甘蓝春化相关基因BoVIN3的克隆及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结球甘蓝(Brassica oleracea var. captata L.)属于绿体春化型植物,幼苗需长到一定大小,方能感应低温通过春化。长时间低温处理促进植物开花的过程称为春化作用,在植物成花转变过程中起着重要的作用,该领域的研究近年来已取得了较大的进展,特别是对春化的分子机理探讨方面也逐渐凸显出其本质,虽然对春化作用机理的理解呈现出一些轮廓,但春化作用分子调控的过程却还很不清楚。
     根据拟南芥及其芸薹属相关领域的研究报道,本试验重点针对开花网络核心基因FLC及其春化作用途径上游的关键基因VIN3进行研究,首次从十字花科芸薹属作物结球甘蓝中克隆了春化相关基因VIN3,通过生物软件对VIN3基因进行了序列分析,并通过RT-PCR方法检测在结球甘蓝中的表达情况及其与春化作用的关系,以为研究结球甘蓝绿体春化的分子机理提供理论依据。本试验主要研究结果如下:
     本试验中对自然条件下生长的甘蓝幼苗可以感受低温春化的形态标准研究表明:甘蓝中熟品种“光荣一号”可以感受低温春化的低限苗龄为13片叶,茎粗达到12.83±0.14mm,低温处理48d春化作用结束,开始进入花芽分化临界期。甘蓝植株只有接受低温诱导达到春化饱和程度才能启动相应基因表达,所以本试验需采用可以感受低温春化的幼苗进行春化处理,以备下一步克隆春化相关基因VIN3。
     根据拟南芥VIN3基因的mRNA序列(NM-125121.3)的ORF编码区,设计了VIN3基因的特异引物,以甘蓝RNA及DNA为模板克隆BoVIN3基因的cDNA和DNA序列。克隆得到两条甘蓝春化相关基因BoVIN3的cDNA ORF编码区序列,各1680bp,GenBank登录号分别为JQ394927和JQ394928,可编码由560个氨基酸组成的蛋白质;与拟南芥VIN3基因在核酸水平上同源性分别达到85.55%和79.95%;与拟南芥氨基酸序列同源性分别为80.72%和72.96%。同时获得BoVIN3基因的部分基因组片段,1405bp,GenBank登录号为JQ394929。
     利用DNAMAN等软件以及在线分析程序对BoVIN3基因及其编码的蛋白进行分析和预测。结果表明,甘蓝BoVIN3-1、BoVIN3-2蛋白长度均为560AA,分子量约分别为62.116KD和62.434KD,等电点分别为6.56和5.63;通过磷酸化位点预测其蛋白存在多个磷酸化位点;通过NCBI保守结构域预测程序得知该蛋白具有PHD结构域。
     半定量RT-PCR表达分析表明BoVIN3受春化作用的诱导,只在感应低温的茎尖生长点表达,在其它部位不表达,并且其转录产物随春化时间延长逐渐积累,在春化42d时达到峰值;而在不同浓度GA3和KT诱导下不表达;FLC受春化作用的抑制,并且BoVIN3受诱导表达后才能使FLC的表达受到抑制,暗示在结球甘蓝中BoVIN3基因可能参与春化调控开花的生物学过程,属于春化特异基因,只响应低温诱导而转录。
     以pBI121植物表达载体和BoVIN3-1基因片段为基础,构建反义植物表达载体。将BoVIN3-1基因片段反向插入355启动子与GUS基因之间的限制性酶切位点XbaI和SmaI中,构建含反义BoVIN3-1基因的工程质粒pB135S-BoVIN3-1。利用转反义基因技术,即转化BoVIN3-1的反义片段进行了BoVIN3-1的功能分析,通过花蕾微量注射法转化甘蓝,观察到经春化处理的转反义基因植株与对照相比,春化一定程度被推迟,这一结果进一步表明,甘蓝BoVIN3-1基因可能直接参与了春化过程。
Cabbage (Brassica oleracea var. captata L.)belongs to green vernalizatio plants,young plants need to grow to certain sizes then can accept low temperature and go through vernalization.The pr-ocess of long colding time promoting plant flowering known as vernalization, playing an important role in transition to flowering, in recent years had made considerable progress in vernalization res-earch,especially the molecular mechanism discussion highlights its natural gradually.Although the understanding of the vernalization mechanism show some outline,but the molecular control process is not clear. According to related reports in the arabidopsis and brassica,this work focusing on core gene FLC in flowering regulation way and its upper key gene VIN3in vernalization to research,first isolate vernalization related gene VIN3from cabbage by Homology cloning, employ the biological software to analyze BoVIN3gene and deduced amino acid sequence,the expression patterns of the BoVIN3genes were investigated by semi-quantity RT-PCR, in an attempt to explore the relation be-tween its expression and vernalization, provide base theory for cabbage vernalization.The main conclusions of this study are as follows:
     In this experiment, the research of morphological characters of the cabbage plants can accept low temperature growth under natural condition showed that medium maturing varieties of "GUANG RONG YI HAO", with13leaves and12.83±0.14mm in stem diameter, begin to be sensitive to vernalization,low temperature treatment48d vernalization complete, transition to flower bud differentiation. Cabbage plants only accept cold inducement reached saturation level to activate the corresponding gene expression,so this work must employ cabbage plants can feel low temperature to vernalize, prepared to following cloning the VIN3gene.
