20(5):1172-1183.
    [41]Papanlkolopoulos NP, Nelson BJ, Khosla P K. Six degree of freedom hand/eye visual tracking with uncertain parameters. IEEE Transactions on Robotics and Automation,1995,11(5):725-732.
    [42]Serge Montambault,Nicolas Pouliot,Janos Toth,Bernhard Spalteholz.Reporting on a large ocean inlet crossing live transmission line inspection performed by linescout technology. Robotics and Automation (ICRA),2010 IEEE International Conference on,2010:1102-1103.
    [43]周风余,吴爱国,李贻斌,王吉岱,梁自泽.高压架空输电线路自动巡线机器人的研制.电力系统自动化,2004,28(23):89-91.
    [44]吴功平,肖晓晖,肖华,戴锦春,鲍务均,胡杰,架空高压输电线路巡线机器人样机研制.电力系统自动化,2006,30(13):90-93.
    [45]侯文琦,王剑,马宏绪,刘建平.输电线路除冰机器人机构设计与动力学仿真.机械与电子,2009(10):52-55.
    [46]王耀南,魏书宁,印峰,杨易旻,谭磊,曹文明.输电线路除冰机器人关键技术综述.机械工程学报,2011,47(23):30-38.
    [47]P Filipovic,A Meystel. Hierarchical feedback control system. Decision and Control, 1993., Proceedings of the 32nd IEEE Conference on,1993:737-743.
    [48]刘极峰,易际明.机器人技术基础.北京:高等教育出版社,2006:30-50.
    [49]韩建友.高等机构学.北京:机械工业出版社,2004年7月.
    [50]理查德·摩雷,李泽湘,夏恩卡-萨思特里.机器人操作的数学导论.北京:机械工业出版社,1998:53-56.
    [51]刘丽华.非线性优化模型的数码相机定标.计算机工程与应用,2010,46(25):181-184.
    [52]张运楚,梁自泽,傅思遥,谭民,吴功平.基于结构约束的架空输电线路巡线机器人障碍识别.机器人,2007,29(1):1-6.
    [53]Krystian Mikolajczyk, and Jiri Matas. Improving descriptors for fast treematching by optimal linear projection, Proceedings of IEEE International Conference on Computer Vision,2007:1-8.
    [54]D. Lowe. Object recognition from local scale-invariant features, In International Conference on Computer Vision, Corfu, Greece,1999:1150-1157.
    [55]David G Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer vision,2004,60(2):91-110.
    [56]Yan Ke,Rahul Sukthankar. PCA-SIFT:A more distinctive representation for local image descriptors. Proceedings of the 2004 IEEE Computer Society Conference on, 2004,(2):506-513.
    [57]Krystian Mikolajczyk,Cordelia Schmid.A performance evaluation of local descriptors. IEEE Transactions on PAMI,2005,27(10):1615-1630.
    [58]Lazebnik, S., Schmid, C., and Ponce, J., Semi-Local Affine Parts for Object Recognition, Proceedings of the British Machine Vision Conference,2004.
    [59]Herbert Bay,Tinne Tuytelaars,Luc Van Gool. Surf:Speeded up robust features. Computer Vision-ECCV 2006:404-417.
    [60]Moravec H P. Towards Automatic Visual Obstacle Avoidance. In:Proceedings of the 5th International Joint Conference on Artificial Intelligence.1977,584
    [61]Harris C, Stephens M. A Combined Corner and Edge Detector. In:Proceedings of the 4th Alvey Vision Conference,1988,147-151.
    [62]Lindeberg T. Edge Detection and Ridge Detection with Automatic Scale Selection. International Journal of Computer Vision,1998,30(2):117-156.
    [63]Mikolajczyk K, Schmid C. Indexing based on scale invariant interest points. In: Proceedings of the 8th International Conference on Computer Vision. Vancouver, Canada,2001,525-531.
    [64]Mikolajczyk K, Schmid C. An affine invariant interest point detector. In: Proceedings of the 7th European Conference on Computer Vision. Copenhagen, Denmark.2002,128-142.
    [65]David G. Lowe. Object recognition from local scale-invariant features. In: Proceedings of International Conference on Computer Vision. Corfu, Greece 1999, 1150-1157.
    [66]J. Bauer, N. Snderhauf, and P. Protzel. Comparing several implementations of two recently published feature detectors. In Proceedings of the International Conference on Intelligent and Autonomous SystemsIn:Proceedings of the International Conference on Intelligent and Autonomous Systems,2007.
    [67]Luo Juan,Oubong Gwun. A comparison of sift, pca-sift and surf. International Journal of Image Processing (IJIP),2009,3(4):143-152.
    [68]Viola P A, Jones M J. Rapid object detection using a boosted cascade of simple features. In:Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai,2001:511-518.
    [69]Simard P, Bottou L, Haffner P, et al. Boxlets:a fast convolution algorithm for signal processing and neural networks. In:Proceedings of the 1998 conference on Advances in neural information processing systems.1999:571-577.