     According to AtVIN3gene mRNA sequence (NM-125121.3) ORF coding region,design gene specific primer,take cabbage RNA and DNA as template to amplified BoVIN3gene.Two vernalization-related genes were isolated by RT-PCR. Sequencing analysis results showed that their ORF were both1680bp in length, which encoded560amino acids, and GenBank accession number are JQ394927and JQ394928respectively.Their nucleotide sequences shared85.55%and79.95%identity with AtVIN3respectively, and the deduced amino acid sequence showed homology to AtVIN3with80.72%and72.96%. At the same time we isolated BoVIN3part DNA segment,was1405bp, GenBank accession number is JQ394929.
     Take advantage of DNAMAN software and on line analyze Bo VIN3gene and their coding protein.Result indicated BoVIN3protein560AA,molecular weigh is62.116KD and62.434KD respectively,PI is6.56and5.63respectively; Phosphorylation site analysis of BoVIN3,both have many Phosphorylation site; analysis of protein conserved domains of BoVIN3showed that they have Zn-finger domains.
     The expression patterns of the BoVIN3genes were investigated by semi-quantity RT-PCR, results showed that BoVIN3gene could express induced by low temperature treatment, and expressed in the stem apex specifically, transcript levels increased with increasing treatment time.The transcription reach the peak at42d of vernalization. At the same time the expression of FLC was suppressed after BoVIN3was induced by low temperature treatment,results suggest that both genes maybe involved in the biological process of flowering regulation in vernalization. However both BoVIN3could not be induced by GA3and KT treatment.It indicated that cabbage BoVIN3was specific vernalization genes, whose transcripts could specially response to vernalization.
     Employ pB1121plasmid and BoVIN3-l gene segment to construct anti-sense expression vector. Insert the BoVIN3-1anti-sense gene segment at Xbal and Smal restriction enzymes site between CaMV355promoter and GUS gene,construct plasmid pBI35S-BoVIN3-1.Transform it to cabbage flower bud by means of micro-injection,observed that after vernalization treatment the transgenic plant vernalization response be delayed at certain extent, the result further indicated that BoVIN3-1gene maybe part in vernalization directly.
引文
[1]李曙轩.蔬菜栽培生理[M].上海科技出版社,1979.
    [2]Michaels SDand Amasino RM.FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering[J].Plant Cell,1999b,(11):949-956.
    [3]Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen R.A, Dean C.Vernalization requires epigenetic silencing of FLC by histone methylation[J].Nature,2004,427,164-167.
    [4]Sung S, Amasino RM.Vernalization in Arabidopsis thaliana is mediated by the PHD finger Protein VIN3[J].Nature,2004a,427,159-164.
    [5]Kim SY, He Y, Jacob Y, Noh YS, Michaels S, Amasino R.Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyltransferase[J].Plant Cell,2005,17,3301-3310.
    [6]Sung S, Amasino RM. Vernalization and epigenetics:How plants remember winter[J]. Curr.Opin in.Plant Biol,2004b,7,4-10.
    [7]Wang X, Zhang Y, Ma Q.SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis[J].EMBO J,2007,26(7):1934-1941.
    [8]Schmitz RJ,Amasino RM.Vernalizations model for investigating epigenetics and eukaryotic gene regulation in plants[J].Biochim Biophys Acta,2007,1769(5/6):269-275.
    [9]Fu D, Dunbar M, Dubcovsky J. Wheat VIN3-like PHDfinger genes are up-regulated by vernalization[J]. Mol Genet Genomics,2007,277(3):301-313.
    [10]李勇.红菜苔春化作用相关基因及其天然早花突变的分子机理研究[D].重庆:重庆大学,2009.
    [11]徐磊,林碧英,林义章.春化作用与甘蓝类蔬菜的生育障碍[J].亚热带植物科学,2002,31(4):73-76.
    [12]张志众,刘长庆,孙发仁.春化条件对大白菜花芽分化与种株发育的影响[J].中国蔬菜,1995,(5):35-36.
    [13]王淑芬,徐文玲,何启伟.春化深度对萝卜抽薹的影响及抽薹过程中GA3和IAA含量的变化[J].山东农业科学,2003,6:20-21.
    [14]李丽敏.春早熟甘蓝未熟抽苔的原因及防止措施[J].中国蔬菜,2000,(3):40-41.
    [15]王超.春结球甘蓝未熟抽苔原因及对策[J].北方园艺,2001,(4):10-11.
    [16]王听.种康.植物小G蛋白功能的研究进展[J].植物学通报,2005,1:1-10.
    [17]葛磊,谭克辉,种康,许智宏.水稻花发育基因调控的研究进展[J].科学通报,2001,9:705-712.
    [18]Weller JL, Reid JB, Taylor SA, Murfet IC.The genetic control of flowering in pea[J].Trends Plant Sci,1997,2:412-418.
    [19]Koornneef M, Alonso-Blanco C, Peetesr AJM, Soppe W. Genetic control of flowering time in Arabidopsis[J].Annu.Rev.Plant Physiol.Plant Mol.Biol,1998,49:345-370.
    [20]Simpson G.G and Dean C. Arabidopsis, the rosetta stone of flowering time[J].Science, 2002,296:285-289.
    [21]Wagner D, Meyerowitz EM.Transcriptional activation of APETALAI by LEAFY [J]. Science,1999,285,582-584.
    [22]Sheldon CC.Burn JE,Perez PP, Metzger J.Edwards JA,Peacock WJ, and Dennis ES. The FLF MADS box gene:A repressor of flowering in Arabidopsis regulated by vernalization and methylation[J]. Plant Cell,1999,11,445-458.
    [23]Ausin I, Alonso-Blanco C, Jarillo J A, Ruiz-Garcia L, Martinez-Zapater J M. Regulation of flowering time by FVE, a retinobastoma-associated Protein[J]. Nat Genet,2004,36,162-166.
    [24]Gendall AR,Levy YY,Wilson A,Dean C.The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis[J].Cell,2001,07,525-535.
    [25]Clarke JH,Dean C.Mapping FRI, a locus controlling flowering time and vernalization response in Arabidopsis thaliana[J].Mol Gen Genet,1994,242,81-89.
    [26]Putterill J, Robson F, Lee K, Simon R, Coupland G.The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc-finger transcription factors[J].Cell,1995,80,847-857.
    [27]He Y, Tang RH, Hao Y, Stevens RD,Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM.Nitric oxide represses the Arabidopsis floral transition[J]. Science,2004b,24,1968-1971.
    [28]Jean Finnegan E, Kovac KA, Jaligot E, Sheldon CC, James Peacock W, Dennis ES. The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms[J].Plant J,2005,44, 420-432.
    [29]张素芝,左建儒.拟南芥开花时间调控研究进展[J].生物化学与生物物理进展,2006,33(4):301-309.
    [30]Kobayashi Y.and Weigel D. Move on up,it's time for change-mobile signals controlling photoperiod-dependent flowering.Genes Dev,2007,(21):2371-2384.
    [31]Imaizumi T and Kay S A. Photoperiodic control of flowering:not only by coincidence. Trends in Plant[J].Science,2006,11 (11):550-558.
    [32]Makino S, Matsushika A, Kojima M, Yamashiono T, Mizuno T.The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana Characterization with APRR1-over expressing plants[J]. Plants Cell Physiology,2002,43:58-69.
    [33]Harriet GM,Ruth MBand Anthony H.The ELF3 gene regulates light signaling to the circadian clock[J].Nature,2000, (408):716-720.
    [34]Somers DE, Schultz TF,Milnamow Mand Kay SA. ZEITLUPE encodes a novel clock assoc-iated PAS protein from Arabidopsis[J].Cell,2000,(101):319-329.
    [35]Nelson DC,LasswelI J,Rogg LE,Cohen MAand Bartel B. a FKF1, clock-controlled gene that regulates the transition to flowering inArabidopsis[J].Cell,2000, (101):331-340.
    [36]Kiyosue T.and Wada M. LKP1(LOV kelch protein 1):A factor involved in the regulation of flowering time in Arabidopsis[J].Plant J,2000,(23):807-815.