    [70]David G. Lowe. Object recognition from local scale-invariant features. In: Proceedings of International Conference on Computer Vision. Corfu, Greece 1999:1150-1157.
    [71]Beis J, Lowe D G. Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. Conference on Computer Vision and Pattern Recognition, Puerto Rico,1997:1000-1006.
    [72]Arya S, Mount D M. Approximate nearest neighbor queries in fixed dimensions. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms.1993:271-280.
    [73]Theodorids, S等著,李晶皎等译.模式识别(第3版).北京:电子工业出版社,2006:125-130.
    [74]Hartley R, Zisserman A. Multiple View Geometry in Computer Vision,2nd Edition. Cambridge University Press,2003:87-129.
    [75]Fischler M A, Bolles R C. Random Sample Consensus:A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM.1981,24(6):381-395.
    [76]弋英民.基于单目视觉的轮式机器人同步定位与地图构建.仪器仪表学报,2010,1(31):117-121.
    [77]张伟,隋青美.改进最小均方误差估计的煤尘图像去噪.电子测量与仪器学报,2009,9(23):51-55.
    [78]何通能,贾志勇.基于小波矩的车牌字符识别研究.浙江工业大学学报,2005,33(23):170-172.
    [79]刘萍萍,赵宏伟等.移动机器人定位图像匹配的快速局部特征算法.仪器仪表学报,2009,8(30):1714-1719.
    [80]Hu, M. K. Visual Pattern Recognition by Moment Invariants, IEEE Transactions on Information Theory,1962,2(8):179-187.
    [81]Unser M, Aldroubi A, Eden M. On the asymptotic convergence of B-spline wavelets to Gabor functions.IEEE Transactions on Information Theory,1992,38(2):864-872.
    [82]边肇祺,张学工.模式识别.北京:清华大学出版社,2000:253-257.
    [83]沈琳琳,纪震.采用精选Gabor小波和SVM分类的物体识别.自动化学报,2009,4(35):350-355.
    [84]John C. Fast Training of SVM Using Sequential Minimal Optimization Advances in Kernel Methods Support Vector Machine. Cambridge Boston,MA,USA:MIT Press,1999.
    [85]申宇皓.小波包变换和支持向量机模拟电路故障诊断方法.火力与指挥控制,2009,34(11):154-157.
    [86]张运楚,梁自泽,傅思遥,谭民,吴功平.基于结构约束的架空输电线路巡线机器人障碍识别.机器人,2007,29(1):1-6.
    [87]Xu L, Oja E. Randomized Hough transform(RHT):basic mechanisms, algorithms, and computational complexities. Computer Vision Graphics Image Process:Image Understanding,1993,57(2):131-154.
    [88]Chen T C, Chung K L. An efficient randomized algorithm for detecting circles. Computer Vision and Image Understanding,2001,83(2):172-191.
    [89]Ho C T, Chen L H. A fast ellipse/circle detector using geometric symmetry. Pattern Recognition,1995,28(1):117-124.
    [90]Duda R O, Hart P E. Use of the Hough Transformation to Detect Lines and Curves in Pictures. Communications of the ACM,1972,15(1):11-15.
    [91]Goneid A, G indi S, Sewisy A. A method for the Hough transform detection of circles and ellipses using a 1-dimensional array. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics,1997:3154-3157.
    [92]王耀南,曹文明等.高压输电线上机器人的行走机构.中国专利.发明专利授权号:ZL201010167465.8,2012-08-22.
    [93]宗晓萍.智能机器人视觉伺服系统研究:[河北大学博士学位论文].保定:河北大学光学工程专业,2007.
    [94]Shapiro L G,Stockman G C. Computer vision[M]. Pearson Education Inc.,2001:235-247.
    [95]Chen C H, Pau L F, Wang P S P. Handbook of Pattern Recognition and Computer Vision(2nd edition)[M]. Singapore:World Scientific,1999:207-248.
    [96]Robert M Haralick,Karthikeyan Shanmugam,Its'Hak Dinstein. Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on, 1973(6):610-621.
    [97]Robert M Haralick. Statistical and structural approaches to texture. Proceedings of the IEEE,1979,67(5):786-804.
    [98]George R Cross, Anil K Jain. Markov random field texture models. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1983(1):25-39.
    [99]Rama Chellappa,Shankar Chatterjee. Classification of textures using Gaussian Markov random fields. Acoustics, Speech and Signal Processing, IEEE Transactions on,1985,33(4):959-963.
    [100]Simona E Grigorescu,Nicolai Petkov,Peter Kruizinga.Comparison of texture features based on Gabor filters. Image Processing, IEEE Transactions on,2002, 11(10):1160-1167.
    [101]K Muneeswaran,L Ganesan,S Arumugam,K Ruba Soundar. Texture image segmentation using combined features from spatial and spectral distribution. Pattern Recognition Letters,2006,27(7):755-764.