    [37]Schultz TF,Kiyosue T,Yanovsky M,Wada M.and Kay SA.A role for LKP2 in the circadian clock of Arabidopsis[J].Plant Cell,2001,(13):2659-2670.
    [38]Mas P,AlabadiD,Yanovsky MJ,Oyama Tand Kay SA. Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis[J].Plant Cell,2003, (15):223-236.
    [39]Han L,Mason M,Risseeuw EP,Crosby WLand Somers DE. Formation of an SCFZTL complex is required for proper regulation of circadian timing.Plant J,2004,(40):291-301.
    [40]Paloma M,Kim WYand Somers DE.Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana[J].Nature,2003,(426):567-570.
    [41]Mizoguchi T,Wright L,Fujiwara S,Cremer F.Lee K.,Onouchi H,Mouradov A,Fowler Sand Kamada H. Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis[J].Plant Cell,2005,(17):2255-2270.
    [42]Suarez-Lopez P,Wheatley K,Robson F,Onouchi H,Valverde Fand Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis[J]. Nature,2001,(410):1116-1120.
    [43]Yoo SK,Chung KS,Kim J,Lee JH,Hong SM,Yoo SJand Yoo SY. Constans activates suppressor of over expression of CONSTANS 1 through flowering locus T to promote flowering in Arabidopsis[J].Plant Physiol,2005,(139):770-778.
    [44]SimpsonGG. The autonomous pathway:epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time[J]. Current Opinion in Plant Biology,2004,(7): 570-574.
    [45]Yu X, Kejnot J,LinC. Florigen:One found, mote to follow[J]. Plant Biol,2006,48,617-621.
    [46]Wilson RN, Heckman JW,and Somerville CR.Gibberellin is required for flowering in Arabidopsis thaliana under short days[J].Plant Physiol,1992,100:403-408.
    [47]Blazquez MA.Weigel D. Integration of floral inductive signals in Arabidopsis[J].Nature, 2000,404,889-892.
    [48]Silverstone AL, Ciampaglio CNand Sun TP. The Arabidopsis RGA gene encodes a transcripti-onal regulator repressing the gibberellin signal transduction pathway[J].Plant Cell, 1998,(10):155-169.
    [49]孙昌辉,邓晓,方军.高等植物开花诱导的研究进展[J].遗传,2007,29(10):1182-1190.
    [50]Pysh L D, Wyscka-diller J W, Camilleri C,etal.The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes[J]. PlantJ,1999,18:111-119.
    [51]Amador V,Monte E,Garcia-Martinez JLand Prat S.Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo[J]. Cell, 2001,(106):343-354.
    [52]Kania T,Russenberger D,Peng S,pel K and Melzer S. FPF1 promotes flowering in Arabidopsis[J].Plant Cell,1997, (9):1327-1338.
    [53]Melzer S,Kampmann G,Chandler J.and Apel K.FPF1 modulates the competence to flowering in Arabidopsis[J].Plant J,1999,(18):395-405.
    [54]Jacobsen SE.and Olszewski NE.Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction[J].Plant Cell,1993,(5):887-896.
    [55]Gocal G.F,Sheldon CC,Gubler F,Moritz T,Bagnall DJ,MacMillan CP,Li SF,Parish RW,Dennis ES,Weigel Dand King RW.GAMYB-like genes,flowering,and gibberellin signaling in Arabidopsis [J].Plant Physiol,2001,(127):1682-1693.
    [56]Koornneef M,Hanhart CJ,Van der Veen JH. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana[J].Mol Gen Genet,1991,229,57-66.
    [57]Lee I, Aukerman M J,Gore S L, Lohman K N, Michaels SD,Weaver LM, John MC, Feldmann K A, Amasino R M. Isolation of LUMINIDEPENDENS:A gene involved in the control of flowering time in Arabidopsis[J].Plant Cell,1994,6,75-83.
    [58]Chou ML,Yang CH.FLD interacts with genes that affect different developmental phase transitions to regulate Arabidopsis shoot development.Plant J,1998,15,231-242.
    [59]Michaels SD, Amasino RM. Loss of FLOWERING LOCUS C activity eliminates the late flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization[J].The Plant Cell,2001,13:935-941.
    [60]Macknight R,Bancroft I, Page T, Lister C,Schmidt R, Love K, Westphal L,Murphy G, Sherson S,Cobbett C,Dean C. FCA, a gene controlling flowering time Arabidopsis,encodes a protein containing RNA-binding domains[J].Cell,1997,89,737-745.