    [102]Bangalore S Manjunath,Wei-Ying Ma. Texture features for browsing and retrieval of image data. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1996, 18(8):837-842.
    [103]Marko Heikkila,Matti Pietikainen,Cordelia Schmid. Description of interest regions with local binary patterns. Pattern recognition,2009,42(3):425-436.
    [104]练秋生,李芹,孔令富.融合圆对称轮廓波统计特征和LBP的纹理图像检索.计算机学报,2007,30(12):2198-2204.
    [105]Ojala T, Pietikainen M. Unsupervised texture segmentation using feature distributions. Pattern Recognition(S0031-3203),1999,32:477-486.
    [106]Ojala T, Pietikainen M, Maenpaa T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828),2002,24(7):971-987.
    [107]ZHOU H, WANG R S, WANG C. A novel extended local-binary-pattern operator for texture analysis. Information Sciences:an International Journal(S0020-0255),2008, 178(22):4314-4325.
    [108]孙慧贤,张玉华,罗飞路.基于纹理特征的钢丝绳图像分割方法.光电工程,2009,36(4):123-127.
    [109]CHUANG K S, TZENG H L, CHEN S, et al. Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics(S0895-6111),2006,30(1):9-15.
    [110]王修岩,程婷婷.基于单目视觉的工业机器人智能抓取研究.机械设计与制造,2011,5:135-136.
    [111]曹平祥,周波,郭晓磊,江应.MDF铣削过程中切屑流边界及扩散角的视频识别.林业科学,2010,46(1):112-116.
    [112]江泽民,杨毅等.基于平行线的室内视觉导航.机器人,2007,29(2):128-132.
    [113]陈娇,姜国权等.基于垄线平行特征的视觉导航多垄线识别.农业工程学报,2009,25(12):107-113.
    [114]Weiss LE, Sanderson A C. Dynamic sensor-based control of robots with visual feedback. IEEE Journal of Robot and automation,1987,3(5):404-417.
    [115]高成.单目眼在手上机器人视觉伺服研究:[东北大学博士学位论文].沈阳:东北大学控制理论与控制工程,2006.
    [116]CHUANG K S, TZENG H L, CHEN S, et al. Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics(S0895-6111),2006,30(1):9-15.
    [117]黎志刚,段锁林,赵建英.机器人视觉伺服控制及应用研究的现状.太原科技大学学报,2007,28(1):24-31.
    [118]Wells G., Venaille C., Torras C.. Vision-based robot positioning using neural networks. Image and servo computing,1996,14(10):715-732.
    [119]Espiau B.,Chaumette F., Rives P.. A new approach to visual servoing in robotics. IEEE Transactions on Robotics and Automation,1992,8(3):313-326.
    [120]辛菁.机器人无标定视觉伺服控制系统研究.[西安理工大学博士学位论文]西安.西安理工大学,2007.
    [121]林靖.机器人视觉伺服控制系统的研究.[同济大学博士学位论文]上海:同济大学,2000.
    [122]王冰,刘晓霞,耿国华,周明全.一种基于补偿法则的矩的快速算法.计算机研究与发展,2003,40(7):1042-1048.
    [123]王冰.基于差分矩因子的灰度图像矩快速算法.计算机学报,2005,28(8):1367-1372.
    [124]薛定宇,项龙江,司秉玉,徐心和.视觉伺服分类及其动态过程2003,6(24):543-547.
    [125]王耀南.机器人智能控制工程,北京:科学出版社,2004.
    [126]王麟琨,徐德,谭民.机器人视觉伺服研究进展.机器人,2004,26(3):277-282.
    [127]Hashimoto H., Sato M., Harashima F..Visual control of robotics manipulator based on neural networks. IEEE Transaction on Industrial Electronics,1992,39(6): 490-496.
    [128]Sun L., Doeschner C. H.. Visual-motor coordination of a robot maniPulator based on neural networks[C]. Proceedings of the IEEE International Conference on Robotics and Automation. Belgium,1998:1737-1742.
    [129]Kevin Stanley,QM Jonathan Wu,Ali Jerbi,W Gruver. Neural network based vision guided robotics. Robotics and Automation,1999. Proceedings.1999 IEEE International Conference on,1999,1:281-286.
    [130]王耀南,孙炜.智能控制理论及应用.北京:机械工业出版社,2008.
    [131]王耀南.智能信息处理技术.北京:高等教育出版社,2003.
    [132]张立峰,王化祥.基于小波神经网络的电容层析成像图像重建算法.中国电机工程学报,2008,35(28):40-41.
    [133]Wang Liang, Sun Wei. Design of Transmission Line Deicing Robot Hybrid Power System. E-Product E-Service and E-Entertainment (ICEEE),2010 International Conference on,2010,1-4.
    [134]魏书宁,王耀南,印峰,杨易旻.高压输电线路除冰机器人的除冰机构设计.中国机械工程,2012,23(7):771-776.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700