    [61]Lee I,Michaels SD,Masshardt ASand Amasino RM.The late-flowering phenotype of FRIGIDA and mutations in LUMINIDEPENDENS is suppressed in the Landsberg erecta strain of Arabidopsis[J].Plant J,1994,(6):903-909.
    [62]Macknight R, Duroux M, Laurie R, Dijkwel P, Simpson G, Dean C. Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA[J].The Plant Cell, 2002,14:877-888.
    [63]Quesada V, Macknight R,Dean C,Simpson GG Autoregulation of FCA Pre-Mrna processing controls Arabidopsis flowering time[J].EMBOJ,2003,22,3142-3152.
    [64]Simpson GG,Dijkwel PP,Quesada V.Henderson I, Dean C. FY is an RNA3'-end processing factor that interacts with FCA to control the Arabidopsis floral transition[J].Cell,2003, 13,777-787.
    [65]Ohnacker M,Barabino SM.Preker PJ,Keller W. The WD-repeat protein pfs2p bridges two essential factors within the yeast pre-mRNA39-end-processing complex[J].EMBOJ,2000,19, 37-47.
    [66]Hakimi MA,Dong Y, Lane WS.Speicher DW, Shiekhattar R. A candidate X-linked mental retardation gene is a component of a new family of histone deacetylase-containing complexes [J]. J Biol Chem,2003,278,7234-7239.
    [67]He Y, Doyle MR, Amasino RM. PAF1-complex-mediated histone methylation of FLOWE- RING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis[J].Genes Dev,2004a,18,2774-2784.
    [68]He Y, Michaels SD, Amasino RM. Regulation of flowering time by histone acetylation in Arabidopsis[J]. Science,2003,302:1751-1754.
    [69]Chen R, Zhang S, Sun S. Characterization of a new mutant allele of the Arabidopsis flowering locus D(FLD)gene that controls the flowering time by repressing FLC[J].Chinese Science Bulletin,2005,50(23):2701-2706.
    [70]Burn J E, Bagnall D J, Metzger J D, Dennis E S, Peacock W J. DNA methylation, vemaliza-tion, and the initiation of flowering[J]. Pro Natl Acad Sci USA,1993,90:287-291.
    [71]Koornneef M, Blankestijndevries H, Hanhart C, Soppe W.and Peeters T.The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type[J].Plant J,1994,(6):911-919.
    [72]Michaels SD and Amasino RM.The gibberellic acid biosynthesis mutant gal-3 of Arabidopsis thaliana is responsive to vernalization [J].Dev Genet,1999a,(25):194-198.
    [73]Johanson U, West J,Lister C, Michaels S, Amasino R, and Dean C.Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time[J]. Science, 2000,290,344-347.
    [74]Searle I,He Y,Turck F,Vincent C.Fornara F,Krober S,Amasino RAand Coupland G. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis[J].Genes Dev,2006, (20):898-912.
    [75]Irish VF, Sussex IM.Function of the apetalal gene during Arabidopsis floral development [J]. Plant Cell,1990,2,741-751.
    [76]Sheldon CC,Rouse DT,Finnegan EJ.Peacock, WJ, and Dennis ES.The molecular basis of vernaliaztion:The central role of FLOWERING LOCUS C(FLC) [J]. Proc.Natl. Acad. Sci. USA,2000,97,3753-3758.
    [77]Finnegan EJ, Genger RK,Kovac K, Peacock WJ, Dennis ES.DNA methylation and the promotion of flowering by vernalization[J].Proc.Natl.Acad.Sci.USA,1998,95:5824-5829.
    [78]Helliwell CA,Wood CC,Robertson M,Peacock WJand Dennis ES.The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular weight protein complex[J].Plant Journal,2006,(46):183-192.
    [79]Kim SY,Zhu T,Sung ZR. Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis[J].Plant Physiol,2010,152(2):516-528.
    [80]De Lucia F, Crevillen P, Jones A M, et al. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization[J].Proc Natl Acad Sci USA,2008,105(44): 16831-16836.
    [81]Wood C C, Robertson M, Tanner G, Peacock W J, Dennis E S, Helliwell C A. The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE3[J].ProcNatl Acad Sci USA,2006,103(39):14631-14636.
    [82]Cao R.and Zhang Y. The functions of EZ/EZH2-mediated methylation of lysine 27 in histone H3[J].Curr.Opin.Genet.Dev,2004,(14):155-164.
    [84]Schwartz YBand Pirrotta V. Polycomb silencing mechanisms and the management of genomic programmes[J].Nature Reviews Genetics,2007,(8):9-22.
    [85]Schubert D, Primavesi L, Bishopp A, Roberts G, Doonan J, Jenuwein T, Goodrich J. Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27[J]. EMBO J,2006,25(19):4638-4649.
    [86]Doyle M R, Amasino R M.A single amino acid change in the enhancer of zeste ortholog CURLY LEAF results in vernalization-independent,rapid flowering in Arabidopsis[J].Plant Physiol,2009,151(3):1688-1697.
    [87]Jiang DH,Wang YQ,He YH,Wang YZ. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb Repressive Complex 2 components[J]. PLoS ONE,2008,3(10):e3404.
    [88]胡功铃,陈国平,胡宗利,顾峰,李勇.植物同源结构域锌指蛋白在拟南芥等十字花科植物春化作用途径中的功能[J].生物工程学报,2010,26(1):1-8.
    [89]Levy YY,Mesnage S,Mylne JS,Gendall ARand Dean C.Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control[J].Science,2002,(297):243-246.
    [90]Mylne JS,Barrett L,Tessadori F,Mesnage S, Johnson L,Bernatavichute YV, Jacobsen SE.Fransz Pand Dean C.LHP1.the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC[J]. Proc. Natt. Acad. Sci. USA,2006, (103):5012-5017.
    [91]Sung S,Schmitz RJand Amasino RM. A PHD-fnger protein involved in both the vernalization and photoperiod pathways in Arabidopsis[J].Genes Dev,2006b, (20):3244-3248.
    [92]Werner JD,Borevitz JO,Warthmann N.Trainer GT,Ecker JR,Chory Jand Weigel D. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation[J].Proc.Natt.Acad.Sci.USA,2005, (102):2460-2465.
    [93]Li Y,Roycewicz P,Smith E and Borevitz JOGenetics of local adaptation in the laboratory: flowering time quantitative trait loci under geographic and seasonal conditions in Arabidopsis [J].PloS ONE,2006, (105):1693-1699.
    [94]Ratcliffe OJ,Kumimoto RW,Wong BJand Riechmann JL.Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family:MAF2 prevents vernalization by short periods of cold[J].Plant Cell,2003, (15):1159-1169.
    [95]Sung S,He Y,Eshoo TW,Tamada Y,Johnson L,Nakahigashi K,Goto K,Jacobsen SEand Amasin-oRM.Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HET-EROCHROMATIN PROTEIN 1[J].Nature Genetics,2006a,(38):706-710.
    [96]Yu H,Xu Y,Tan ELand Kumar PP.AGAMOUS-LIKE 24,a dosage-dependent mediator of the flowering signals[J].Proc.Natt.Acad.Sci.USA,2002.(99):16336-16341.
    [97]Michaels SD, He Y, Scortecci K C, Amasino R M. Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of a summer-annual flowering behavior in Arabi-dopsis[J].Proc.Natl.Acad.Sci.USA,2003,100:10102-10107.
    [98]Yu H,Ito T,Wellmer Fand Meyerowitz EM. Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development[J].Nature Genetics,2004,(36):157-161.
    [99]Schonrock N,Bouveret R,Leroy O,Borghi L,Kohler C,Gruissem Wand Hennig L. Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway[J]. Genes Dev,2006, (20):1667-1678.
    [100]Ng HH, Robert F,Young RA, Struhl K. Targeted recruitment of Set1 histone methylase by elongating Pol Ⅱ provides a localized mark and memory of recent transcriptional activity[J].Mol. Cell,2003,11,709-719.
    [101]Krogan NJ, Dover J,Wood A, Schneider J, Heidt J, Boateng MA, Dean K, Ryan OW,Golshani A, Johnston M, Greenblatt JF, Shilatifard A. The Pafl complex is required for histone H3 methylation by COMPASS and Dotl P:Linking transcriptional elongation to histone methyl-lation [J].Mol Cell,2003,11,721-729.
    [102]Kaadige M R, Ayer D E. The polybasic region that follows the plant homeodomain zinc finger 1 of Pfl is necessary and sufficient for specific phosphoinositide binding [J].The Journal of Biological Chemistry,2006,281 (39)-.28831-28836.
    [103]Townsley FM,Thompson B,Bienz M. Pygopus residues required for its binding to Legless are critical for transcription and development[J]. Biol Chem,2004,279(7):5177-5183.
    [104]Wichens M, Kimble Jand Strickl S. Translational control of dovelopmental decisions[J]. Cold Spring Harbor Laboatory Press,1996,P411-450.
    [105]Simons R W. Naturally occurring antisense control-A brief review[J].Gene,1988, (72):35-44.
    [106]Jorgensen R A, Cluster P D,English J. Chalcone synthase cosuppression phenotypes in petun-ia flowers:comparison of sense vs.antisense constructs and single-copy vs.complex T-DNA sequences[J].Plant Mol Biol,1996,31:957-973.
    [107]Guo S and Kempheus K J. Par-1.a gene required for establishing polarity in C elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed[J].Cell,1995,81: 611-620.
    [108]Fire A, Xu,Montgomery SMK, Kostas SA, etal. Potent and specific genetic interference by double-stranded KNA in Caenorhabditis elegans[J].Nature,1998,391:806-811.
    [109]董伟清,王爱勤,韦波,何龙飞,杨丽涛,李杨瑞.甘蔗ACC氧化酶基因的克隆与植物表达载体构建[J].安徽农业科学,2008,36(17):7147-7149,7171.
    [110]尉连伶,冯晓燕,范六民.水稻SLR1基因的克隆及其植物表达载体的构建[J].安徽农业科学[J],2008,36(2):435-453.
    [111]魏玉凝,李曙东.表达多聚半乳糖醛酸酶反义RNA的转基因番茄分析[J].植物学报(英文版),1996,38(3):245-248.
    [112]马庆虎,宋艳茹.多聚半乳糖醛酸酶反义基因在转基因番茄中的表达[J].生物多样性,1995,3(1):21-25.
    [113]寇晓虹,朱本忠,田慧琴,石英,罗云波多聚半乳糖醛酸酶(PG)反义基因对加工番茄果实成熟的影响[J].中国食品学报,2003,3(4):27-32.
    [114]Yang W D,Wang S Y,Liu W P. Inhibition of replication of rice dwarf virus in transgenic rice plant expressing antisense ribozyme gene[J].Virologica Sinica,1996,11:277-283.
    [115]Bendahmane M, Gronenborn B. Engineering resistance against tomato yellow leaf curl virus (TYLCV) using antisense RNA [J]Plant Mol Bio,1997,(33):351-357.
    [116]Jones DH,Winistorfer SC.Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA[J].Nucleic Acids Res,1992,20(3):595-600.
    [117]石东乔,周奕华,张丽华.油菜BcNAI启动子与拟南芥Fad2基因的克隆及相关植物表达载体的构建[J].云南大学学报(自然科学版),1999,(21)增刊:47.
    [118]Knutzon D S,Thompson G A,Rsadke S E. Modification of Brassica seed oil by antisense expression of a stearoylacyl carrier protein desaturase gene[J].Proc Natl Acad Sci USA, 1992,89:2624-2628.
    [119]Heiser V,Rasmusson A G,Thieck O.Antisense repression of the mitochondrial NADH-binding subunit of complex I in transgenic potato plants affects male fertility[J].Plant Science,1997, 127:61-69.
    [120]陈建南,傅鸿仪.HSP70反义RNA对高粱花粉的正常形成的影响[J].科学通报,1997,42(18):1993-1997.
    [121]陈建南,傅鸿仪.HSP70基因表达对高粱育性的影响[J].发育与生殖生物学报(英文版),1998a,7(2):51-62.
    [122]陈建南,傅鸿仪.高粱细胞质雄性不育与HSC70mRNA的关系[J].科学通报,1998b,43(23):2525-2530.
    [123]Ye WZ,Cao JS,Xiang X,Zeng GW.Molecular cloning and characterization of the genic male sterility related gene CYP86MF in Chinese cabbage (Brassica campestris L. ssp. Chinensis Makino var.communis Tsen et Lee) [J]. Journal of Horticultural Science and Biotechnology, 2003,78(3):319-323.
    [124]Yu SW,Tang KX,MAPKinase Cascades Responding to Environmental Stress in Plants[J]. Acta Botanica,Sinica,2004,46(2):127-136.
    [125]张强.多聚半乳糖醛酸酶基因BcMF6和花粉外壁蛋白基因BcMF5的分离及其功能验证[D].2006.
    [126]宋江华.白菜花粉发育相关基因BcMF11和BcMF12的克隆、表达及其功能验证[D].2007.
    [127]黄鹂.白菜三种雄性不育系与保持系花蕾转录组差异分析及三个花粉发育相关基因功能鉴定[D].2007.
    [128]Chang SS,Park SK and Nam Ⅱ-G. Transformation of Arabidopsis by Agrobacterium inocul-ation on wounds. In:Abstracts of the Fourth International Conference on Arabidopsis Research [J]. Vienna,1990,28:23-26.
    [129]Steven J, Clough, Angrew F. Floral dip:a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana[J].The Plant J,1998,(16)6:735-743.
    [130]Dong J, Pushpa K, Weimin T.Characterization of rice transformed via an Agrobacterium mediated inflorence approach[J].Mol Breeding,2001,7:187-194.
    [131]林良斌,官春云.子房注射法与农杆菌介导法转化甘蓝型油菜的比较研究[J].生命科学研究,2000,4(3):231-236.
    [132]严继勇BcpLH反义基因在大白菜中的转化及其功能的研究[D].2004.
    [133]薛万新.白菜类蔬菜叶球发育相关基因的分子克隆及其转基因植物研究[D].2001.
    [134]巩振辉,Milner JJ,何玉科等CaMV基因Ⅵ在抑南芥上的遗传转化及交叉保护[J].西北农业大学学报,1997,25(4):6-12.
    [135]Mollier P, Montoro P, Delarue M.Promoterless gusA expression in a large number of Arabidopsis thaliana transfornants obtained by the infiltration method[J].Acad Sci.Paris, Life science,1995,318:465-474.
    [136]Cao MQ, Liu F, Yao L.Transformation of Paacchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration[J]. Molecular Breeding,2000,6:67-72.
    [137]张光辉,巩振辉,薛万新等,大白菜和油菜真空渗入遗传转化初报[J].西北农业大学学报,1998,26.4.1-4.
    [138]Triglia T,Peterson MG,Kemp DJ.A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences[J].Nucleic Acids Res,1998,16 (16):8186.
    [139]Tsuei DJ,Chen PJ,Lai MY,Chen DS,Yang CS.Chen JY,Hsu TY.Inverse polymerase chain reaction for cloning cellular sequences adjacent to integrated hepatitis B virus DNA in hepato cellular carcinomas[J].Virol Methods,1994,49(3):269-284.
    [140]Takemoto S,Matsuoka M,Yamaguchi K,Takatsuki K. A novel diagnostic method of adult T-cell leukemia:monoclonal integration of human T-cell lymphotropic virus type I provirus DNA detected by inverse polymerase chain reaction[J].Blood,1994,84(9):3080-3085.
    [141]Cavrois M,Wain-Hobson S,Wattel E. Stochastic events in the amplification of HTLV-I integration sites by linker-mediated PCR[J].Res Virol,1995,146(3):179-184.
    [142]Ohshima K.,Mukai Y,Shiraki H,Suzumiya J,Tashiro K,Kikuchi M. Clonal integration and expression of human T-cell lymphotropic virus type I in carriers detected by polymerase chain reaction and inverse PCR[J].Am J Hematol,1997,54(4):306-312.
    [143]Ohshima K,Suzumiya J, Kato A, Tashiro K, Kikuchi M.Clonal HTLV-I-infected CD4+T-lymphocytes and non-clonal non-HTLV-I-infected giant cells in incipient ATLL with Hodgkin-like histologic features[J].Intl J Cancer,1997,72(4):592-598.
    [144]惠麦侠,巩振辉,张鲁刚,柯桂兰,张明.大白菜花芽形态分化的研究[J].园艺学报,2003,30(6):731-733.
    [145]翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2000,114:323-328.
    [146]Legube G,LinaresLK.,Lemercier C.Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation[J].EMBO J,2002,21 (7):1704-1712.
    [147]蒋智文,刘新光,周中军.组蛋白修饰调节机制的研究进展[J].生物化学与生物物理进展,2009,36(10):1252-1259.
    [148]王镜岩,朱圣庚,徐长法(主编).生物化学(上册)(第三版)[M].北京:高等教育出版社,2002,1 57-181.
    [149]马红辉,方存磊,曾平耀.植物同源结构域(PHD结构域)——组蛋白密码的解读器[J].生物化学与生物物理进展,2008,35(6):625-630.
    [150]赵仲林,曾群,赵淑清.植物春化作用的分子机理[J].植物学通报,2006,23:60-67.
    [151]Miguel A, Green R, Nilsson O, Michael R, Weigel D.Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. The Plant Cell,1998,10(5):791-800.
    [152]Bent AF and Clough SJ.Agrobacterium germ-line transformation:transformation of Arabi-dopsis without tissue culture[J].In Plant Molecular Biology Manual, Netherlands, Kluwer Academic Publishers,1998,B7:1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700